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ZBIGNItrW ZAP"ZYC]KII

FYiction factor for accelerated tqrbulent flow through long
smooth pipes

The Paper presents a mathematical model of unsteady turbulent pipe flow developed using the
:i:ur-layer distribution of the coefficient of turbulent viscosity. This model is used for deier:rnining the
tldraulic losses. A detailed discussion deals with the instantaneorrs friction factor for accelerated liquid
f,os. This coeficient increases with increasing acceleration of liquid flow and decreases with increaiing
iłl-nolds number. It is demonstrated that thginstantaneous friction factor considerably differs from thó
qrrasi-steady value.

t. Introduction

In calculating the transients that occur during unsteady turbuient pipe flow
.: is very frequently assumed that the hydraulic losses ale of quasi-steady natule
t. g. [11]), what is justifiable when real distribution of the velocity field over the

i,;.pe closs-section slightly differs from that of a quasi-steady state. The wolks,
ł.hich deal with hydraulic losses in accelerated turbulent flow - contrary to those
rcvoted.to the pulsating flow (e. g. [3,8+9, 12+13]) - are rale [1,2,5] and
nlrnly deal with experimental studies. The results of these studies, regardlÓss of
Li§erences existing among them, explicitly show that, during accelerating of the
f"rw, the instantaneous friction factor substantially differs from its quasi-steady
oalue.

The Purpose of this work is to analytically determine the instantaneous friction
hctor, and to investigate its course as a function of acceleration and Reynolds
l:mber. Presented is mathematical model of unsteady turbulent flow of liquid
;brough smooth pipes, This model is based upon the Reynolds equation and
a supplementary equation which describes the distribution of the coefficient of
;r,rbulent viscosity over the pipe cross-section for the four-layer model of the flow

=gion [12, 15] . This model was adapted for determination of the instantaneous
=ction factor.

:Katedra Mechaniki i Podstaw Konstrukcji Maszyn, Politechnika Szczecińska, Al. Piastów
_l}. 70-310 Szczecin
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2. Mathernatical model of unsteady
smooth pipes

in long

tinsteadr. axisymmetrical turbulent flow of a Newtonian liquid in a 1ong pipe
with a constant internal radius and rigid walls is considered. Moreover, the follo-
wing assumptions are taken:

- constant distributiorr of pressure in the pipe cross-section,

- body forces and thermal effects are negligible,

- mean velocity in a pipe cross-section is considerably smaller than the sound
velocity in the liquid.

The fo1lowing approximate equation, shown in the previous paper [12], which
omits smal1 terms in the fundamental equation for unsteady flow, is used:

0u, 1aF Ia/aa,\ 1a( 0O.\
a;---ńń+';Ń\'ń)+;Ń\",ń), (l)

where: a",F - averaged in time, respectively: velocity component in the axia1
direction and pressure (the ovelscore denotes the short-time averaged value),
p6 - density of the liquid (constant), z - lrinematic coefficient of viscosity, ,tl1 -
kinematic coefficient of turbulent viscosity, ź - time, z - distance along the pipe
axis, r - radial distance from the pipe axis.

It is assumed that changes of the coefficient /, Iesulting from the flow change in
time are negligible, which means that ul is only a function of the radia1 distance r.

2.L. Model of turbulent viscosity

In order to describe the distribution of the coefficient u1 oyET the pipe cross-sec-
tion, the flow region is to be divided into several layers and, for each of them,
the function a(r) is to be determined. By analogy to the steady pipe flow the
following regions of flow can be distinguished [10]: a viscous sublayer (VS), a
buffer layer (BL), a developed turbulent flow layer (DTL) and a turbulent core
(TC). This is shown in Fig. 1 .

The radial distances Tl,T2aILd 13 from the pipe centre line are as follows:

rj=R-afuł) j=1,2,3

ał = 0,2R+, ał = 35 ał : 5,

- dimension]ess distance g,
distance from the pipe wal1,

1

turbulen{ flow of liquid
\\
\

(2)

(3)

where:
J- *ly, - aD lu

1l

,* - ł7-J po dynamic velocity,
Tus wall shear stress for a steady flow,
Rł = Ru* f u dimensionless radius R of the pipe.
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Fig. 1, Schematic representation of fou-region model of z1

Table 1. Quantities a6 and, B;

Region ui §;

VS, i: f
rgśrlR

0 0

DTL, i :3
rtŚrśrz

I utt - utz\
-\ r,-^ /

, lutt-utz\Utzl1-1rz
\ rż-T7 ,/

TC,i:Ą
0{r<rr

0 ut1

The coefficient of turbulent viscosity u1 , is expressed, foT
iexcept the buffer layer) as follows:

U1 : a;r I fj;, i:7,3,4.
The quantities a; and P; are given in Table 1 below.

