POLSKA AKADEMIA NAUK

INSTYTUT MASZYN 'PRZEPLYWOWYCH

TRANSACTIONS
OF THE INSTITUTE OF
FLUID-FLOW MACHINERY

PRACE

INSTYTUTU MASZYN PRZEPLYWOWYCH

106

GDANSK 2000



THE TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY

exist for the publication of theoretical and experimental investigations of all aspects of the

mechanics and thermodynamics of fluid-flow with special reference to fluid-flow machines

PRACE INSTYTUTU MASZYN PRZEPEYWOWYCH

poéwiecone sa publikacjom naukowym z zakresu teorii i badan do$wiadczalnych w dziedzi-
nie mechaniki i termodynamiki przeptywéw, ze szczegélnym uwzglednieniem problematyki

maszyn przeplywowych

Wydanie publikacji zostato dofinansowane przez PAN ze Srodkéw
DOT wuzyskanych z Komitetu Badari Naukowych

EDITORIAL BOARD — RADA REDAKCYJNA

ZBIGNIEW BILICKI » BRUNON GROCHAL % JAN KICINSKI
JAROSEAW MIKIELEWICZ (CHAIRMAN - PRZEWODNICZACY)
JERZY MIZERACZYK *» WIESEAW OSTACHOWICZ
WOUJICIECH PIETRASZKIEWICZ » ZENON ZAKRZEWSKI

EDITORIAL COMMITTEE - KOMITET REDAKCYJNY

JAROSEAW MIKIELEWICZ (EDITOR-IN-CHIEF — REDAKTOR NACZELNY)
ZBIGNIEW BILICKI * JAN KICINSKI
EDWARD SLIWICKI (EXECUTIVE EDITOR — REDAKTOR)

EDITORIAL OFFICE — REDAKCJA

Wydawnictwo Instytutu Maszyn Przeplywowych
Polskiej Akademii Nauk
ul. Gen. Jozefa Fiszera 14, 80-952 Gdansk, skr. poczt. 621,
Z= (0-58) 341-12-71 wew. 141, fax: (0-58) 341-61-44,
e-mail: esli@imp.gda.pl

ISSN 0079-3205



TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY
No. 106, 2000, 45-68

VITALLY GNESIN! and ROMUALD RZADKOWSKI?

A theoretical model of 3D flutter in subsonic, transonic and
supersonic inviscid flow

A three-dimensional nonlinear time-marching method for aeroelastic behaviour of oscillating turbine
blade row has been presented. The approach is based on the solution of the coupled fluid-structure
problem, where the aerodynamic and structural dynamics equations are integrated simultaneously in
time, thus providing the correct formulation of a coupled problem as the interblade phase angle at which
stability (instability) would occur is also a part of solution.

The ideal gas flow around multiple interblade passages (with periodicity on the whole annulus) is
Zescribed by the unsteady Euler equations in conservative form, which are integrated by using the
=xplicit monotonous second-order accurate Godunov-Kolgan finite-volume scheme and moving hybrid
H-O (or H- H) grid.

The structural model is based on the 3D and 1D models. In 3D model the mode shapes and natural
“requencies have been obtained via standard FE analysis techniques. The 1D blade model applied here
= a one- dimensional beam described by an extended beam-theory including all important effects on a
wotating blade. The fluid and the structural equations are solved using the direct integration method
v the modal superposition method. The fluid-structure model is also presented for a very simple two
“egree of freedom blade model. -

1. Introduction

The trend of improved gas turbine engine design with higher aerodynamic
slading and smaller physical size attracts much attention to the aeroelastic be-
taviour of blades not only in compressors, but also in turbines. Flow-induced
turbine and compressor blades oscillations can lead to fatigue failures of a con-
siruction and so they represent an important problem of reliability, safety, and

iUkrainian National Academy of Sciences, 2/10 Pozharsky St., Kharkov 3, 10046 Ukraine
“Institute of Fluid Flow Machinery, Department of Dynamics of Machines, Fiszera 14, 80-952
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operating cost.

