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ZBIGNIEW ZARZYCKI?

Friction factor for accelerated turbulent flow through long
smooth pipes

The paper presents a mathematical model of unsteady turbulent pipe flow developed using the
‘sur-layer distribution of the coefficient of turbulent viscosity. This model is used for determining the
draulic losses. A detailed discussion deals with the instantaneous friction factor for accelerated liquid
w. This coefficient increases with increasing acceleration of liquid flow and decreases with increasing
-ynolds number. It is demonstrated that the instantaneous friction factor considerably differs from the
masi-steady value.

1. Introduction

In calculating the transients that occur during unsteady turbulent pipe flow
* is very frequently assumed that the hydraulic losses are of quasi-steady nature
e. g. [11]), what is justifiable when real distribution of the velocity field over the
sipe cross-section slightly differs from that of a quasi-steady state. The works,
which deal with hydraulic losses in accelerated turbulent flow — contrary to those
tevoted to the pulsating flow (e. g. [3, 8+9, 12+13]) — are rare [1, 2, 5] and
mainly deal with experimental studies. The results of these studies, regardless of
{ifferences existing among them, explicitly show that, during accelerating of the
“ow, the instantaneous friction factor substantially differs from its quasi-steady
walue.
The purpose of this work is to analytically determine the instantaneous friction
actor, and to investigate its course as a function of acceleration and Reynolds
mamber. Presented is mathematical model of unsteady turbulent flow of liquid
‘srough smooth pipes. This model is based upon the Reynolds equation and
« supplementary equation which describes the distribution of the coefficient of
urbulent viscosity over the pipe cross-section for the four-layer model of the flow
=gion [12, 15] . This model was adapted for determination of the instantaneous
miction factor. '

‘Katedra Mechaniki i Podstaw Konstrukcji Maszyn, Politechnika Szczeciriska, Al. Piastéw
. 70-310 Szczecin
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2. Mathematical model of unsteady turbulenf flow of liquid in long

smooth pipes \
o

Unsteady. axisymmetrical turbulent flow of a Newtonian liquid in a long pipe
with a constant internal radius and rigid walls is considered. Moreover, the follo-
wing assumptions are taken:

constant distribution of pressure in the pipe cross-section,

— body forces and thermal effects are negligible,

mean velocity in a pipe cross-section is considerably smaller than the sound
velocity in the liquid.

The following approximate equation, shown in the previous paper [12], which
omits small terms in the fundamental equation for unsteady flow, is used:

o 13p+ 13(8@) 18( 8112) (1)
at — podz Yvor \"or +787‘ St A

where: T,,p — averaged in time, respectively: velocity component in the axial
direction and pressure (the overscore denotes the short-time averaged value),
po — density of the liquid (constant), v — kinematic coefficient of viscosity, v; —
kinematic coefficient of turbulent viscosity, ¢ — time, z — distance along the pipe
axis, r — radial distance from the pipe axis.

It is assumed that changes of the coefficient v; resulting from the flow change in
time are negligible, which means that v; is only a function of the radial distance r.

2.1. Model of turbulent viscosity

In order to describe the distribution of the coefficient v, over the pipe cross-sec-
tion, the flow region is to be divided into several layers and, for each of them,
the function v4(r) is to be determined. By analogy to the steady pipe flow the
following regions of flow can be distinguished [10]: a viscous sublayer (VS), a
buffer layer (BL), a developed turbulent flow layer (DTL) and a turbulent core
(TC). This is shown in Fig. 1 .

The radlal distances 7,72 and r3 from the pipe centre line are as follows:

rj = R—y(yf) i=1,2,3 (2)
w =0,2RY, 43 =35  y3=5, (3)
where:
yt = yo*/v — dimensionless distance v,
Y — distance from the pipe wall,

v* = \/Tws/po — dynamic velocity,

Tt — wall shear stress for a steady flow,
R = Rv*/v - dimensionless radius R of the pipe.
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y y=R

Fig. 1. Schematic representation of four-region model of v;

Table 1. Quantities a; and B;

