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ROMUALD PUZYREWSKI!, PAWEL FLASZYNSKI!

Conical and cylindrical axisymmetrical flow under influence of
non-potential body forces and dissipation effects

The paper is devoted to the axisymmetrical stationary flow influenced by a non-potential force and
dissipation effects introduced in the form of losses distributed in the low domain. The axisymmetric flow
is bordered by the inner and outer, conical or cylindrical surfaces. Three effects on the flow parameters
have been investigated, namely, divergence of conuses (outer border of the flow), increased losses at the
borders and influence of immersed body thickness on the solution existence. Conservation equations of
mass, momentum and energy are written in the non-orthogonal system of coordinates based on axisym-
metric flow surfaces. It has been shown that the system is of hyperbolic character, with two families of
characteristics. This enables introducing a simple algorithm of the problem and defines the formulation
of boundary conditions. The examples of solution are presented.

1. Introduction

The model of non-potential body force can be applied to the cases where the
flow details may be disregarded from the engineering point of view. This model
covers the situations where the existence of bodies immersed in the flow can be
replaced by the distribution of a specific body force in the flow [1-2]. Focusing
the attention on the body force distribution, one has to keep in mind that this is
the modelling of the momentum equation. Mass conservation equation can take
into account the fact that part of the space is occupied by the immersed body.
Fnergy equation can model two effects namely:

a) energy subtraction or addition if any,
b) an increase of entropy production.

Such conceptualization help us to construct the closed system of equations,
provided that the information on existence of the body has been properly intro-
duced into the model. :

As an example of the application one can point out the axisymmetrical model

!Technical University of Gdanisk, Department of Turbomachinery and Fluid Mechanics, Na-
rutowicza 11/12, 80-952 Gdarisk
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of turbomachinery stages. Assumption of the axial symmetry is equivalent to the
assumption that blading becomes invisible. Its existence in different conservation
equations is represented by means of properly chosen parameters.

2. The concept of non-potential body force in energy equation

The body force of potential character appears in the energy equation as po-

tential energy denoted as 7. Non-potential body force f can not be converted into
a form of energy but it can change the amount of total energy along the path of
fluid element, according to the equation

df TP P - o

S i = |
dt<2+e+p+7r> i3 (1)
here U — velocity, p — pressure, p — density, e — internal energy. Let us assume that
we can split f into two components. The first is responsible for the momentum

change f;, and the second for the entropy production ﬁ.The right hand side of
equation (1) can be rewritten in the form

f-U=(fp+ 1)U (2)
Scalar product (2) can be either negative or positive or zero.
The case when 3 2 s o
(fp+fu)-U<O (3)

means subtraction of total energy from the fluid element according to (1).
It

(Fo+1u) U >0 (4)
then the fluid element gains energy.
For S i
(fp+fw)-U=0 (5)
one can also distinguish two possibilities either
(Fo+ fu)LT, (6)
or = Ay
el = (6a)

In both of the latter cases the total energy of fluid particle is conserved. We will
confine our further consideration to the case (5).

The form (1) of energy equation can be justified under certain conditions.
Let us consider the momentum conservation equation for Newtonian liquid in the
form

—

U sy —
p% = —pgradm — gradp + L, + pfn (7)
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vhere l_j# is the viscous force expressed as below
Fhg: 2 ¢,
L= gugrad(divU) + ViU (8)

ind vector f—,; is a non-potential body force which appears here as a carrier of
limension only without specifying precisely what it is.

Energy conservation equation, with the help of Newtonian stress tensor and
‘ourier law of heat transport, can be written in the form

B g 1 1 9p lyo2
E(——+ il g )~fn-U+pL# +—E+s+;AVT (9)

vhere ¢ is the dissipation rate, A heat transport coefficient, T' temperature.
_et us introduce the following:

e heat transfer is negligible A & 0,
e flow is stationary % =10,
e exists a vector U, = %i;qt y o E,

—

for ag + s + v, = 1 Where U(Uz, Uy, U,) and (;, 7, E) are the versors of
vector U.

Then one can rewrite equation (9)

d { % > 1o = 3
—(—+ + =t >:(fn+—Lp+€‘Us)‘U- (10)
dt p
7 one fixes i
fait —L “Efp, (11)
)
e, = ﬁ (12)

hen one gets exactly the form (1) of energy equation with the non-potential body
orces in the form of (2). This equation

gl et )=t i) 0 (12)
oincides with momentum equation written as
du -
p—y = —peradm —gradp + pfy (7a)

vhere appears the non-potential body force (11). This force can be interpreted
s a reaction force of immersed bodies in the flow.
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3. Conical coordinates

It is convenient to investigate the axisymmetrical flow in an axisymmetrical
system of coordinates. We introduce a system based on the family of cones shown
in Fig. 1 following [3].