For the buffer layer (r2 ( r ( rs) ut is expressed as follows:

ut : 0.0L(u+)2.u (b)

Expressions, which define the quantities u1l,L,tzsTll12 and 13 have the following
forms :

particular layers

(4)

Ztr = 0.016 ,E = Re-"ll, utz:12.25u,

rt:08, ,,=(r_#[+)r, ".:(, _#
(6)

(7)

'F^J",
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r.,-lrere:

^.
- friction factor for steady flow,

R€-,, = 2Ru^"f u Reynolds number for steady florv,
Ł'.-l s - mean liquid velocity in the pipe cross-section.

The quarrtities z1l,12 and 13, whiclr deflne the distribution of the coefficieTtt u1,

depend on a dimensionless dynamic velocity ó* determined in the following way:

0* = 
4łŻR 

a* - 1/ĘRe*". (8)
u

Tlrerefore, the presented profile of the coefficient u1 in the pipe cross-section,
in the case of smooth pipes, depends only on the Re*" number since we have
), : )"( Re-").
Hov.ever, if, instead of the Re^", we assume an instantaneous Reynolds number
Re* - 2Ru*f u (t- - instantaneous, ayeTage in the pipe cross-section, liquid velo-
cit"v*) and, instead of )", assume a quasi-steady friction factor ,\n : )n(lBe-), then
the presented distribution of the coefficient z1 wil1 show itself as the quasi-steady
one.

2.2. Momenturn eqtrations for particular layers

Knowing the distribution of the coefficient of turbulent viscosity in the pipe
cross-section one can break up the equation (1) into four equations that describe
the liquid flow in particular layers of the flow region. Introducing the differential
operator D = 0l0t into the equation (1) we obtain:

- for the viscous sublayer:

Da 
"l

- for the remaining layers of the flow region:

(9)

(10)

where:
i=2,3,4 (i=2 for the BL,i= 3for the DTL and i:4for the TC),
T"i axial component of the velocity for particular layers of the

region,
ux, : u ł ut effective coefficient of turbulent viscosity.

The equations (9) and (10) can be resolved, for i :3,4, and using the relationship
(4), into the modified Bessel equations [7] whereas the equation (10), for i = 2

and taking into account the foliowing relationship :

u2\ 0u,;

-l-,)0r'

r7_\\-
R,-r" 2

for 12śr{rs
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:an assume the form of a differential equation of the Euler type.
Then, the solutions of the momentum equations for particular layers

bllows:

for f = 1r3r4,T"; = c;Io(T) l D;I{o@;) - ##

arQ as

/ (1L)

vhere:

ln(R - r),

r2D
Utt

(13)

L,r : rz - rti Lu1 = Utt - ut2. (14)
|g,I{g - modifled Bessel functions of the first and second kind of zero order.
ntegration constants C1,...,Caand D7r...,Da, which are present in the equations
11) and (12), were determined from the boundary condiiions resulting fiom the
:ontinuitY of velocity and shear stress at the point of contact between layers.
lhese conditions can be written in the fol1owing way:

T,2 = C2e'L + Dr"'i * J-a_ 
_

pgD 0z'

u";(r = Ti) = T,i+t(r = r;), )0u., 0t-.- \

ffr, - ri) = ff? = ro) for i = 1,2,3 J

,^ : ##u * ru" (;) ł Dt,

o",:IEtn(R- Ą*fiłDz,
,8==P,*rr"(T) ł Ds,

UlPg CIZ

t.o = #ń#,, * ru" (;) ł Dą,

A=0.01Tro=YW^"R"r*",
,r=ń(rr-rl)łTz-T.

(I2)

( 16)

(15)

nd u,,1(r : B) = 0.
the eighth boundary condition is a flnite value of the liquid velocity at the pipe
:entre line; hence, one can conclude that Da = 0 since the function 1(0(0) urroń,
r,n infinitely great value.

tr'or a steady flow, omitting the left sides of the equations (9) and (10), we
lbtain the fo11owing solutions for particular layers:

l
l

400-u .

rhere

( 17)



94 Z- Zarzycki

The integration constants, which are present in the above solutions, were deter-
mined from the same boundary conditions as for the equations (11) and (12).