Region a; Bi

VB ==l 0 0

To SR

DTL,i=3 _(th—l/t2> Vt2+(Vt1—Vt2)T2
r<r<ry L 2—"
TC, 4 = 4 0 Vil

0S e

The coefficient of turbulent viscosity v; , is expressed, for particular layers
except the buffer layer) as follows: :

ve.= oy + 5;, 1 =134, (4)

The quantities o; and f3; are given in Table 1 below.
For the buffer layer (7, <7 < r3) v, is expressed as follows:

v = 0.01(y") 2w ,, (5)

Expressions, which define the quantities 141,149, 71,72 and r3 have the following
forms :

Ay
v = 0.016 e Re,,,v, vip = 12.25v, (6)

140 /2 20 2
™ = 08, To = <1 = Rems :\—s) R, T3 = (1 — Rems /\—S) R, (7)
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where:
As — friction factor for steady flow,
Re... = 2Rv,,;/v — Reynolds number for steady flow,
Vs — mean liquid velocity in the pipe cross-section.

The quantities v41, 79 and r3, which define the distribution of the coefficient 14,
depend on a dimensionless dynamic velocity 9* determined in the following way:

= 4\/_R = \/_Rems (8)

Therefore, the presented profile of the coefficient v; in the pipe cross-section,
in the case of smooth pipes, depends only on the Re,; number since we have
Xs = Xi(Rems):

However, if, instead of the Re,,;, we assume an instantaneous Reynolds number
Re,, = 2Rv,, /v (v, — instantaneous, average in the pipe cross-section, liquid velo-
city) and, instead of A,, assume a quasi-steady friction factor Ay = A;(Rey), then
the presented distribution of the coefficient v; will show itself as the quasi-steady
one.

2.2. Momentum equations for particular layers

Knowing the distribution of the coefficient of turbulent viscosity in the pipe
cross-section one can break up the equation (1) into four equations that describe
the liquid flow in particular layers of the flow region. Introducing the differential
operator D = §/0t into the equation (1) we obtain:

— for the viscous sublayer:

szl —

1 ap v 82721 18@1
" po 0z "\ "o r Or

— for the remaining layers of the flow region:

Tt 1 ap 32722' Jvs; vs\ 07,
i " podz TR ( or 7 ) ar’ &
where: ,
t=2,3,4 (i = 2 for the BL, ¢ = 3 for the DTL and i = 4 for the TC),
T — axial component of the velocity for particular layers of the
region,
vs =v+v; — effective coefficient of turbulent viscosity.

The equations (9) and (10) can be resolved, for i = 3,4, and using the relationship
(4), into the modified Bessel equations [7] whereas the equation (10), for 1 = 2
and taking into account the following relationship :

il
> - for 7o £ 1 Iy
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\
\

-an assume the form of a differential equation of the Euler type.
Then, the solutions of the momentum equations for particular layers are as

ollows: i B
S G i TP e
T = Cilo(ni) + D Ko(m;) 5505 for i=1,3.4. /(11)
1 " 1 (9]9
v = g SOm. e ].2
Uy = Che™ + Dye2 Do (12)
vhere:
[72D [ 400-v-D
= T; My My = % (_1 = 4+ —v*g“‘_) In(R - r),
(13)
Ar [ vy ) r’D
=%/ — —=-A — 7| D: =4 /—,
i Ay (Ayt FHTR =t b Vg
Ar =1y —11; Avp = vy — V. (14)

0, Ko — modified Bessel functions of the first and second kind of zero order.
ntegration constants Cy, ..., Cy and Dy, ..., Dy, which are present in the equations
11) and (12), were determined from the boundary conditions resulting from the
ontinuity of velocity and shear stress at the point of contact between layers.
[hese conditions can be written in the following way:

Uai(r = 14) = Ty, (r = 1), }
07, s = 8?21._“ 5 it
W(r == T(T =) “ard =128

nd "1721(7’ = R) = (J.
‘he eighth boundary condition is a finite value of the liquid velocity at the pipe
entre line; hence, one can conclude that Dy = 0 since the function Ko(0) assumes
n infinitely great value.