The cross-section of the cone given by tgy = z(!) with the plane ¢ = z(?

Z = const ¢ = const

focusing dircle

Fig. 1. Conical coordinate system.

and the plane z = z(®) uniquely determines the position of the point a. The rules
of transformation between conical and Cartesian coordinates may have the form

r = (ry+zMWz®)cosz?),
z = z0,

The example of the description of the axisymmetrical channel borders are
shown in Fig. 2. AgA; is the inner border, By B is the outer border of the channel
where the axisymmetrical flow along the cones will be investigated. For the very
small taper angle v the outer border is nearly cylindrical and so will be the
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/ 5]

7

=

Fig. 2. Notation for conical coordinate system.

intermediate cone surfaces. It is therefore feasible to approximate a cylinder with
2 cone of a very small taper angle, and so there is no need to introduce a cylindrical
system of coordinates.

The problem is formulated as follows:
What should be the curvature of the fluid elements following over the
cones in order to keep the flow in accordance with governing equations?
Is the system of equations closed or what kind of additional conditions
have to be introduced?

Given that the conical stream surfaces are coordinate surfaces as well, we are
allowed the velocity vector with only two non-zero components like

Uy =0, Uyxy 20, U, #0. (14)

The conical system of coordinates is not orthogonal. To derive the system
of equations in such a system the easiest way is to use the Christoffel symbols
technique. Details of derivation will be omitted here, details are presented in [4-5].

4. System of equations

Let us set down the governing equations in conical system of coordinates

taking into account (14), axisymmetrical condition ﬁa@ = 0 and stationary con-

dition & = 0.
Mass conservation equation

(1 = (@D, a®))(ry, + 202®)a® U, = m(z) (15)
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can be rewritten into the form

Gz D), 2@

Uy = (15a)
Momentum conservation equations:
e in () direction
pUj@) 2 ap 1 ~+ 55(1)2 (9p (1) (1) om S
1w+ zWzB) T 9z 20 z@®" TP 50 +pfaw, (16)

e in z(?) direction

U
o (m%wm) =140, (17)

e in 73 direction

pU,3  OU

V14208 0z

op z(M
8z £(3)

5 0
R g i Wf(’e’)\/l + 22 ¢ p\/l - ’”(1)28;(2) +pfa- (18)

Fnergy equation:

U2 + U2
ﬂz_z@l L i % +7 = Ey(2®) — a(z®, 2®) (19)
where the function a(z(), z(®)) can model energy subtraction or addition; accor-
ding to Euler’s formula it is

a(zM,2®) = (U, Urot)o — (Upy Urer)

where U, is the rotor circumferential velocity. For the nozzle flow a(z(!), BN =1
Gibbs equation:

2@  kpoz® Tk p U

T

9p p Op k~1p\/1+x(1)2T'S

(20)

with entropy production term s and isentropic exponent k.
State equation:

= (21)
0



Conical and cylindrical axisymmetrical flow ... 65

Caloric equation:

é =, +ep: (22)

The above system consists of 8 equations for 11 unknowns

T, Uz(2)a Um(3)1p7 P Ta S, fg;(l)a fq;(?‘)? fI(3)7 € (23)

The closure problem relies on introduction of some of the above values as
known.

It seems to be reasonable to introduce the blockage factor © = T(:E(l), z(3)).
This will be equivalent to the representation of blading in mass conservation
equation.

The next proposal concerns the modelling of the blading in the momentum
equations by introducing the character of body force. It is sufficient to introduce
for example the component f, a1y = 0. It means that the vector of the body force
is placed in the plane tangential to the conical surface. Other possibilities may
be put forth, but here only this one is being considered.

The third assumption to close the system is the entropy production along the
flow given by the function s = s(z(!),z(®). This is also the information about
the existing cascade, which is otherwise invisible because of the axisymmetry
assumption. Entropy production can be determined by so called loss coefficient
—( (m(l), m(g)) according to the approximate formulae

k k-1
3250+C3m((%9)7 "1>- (23)

5. Method of solution

Since the system is closed one can investigate the character of the system in
order to formulate the boundary conditions necessary to integrate the system.
One can rearrange the system into the following form of (24)

1+z0* 8 o aU. aU. ) d I
izl DY o 2) 209 1% Pl s PY (2
c R m R R R S Bl s e e
N s e L S e o e
"oz (D) kp ox(3) (1) Hx(3) dx(D) ox(3) k R Um(g) '
(24)
Op k Op OU,2) Urot \ OU,2)
050 " h =18z | Ll P T gyt
dp Bap o O o OUyot oG
ey T (k S Um“’) 2@ ~ PV 5 Va0 5y
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The above set is linear with respect to