3. Hydraulic resistance. Instantaneous friction factor

Assuming that |plhr = 0 and integrating the equation (1) over the pipe
cross-section (from r:0 to r: R), and considering that 0l0t: D,we obtain:

fln2
4oDu*+ń+źr-=O.

By determining the wall shear stress at the pipe wa}l T,u))as follows:

r,,) = -pouT lr=R

we obtain a relationship of the following type:

r- = f (D,R"^)Y.

The equations (18) and (20) enable us to determine transfer functions that de-

scribe the hydraulic resistance. Introducing the following dimensionless quantities:

ó* : (Rf u)u*, i,-: (R2 f pou2)r-, P: (R2lpgu2)p

we obtain the following transfer functions:

(21

- a transfer function relating the pipe wall shear stress to the mean velocity;

ćrrlb,Rr '- 
f- 

|*) - 6-,'

- a transfer function relating the pressure, gradient to the mean velocity:

Ge,(G,ą"^) - ry:,

n = 1a'1,1fi
is the dimensioniess differential operator.
Between the functiorts G,,, and Gp, there is the following relationship:

Go,: -(D + 2G,,). (

The function G,, is of a complex form and, for that Teason, is given in Appen
A.

(1B)

(19)

(20)

wlrere the quantity:
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The function G, enables us to determine the instantaneous friction factor ),r.
This was determined from the following relationship:

1r- = 
-rpg\.a!.

Making use of the relationship (22) we obtain:

. _ l 6G ,ulb, Re^1
^'- Rr- '

Using the differential operator definition, i. e. Da^ : 0u^l0t and taking
account the equation (2a) we have:

^ / R2\0u^D = I{,= 
\r^) 

" 
(28)

The above quantity is presented in the literature Ig, 14] as a flow unsteadiness
parameter Ifrr.
This parameter expresses the ratio of inertia forces to viscous forces. Thus, A,, is
letermined as a function of the parameter K, and Reynolds number related to
rhe instantaneous mean velocity u^:

)r=
L6G,,(I(n, Re*)

(29)Re*

For accelerated flow the parameter I{, (equation (28)) can be presented in
;he foIlowing form:

I{n = alp"*, (30)

,l'here Ó - dimensionless, average over the pipe cross-section, acceleration of the
iquid:

a:(2R3fu\a, a:Oa^l0t. (31)

fherefore, the relationship (29) determines ),, as a function of ,acceleration ó and
Reynolds number ,Be-.

t. The examination of steady flow friction factor

The above presented me{hod of calculating the friction factor will be verified
,o the steady flow case. In this case, the function Gr, taken with negative sign,
,epresents a constant resistance ło" which depends only on the Reynolds number
br steady flow - Re^r. This can be written as follows:

(26 )

(27)

into

ńo, = Os(Ęe-,; = -'P!U' ,
am

(32)
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where Ą" ,"pr"r"nts a dimensionless resistance:

ńo": Ro"IRn . (33)
Po"u

The constant resistance was determined using the following relationship:

Quatities Tz!lTz2la6 and a24 aTE described by the relationship (16).
On the basis of Eq. (3a) we obtain a relationship of the following type:

o*: # ('łr* a, + t'o,u, 
a, + j ,;,,, a, * ]o",,r,,) (34)

u*: f (Re*"){r,

I

ft= 0.B69/n( Re*,1/Ę1- 0.B.

(35)

The expression for the resistance -86", determined in the above way, assumes a
complex mathematical form and, therefore, has been approximated with a simple
expression of the following form:

ńor: a Reb^6

where
for Re-"€ (10a + 105) a : a.0262B, b = 0.7830, )
for Re*"€ (105+106) a:0.01440, b:O.B330, l (37)
for Re*"€ (ro6+ro7) a:0.00987, b=0.8604. J

As it results from the equation (25) there is the following relationship for the
steady flow: 

Grr: _0.5Ge,= 0.5Ęo".