For a steady flow, omitting the left sides of the equations (9) and (10), we
btain the following solutions for particular layers:

(15)

” 1 dp (7‘) )
zl == i l ey Dy,
U1 T + Ciln 7 ) T
1dp :
Voo = ——pln(R—r)—l— C2 —}—DQ,
AdZ d— R = T (16)
PN L B (—n—2> Yk
Vtipo dtiz R
= P 9 T
o = = l - D y
v 4p0yt1dzT -|-C4n<R)+ 4 J
‘here .
v* 0.01 pov 9 ’
A=0.01 = ——A,Re’ _,
001770 = 35z A Bems A (17)

ng =—(rg—7r1)+ 1y — 7.
Vi1
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The integration constants, which are present in the above solutions, were deter-
mined from the same boundary conditions as for the equations (11) and (12).

3. Hydraulic resistance. Instantaneous friction factor

Assuming that 05/0r = 0 and integrating the equation (1) over the pipe
cross-section (from r = 0 to r = R), and considering that §/0t = D, we obtain:

dp-- 2 v
Dvyp + —+ =70 = 0. 18
poDvm + 5=+ =7 (18)
By determining the wall shear stress at the pipe wall 7, as follows:
v,
Tw = —,Ool/—a—1 IT:R (19)
7

we obtain a relationship of the following type:

0
ru = f(D; Rew) 5. (20)

The equations (18) and (20) enable us to determine transfer functions that de-
scribe the hydraulic resistance. Introducing the following dimensionless quantities:

O = (R/V)Vm, T = (RZ/POVZ)Twy p= (R2/POV2)P (21)

we obtain the following transfer functions:
— a transfer function relating the pipe wall shear stress to the mean velocity:

o A T
Gl B, Rep ) = P (22)
— a transfer function relating the pressure gradient to the mean velocity:
oS o ap/o
Gl Rem) = pT/ﬁ, (23)
where the quantity:
- J
D= (R?/v)— 24
(R [v)g; (24)
is the dimensionless differential operator.
Between the functions Gy, and Gy, there is the following relationship:
Gow = —(D + 2G,y). (25)

The function G, is of a complex form and, for that reason, is given in Appendix
A.
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The function Gﬂ, enables us to determine the instantaneous friction factor \,,.
This was determined from the following relationship:

1
Tw = ng)‘nvfn- (26)

Making use of the relationship (22) we obtain:

_ 16G(D, Rey,)

An Re,,

(27)

Using the differential operator definition, i. e. Dv,, = 9v,,/0t and taking into
wccount the equation (24) we have:

2
D=K,= (R—> om, (28)

Vi) OF

The above quantity is presented in the literature [9, 14] as a flow unsteadiness
barameter K.

[his parameter expresses the ratio of inertia forces to viscous forces. Thus, A, is
letermined as a function of the parameter K, and Reynolds number related to
‘he instantaneous mean velocity v,,:

116G [ K R

A
& Re,,

: (29)

For accelerated flow the parameter K, (equation (28)) can be presented in
he following form:

K, = &/Ren, (30)

vhere @ — dimensionless, average over the pipe cross-section, acceleration of the
iquid:
&= (2B /980, a=Bv,, /0. ‘ (31)

[herefore, the relationship (29) determines )\, as a function of acceleration & and
Reynolds number Re,,. :

. The examination of steady flow friction factor

The above presented method of calculating the friction factor will be verified
o the steady flow case. In this case, the function C?pv, taken with negative sign,
epresents a constant resistance Ry, which depends only on the Reynolds number
or steady flow — Re,,,. This can be written as follows:

dp/ 0=

Um

Ros = Os(Rep,) = — (32)
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where Rgs represents a dimensionless resistance:

T R*

PosV

szs == ROs

The constant resistance was determined using the following relationship:

1 2 T3 R
2
Um = 2 (/@ﬂ dr+/5237" dT-i-/@z”‘ dr + /7z17' dr)) . (34)
1 2 T3

0

Quatities 7,1, 7,2,7,3 and T,4 are described by the relationship (16).
On the basis of Eq. (34) we obtain a relationship of the following type:

dp
ot
The expression for the resistance Rgs, determined in the above way, assumes a

complex mathematical form and, therefore, has been approximated with a simple
expression of the following form:

W= f{ ] (35)

Ros=a R, (36)

where
for Reps€ (10° +10°) o =0.01440, b= 0.8330,
for Reps€ (10°+107) a = 0.00987, b= 0.8604.