Op Op 0OU, OUgz Op Op

5200 52®’ 82D ' 5@ 5z’ 5@ (25)
Adding additional equations (26)
dp Op . 1)U 39Uz Op op
Gyl R e e ey e it L L
0 o OU s AU (2 0
At (3) 9P (2 (2 i il
Bz axwy+oayu>**)aaa Tm = ankdh)
aﬁD+0&ﬁ)+0&ﬁ)+Oa()+d e T g = de.
the system is closed. It has main determinant in the form
2
Lad 2 0 0 0
0 _,.;_pp 0 0 0 1
WO — 0 n—il 0 pU (2)(1 £¥. r((:)t) ) 0 —(Ef_l% i Uj@)) (27)
dz)  dz® 0 0 0 0
0 0 dzM dz®) 0 0
0 0 0 0 dz™ dz®
The condition Wy = 0 leads to two families of real characteristics
dz® =0 (28)
and
ol e (29)

Rt = Dty

Along the first family (28) the mass flow rate function m(z1) and Ey(z(!)) are
kept constant. For the second family of characteristics (29) the ordinary differen-
tial equation has to be fulfilled

dp _ pUZ z®
dr(1) Tw + (W23 1 -+ (1%

(30)

The problem is reduced to the solution of ordinary equation (30) along the cha-
racteristics (29).
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6. Examples of solution

As an example a conical nozzle shown in Fig. 2 was chosen. The main geome-
trical parameters were
Fn - — - o,
G — ZA1 — ZAQ = 0.25 1

At the inlet uniform distribution of pressure, temperature and normal velocity

were assumed
po = 15000 Pa,

Tyt dn
I, = 10 m/s.

Along the outer border the increase of circumferential velocity was linear with
respect to the coordinate z
z—z
Il
<A1 — Z2A0
The following influences on the solution are investigated

a) influence of the taper angle from 45° to 0°,

b) influence of loss distribution coefficient from 0 (isentropic flow) to the value
¢ = 0.0615 (mean value),

c) influence of the blockage factor given by function

T = (b+ 0.02) * (0.6 — g)/0.6) * <1—z>1-2 <i>1'2

0.5 0.5
where

— ¢ (conical coordinate) varies from 0 to 0.6,

_ 2 ) Z—ZﬂQ
ZA1—240"

— b varies from 0.028 to 0.04R.

The results of calculation are presented as Sy surfaces evolution in the form of
animated movies. Here only the two extreme situations are shown in the following
figures.

For the influence of the taper angle Fig. 3 shows Sy surface for 45° and Fig.
4 for 0°.

The influence of loss coefficient is shown in Fig. 5 for the isentropic situation
and Fig. 6 for the maximum loss coefficient.

For the influence of blockage factor we have for 7 = 0.048 a situation as in
Fig. 7 and for the maximum there is no solution at the root Fig. 8. The ‘white
spot’ occurs at the root, which simply means no solution.

Manuscript received in April 1998
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Fig. 3. Stream surface S for taper angle 45 °.
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Fig. 4. Stream surface S» for taper angle 0°.
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Stozkowy i cylindryczny przeplyw pod wplywem
niepotencjalnych sil masowych i efektéw dysypacyjnych

Streszczenie

Przedstawiono problem osiowo-symetrycznego stacjonarnego przepltywu z uwzglednieniem niepoten-
-jalnych sit masowych oraz proceséw dysypacyjnych (w postaci strat entropowych rozmieszczonych w
sbszarze przeptywu). Obszar przeplywu jest ograniczony przez wewnetrzna (cylindryczna) i zewnetrzna
cylindryczng, lub stozkows) powierzchnig. Rozpatrywany jest wplyw trzech czynnikéw na parametry
orzeplywu: rozwarto$é stozkéw (zewnegtrzne ograniczenie obszaru), wzrost strat entropowych w obsza-
rach brzegowych oraz wplyw grubosci cial redukujaych przekrdj przeptywu, na istnienie rozwigzan. Réw-
nania zachowania masy, ilosci ruchu oraz energii zapisane sa w krzywoliniowym ukladzie wspéirzednych,
opartym na osiowo-symetrycznych powierzchniach pradu. Pokazano, iz rozpatrywany uklad réwnan jest
“vpu hiperbolicznego, z dwoma rodzinami charakterystyk, co umozliwia zbudowanie prostego algorytmu
oraz okresla sposéb formulowania warunkéw brzegowych. Zamieszczono przyklady rozwigzan.