Hence, based on the equation (27), one can obtain the steady flow friction factor
relationship:

)"= Bńo"
(3B)

Re*"

The results of the calcu]ations done for A", according to Eqs. (3B) and (36)
are compiled in Table 2.
Also given in Tabie 2 are values of )" calculated according to the Prandtl formula
[10]:

(39)

The differences between the values of )" calculated according to Eqs. (38) and
(36), and those calculated from trq. (39) are small. They partially result from the
approximation of that expression rvhich describes the constant resistance. This
testifies to the correctness of the method assumed for determination of the friction
fa,ctor.

(36)
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Table 2. Friction factor values for the steadv flow

Re*r ), eTroT

/oEq. (3B), (36) Eq. (39)

104 0.02B4B0 0.030B60 7.7

2.Ia4 0.a24572 0.025B69 5.2

5.104 0,020096 0.020B75 J.l

105 0.017328 0.017976 3.6

5.105 0.012874 0.013147 2,0

106 0.011467 0.011635 I.4

5.106 0.009167 0.008974 2.1

I07 0.008321 0.008096 2.7

'. 
Results of friction factor calculations for accelerated flow

The course of the instantaneous friction factor for accelerated turbulent flow
s presented in Fig, 2 as a function of the Reynolds nrrmber Re^, fot various
limensionless accelerations d.

The fuil lines show the courses obtained for the presented in this work four-layer
nodel of the flow region while the broken lines show those obtained from the fol-
owing relationship:

\n = 76ń-+ (40)
(Re*)i

vhich is valid for the initial period of acceleration of the liquid in the pipe, and
ln condition that, at the initial moment, the liquid was at rest. The relationship
40), discussed here, is given in Appendix B. For the initial period of liquid acce-
eration the curves obtained for both cases ale close to each other. Also plotted
n Fig. 2 is the course of the quasi-steady friction factor )n, calculated from Ec1.
39). The Curves given in Fig. 2 display the fact thżt .\,, incieases with increasing
limensionless acceleration, and is substantially different from An. In Fig. 3 a com-
larison is made between the computational results of },, and those experimental
taken from the work [4]. These results relate to the instance of acceleration of

vater (u: 10-6 *2r-1) in a pipe with the radius of B = 0.0305 m. At the initial
noment water was at rest. The presented culves (1,2 and 3) relate to various
lccelerations of the liquid (a = 0.B7;3.1 and 11.87 ms2). Figure 3 also shows the
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:a
l

Fig. 2. Instałrtaneous friction factor Aa for accelerated flow

-Ea E9l,(30lIł1} 
{1.orstntne,r|-1.1-oo

' l, l;łq l\-*r"ri.Jnrr. ' resłrlts l4l

Fig. 3. Numerical a.rrd experimental values of )n
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courses of the quasi-steady friction factor Aq : 64lRe* fot laminar and turbu-
1ent flow. The Presented courses show that i,, considerubty diff"., iro* ,łn urrJ,
moreover, (as in Fig. 2) )r, increases with incieasing accelĆration, and dec."as",
with increasing Reynolds number ,Be-.

6. Conclusions

The PaPer Presents mathematical model of unsteady turbrrlent flow of liquid in
;mooth PiPes. This mode1 was used for determination of instantaneous hydrarr-
Lic resistance. Also presented is the method for determining the instantłneous
lriction factor. This method has been tested on an instance"of steady flow and
bhe obtained values of the friction factor have been found to be consistent with
,hose calculated from the Prandtl formula. The main emphasis was laid on the:alculation of the instantaneous friction factor for accelerated flow. It has beeir,
bund that ), increases with increasing dimensionless acceleration ó = ęzlńr fr;o,a : 7u^.l 0t), and decreases with incróasing Reynoids number Be-. Some resultslf numerical calculations of A," were compared with those obtained from experi-
nents and relativelY good consistency ofboth results has been found. rvror"o"".,lt
tas been demonstrated that the instantaneous friction factor substantially diffórs
iom the quasi-steady value. This fact should be taken into account in the calcu_
ations of transients occurring in those systems which include so called hydraulic
ines, where calculations are-made uasóa on quasi-steady models of hydraulic
oSSeS.