As it results from the equation (25) there is the following relationship for the
steady flow:

for Rems€ (10*+10°) a =0.02628, b= 0.7830, }
(37)

Gru = —0:5Gg, = 0.5Rp;.

Hence, based on the equation (27), one can obtain the steady flow friction factor
relationship:
- 8R05

PP ]
Rems

(38)

The results of the calculations done for As, according to Eqgs. (38) and (36)
are compiled in Table 2.

Also given in Table 2 are values of ) calculated according to the Prandtl formula
[10]:

= 0.869In( Remsv/A,) — 0.8. (39)

1
Vs
The differences between the values of \s calculated according to Egs. (38) and
(36), and those calculated from Eq. (39) are small. They partially result from the
approximation of that expression which describes the constant resistance. This
testifies to the correctness of the method assumed for determination of the friction
factor.
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Table 2. Friction factor values for the steady flow

ey As error
Eq. (38), (36) | Eq. (39) | %
10* 0.028480 0.030860 | 7.7
2. 102 0.024512 0.025869 | 5.2
5-10% 0.020096 0.020875 | 3.7
10° 0.017328 | 0.017976 | 3.6
5-10° 0.012874 | 0.013147 | 2.0
106 0.011467 | 0.011635 | 1.4
5108 0.009167 | 0.008974 | 2.1
1647 0.008321 0.008096 | 2.7

. Results of friction factor calculations for accelerated flow

The course of the instantaneous friction factor for accelerated turbulent flow
s presented in Fig. 2 as a function of the Reynolds number Re,,, for various
limensionless accelerations .

The full lines show the courses obtained for the presented in this work four-layer
nodel of the flow region while the broken lines show those obtained from the fol-
owing relationship:

W R 5 (40)
(Repn )2

vhich is valid for the initial period of acceleration of the liquid in the pipe, and
n condition that, at the initial moment, the liquid was at rest. The relationship
40), discussed here, is given in Appendix B. For the initial period of liquid acce-
eration the curves obtained for both cases are close to each other. Also plotted
n Fig. 2 is the course of the quasi-steady friction factor \,, calculated from Eq.
39). The curves given in Fig. 2 display the fact that A, increases with increasing
limensionless acceleration, and is substantially different from A,. In Fig. 3 a com-
arison is made between the computational results of A, and those experimental
taken from the work [4]. These results relate to the instance of acceleration of
vater (v = 107° m2s~1) in a pipe with the radius of R = 0.0305 m. At the initial
noment water was at rest. The presented curves (1, 2 and 3) relate to various
ccelerations of the liquid (¢ = 0.87;3.1 and 11.87 ms?). Figure 3 also shows the



98 7. Zarzycki

10
08

Qe

04

01
0.08[

EQ (29)30) 411

0.06

o
1

f-‘ﬁ=o.ae9 n(Ren 17J-08
———= EQ (40}

0. PR uY taaial
30 40 50

112

lgRem

Fig. 2. Instantaneous friction factor A, for accelerated flow
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courses of the quasi-steady friction factor Aq = 64/Re,, for laminar and turbu-
lent flow. The presented courses show that A, considerably differs from Aq and,

moreover, (as in Fig. 2) A, increases with increasing acceleration, and decreases
with increasing Reynolds number Re,,.

6. Conclusions

The paper presents mathematical model of unsteady turbulent flow of liquid in
smooth pipes. This model was used for determination of instantaneous hydrau-
ic resistance. Also presented is the method for determining the instantaneous
riction factor. This method has been tested on an instance of steady flow and
he obtained values of the friction factor have been found to be consistent with
hose calculated from the Prandtl formula. The main emphasis was laid on the
alculation of the instantaneous friction factor for accelerated flow. It has been
ound that A, increases with increasing dimensionless acceleration g — (2R3/v?a,
@ = Qv /0t), and decreases with increasing Reynolds number Re,,. Some results
f numerical calculations of ), were compared with those obtained from experi-
nents and relatively good consistency of both results has been found. Moreover, it
1as been demonstrated that the instantaneous friction factor substantially differs
rom the quasi-steady value. This fact should be taken into account in the calcu-
ations of transients occurring in those systems which include so called hydraulic

ines, where calculations are made based on quasi-steady models of hydraulic
0sses.