4anuscript received: March 27, 1995
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Współczynnik strat tarcia dla turbulentnego przepływu
przyspieszonego przez długie rury gładkie

streszczenie

W pracy przedstawiono model matematyczny niestacjonarnego turbulentnego przepływu,cieczy w

przewodach zamkniętych z wykorzystaniem czterowarstwowego rozkładu współczynnika lepkości tubu-
lentnej. Model ten wykorzystano do lvyznaczenia strat hydraulicznych. Szczegółowe rozważdnia dotyczą
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iwilowego wsPÓlczYnnika strat tarcia dla przepływu przyspieszonego. Współczyrrnik ten rośnie 7,ę wzro-
tem PrzYsPieszenia cieczy i maleje ze wzrostem liczby Reynoldsa. Wykazano, źe chwilowy współczynnik
,trat tarcia zna,cznię odbiega od wartości quasi-ustalonej.

Appendix A

The form of the transfer function G,,, i, as follows:

\fłu - Błó - z'
1

§ = §(b, Re^) - hl{ua) - Q2I{{ąą)'

+ 4ł-bz2l(t(nn)

(41)

(42)

h=

óz=

c727

8lzl * 9zzz

-caĄ ł 4ł6z2Ą(n3)
Qtzt ł gzzz

a1(-eln1+ %n2) ! el(a2n1 - aznz),
al(e2m1- esmz) { el(a2m1 - asmz),

= d,6c7 - d,7c6,

= łł67aul<rlnrs) * d,7Ą(nlg)],

_ 1 1r:: b"ńrr + 
ńV 

Dl(l(rsz)rz,
.1 7r= brńrr - hV 

DĄ(n32)w2.,

1r-
b" h.r 

_ 1l Dl({nzz)wą,
1r

b, 
h." l \f DĄ(ą2)ua,

: (I - mz)sinha,
= -(si,nha I mcosha),
= -(sinha - mcosha),
= _2sinha,

,l

a = ,mln(lzlls),

(44)

(45)

(43)

(46)

.I

.2

Qt

8z

TL1

Tn1 =

7TL2 =

(47)

U1
U2
U3
W4

(48)
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(49)

(50)

at = Io(nąt),
b2: Ig(ng2),
c6: Ia(ng),
d,6 : Ig(nlIł),
e1 : I1(na1),

, 12800

),Re2*'

az = -Ia(nzt),, a3: Kg(nu),
bz = Ko(nsz),
cz = Ko(ntz), (51)
dr: Ko(Ua),
ez : I!: It(nsl,),, ea: -I(t(nst),

I-1. r.nąl : 
-V 

D,
łPt

nst = ,(FŁ) łń\E,
TLzz = ,(#)łńr[b,
nts = (l- h)ł6,
nlR : łó,

Ę = 0.2,

, l40 IT uOÓl'2 = R"*Y)= 6* ,

, 20 lT 20ńł3 : R"^V)= 6-,
pt = o.orofł 

"^ = ffr*,
Pz = 72.25..

(52)

(53) 
]

i

,
/'

i

i

:

Appendix B

For unsteady laminar flow, puttinl Ą : 0 in the equation (1) we obtain its
solution in the following form:

I0p
(54)

L+DĘ,

where

u" = CJo(Tr) + Drrro(łr) - pgD 0z'

(55)
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The boundary conditions ale as follows:
1. T = 0, az = a finite ualue,
2. r:R, Dz=0.

From the condition 1 it can be concluded that Dr : 0 since the function 1f0(0)
assumes an infinitely,large value. Using the equations (1B) and (19) we obtain a
transfer function for laminar flow, as fo11ows:

" Ę I,(r/D)G,,: \/ D-, (56)
I2(\/ D)

where It,rz* modified Bessel functions of first kind, of the orders 1and 2.
For verY great arguments z the Bessel functions can be approximated with the
formulae [6]:

103

óz
I1(z)x I2(z)= -=.

l/2lr z
Calculating values of the Bessel functions from the exact expressions and from
the equation (57) one can find that, fot z :100, the approximation ełror is 1.8%.
Taking into account the fact that the operator D coriesponds to the argument
.- it can be said that the above approximation is justifiable when / appioaches
0. This corresponds to the initial period of liquid motion from standstili. In this
case the function Ć", usrorrr"s the fo11owing form:

a,,: \E. (58)

If we assume the quantity Kn = at l Re* (according to the formulae (2B) and (30))
for the D, th"r., based on the formula (29), we have:

, rc\Eal R\ź - 3
Ąn = 

- 

(*_/ = l6l/a (Re-)-z

and, thus, the relationship (a0).

(57)

(59 )