lanuscript received: March 27, 1995
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Wspoélezynnik strat tarcia dla turbulentnego przeplywu
przyspieszonego przez dlugie rury gladkie

Streszczenie

W pracy przedstawiono model matematyczny niestacjonarnego turbulentnego przeplywu cieczy w
przewodach zamknietych z wykorzystaniem czterowarstwowego rozkladu wspdtczynnika lepkosci turbu-

lentnej. Model ten wykorzystano do wyznaczenia strat hydraulicznych. Szczegélowe rozwazania dotycza
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hwilowego wspdlezynnika strat tarcia dla przeplywu przyspieszonego. Wspélczynnik ten rognie ze wzro-

tem przyspieszenia cieczy i maleje ze wzrostem liczby Reynoldsa. Wykazano, ze chwilowy wspélczynnik

trat tarcia znacznie odbiega od wartoéci quasi-ustalonej.

Appendix A

The form of the transfer function G’TU is as follows:

= —.f)___
" s/D-2
2 1
~ $ihi(mR) — dK1(mg)’

crz1+ 4 \/522 Iy (77,12)

G

B = ﬂ(b, Rem)

s
2+ gzzz
~Cg21 + 4\/1-)2‘2[1(77,13)
¢2 = ’
q121 + 9229
21 = ai(—e1ny + e3ng) + er(agng — agng),
72 = ai(eamq — egmz) + er(agmy — azmy),
@1 = dgcy— dres,
@ = 4\/5[‘16](1(”13) + d711(n13)],
1 I TR
ny = byg—wy + —\/—[;Ii1(n32)w2,
Iyl L
1 1 [a
ng = by—wy — —\/Efl(nm)wz,
lyls I3

1 LS
my = b3g’w3—\/5111(n32)w47

1 R
my = bziz—w3+\/511(n32)w4,

wy = (1-m?)sinha,

wy = —(sinha 4+ mcosha),
w3z = —(sinha — mcosha),
wy = —2sinha,

- %mln(lg/lg),

(41)

(42)

(46)

(47)

(48)
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n31

n32

n13

"R

L =

Iy =

Is =

PLi=
N

= \/1+D€’

¢ 12800
"~ ARe2)’

as = —Ip(ns1),

b3 = Iﬁ (n32)

asz = Ko(na1),

es = —Kq(na1),

= 1—-h)vﬁ5
_ VB,
0.2,
140 \/T?'_ 140v/2
Hep o pe o
20 x/§'_>20\/§
Re, ¥ Xx . & °
A :
0016 3 e = 20055
2 V2
12.25.. .
Appendix B

(52)

(53)

For unsteady laminar flow, putting »» = 0 in the equation (1) we obtain its

solution in the following form:

where

v, = Cilo(m) + D1 Ko(m) —

Bl
poD 0z

(54)

(55)
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The boundary conditions are as follows:

I. r=0, wv,=a finite value,

2. =R, w, =1,
From the condition 1 it can be concluded that Dy = 0 since the function Ko(0)
assumes an infinitely large value. Using the equations (18) and (19) we obtain a
transfer function for laminar flow, as follows:

ALV D)
Gm—ﬁb(@),

where Iy, I; — modified Bessel functions of first kind, of the orders 1 and 2.
For very great arguments z the Bessel functions can be approximated with the
formulae [6]:

(56)

eZ

\/271'2'

Calculating values of the Bessel functions from the exact expressions and from
the equation (57) one can find that, for 2 = 100, the approximation error is 1.8%.
Taking into account the fact that the operator D corresponds to the argument
= it can be said that the above approximation is justifiable when # approaches
). This corresponds to the initial period of liquid motion from standstill. In this
case the function Gm assumes the following form:

&, = VD. (58)

[f we assume the quantity K, = @/Re,, (according to the formulae (28) and (30))
for the D, then, based on the formula (29), we have:

Il(Z) = IQ(Z) ~

(57)

An

:16\/2_a(R

v Re,,

)% — 16/ (B2 (59)

and, thus, the relationship (40).