The blade vibrations can be stable, as in the case of forced vibrations from
upstream flow distortions, or they can be unstable, as in case of self-excited vi-
brations (flutter) caused by energy exchange between the oscillating blade and a
mean flow. Flutter is a self-excited instability resulting from aerodynamic forces
induced by blade vibration. Forced response is primarily caused by rotation of
the blading in nonuniform incoming flow field. In turbomachinery environments
the problem is further compounded by the fact that blades vibrate with a relative
phase with respect to each other, the value of which is not necessarily known.

In spite of aeroelasticity phenomena are characterized by the interaction of
fluid and structural domains, most prediction methods tend to treat the two do-
mains separately, and they usually assume some critical interblade phase angle,
for which the flutter analysis is carried out for a single passage.

The undeniable importance of spatial and nonlinear effects for practical tur-
bomachinery configurations has led to the development of three - dimensional me-
thods. Since the early 1980’s a number of time accurate Euler and Navier-Stokes
procedures have been developed to predict blade row unsteady flows, where unste-
adiness is caused by aerodynamic disturbances at the inflow or outflow bounda-
ries, relative motions between the blade rows, or blade vibrations.

At present, the traditional approach in flutter calculations of a palisade is
based on frequency domain analysis [1, 2], where the blade motions are assumed
to be harmonic functions of time with a constant phase lag between adjacent bla-
des, and the mode shapes and natural frequencies are obtained from in a vacuum
structural computations. This approach ignores the coupling of the fluid and the
structure vibration.

More recent approaches, the so-called integrated or coupled methods, link the
structural and fluid domains via set of boundary conditions that must be satisfied
simultaneously throughout the solution phase. A literature review is beyond the
scope of this paper, but a survey of aeroelasticity methods can be found in [3].

In recent times the new approaches based on the simultaneous integration in
time of the equations of motion for the structure and the fluid are developed [4-7].
These approaches are very attractive due to the correct formulation of a coupled
problem, as the interblade phase angle at which the stability (instability) would
occur is a part of solution.

In the present study the simultaneous time integration method has been de-
scribed to calculate the aeroelastic behaviour for a three-dimensional oscillating
blade row in transonic gas flow.

2. Coupled fluid-structure problem formulation

The separate calculation for the fluid problem as well as the structure problem
is due to a lack of knowledge of the interaction between unsteady aerodynamics
and the vibratory motion of the blades. Aeroelasticity is a multidisciplinary sub-
ject combining aerodynamics and structural dynamics. The simultaneous integra-
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tion in time of the equations of motion for the structure and the fluid allows to
obtain the correct formulation of the energy exchange. The energy exchange can
occur through the transfer of energy from flow to the moving blade (self-excited
oscillations or flutter) or with dissipation of the vibrating blade energy in the
flow field (aerodamping). This phenomenon is the important characteristic of an
aeroelastic stability (or instability) of the system.

In order to consider the flutter of the palisade the flow and structural models
must be assumed.

3. Fluid model

The 3D unsteady transonic flow of an ideal gas is described by the Euler
equations, represented as conservation laws in an arbitrary Cartesian coordinate
system, rotating with the constant angular velocity w:

%/ﬂm+qumWﬁ/EM=Q
Q o Q

P pv 0
pU1 pULV + 613 Pae1 — 2pwu3 Pl
f=|pv2|;F=|pvav+dyp|;H=|pae —2pwuv; |;d; { 0‘7- Ll (3)
pus3 pU3V + O3;p 0 y
E (E+p)v 0

Here p and p are the pressure and density; vy, vy, v3 are the velocity components;
v2+v2+v2~r2w2)
2
is the total energy of volume unit; € is an internal energy of mass unit; r is the
distance from the rotation axis.

The above system of equations is completed by the perfect gas state equation

ac1 and aep are the transfer acceleration projections; E = p (e +

p=¢elx—1),

where x denotes the ratio of the fluid specific heats.

The aerodynamic equations forms a set of mixed elliptic-hyperbolic nonlinear
partial differential equations with unknown transition surface shape (where the
equation changes its type) and with moving boundaries, which are defined during
the calculation process.

The Eq. (3) satisfied initial and boundary conditions in the spatial domain,
which are limited by the hub, casing and the inlet and outlet sections. Neither an
analytical solution has been found nor even the problem of existence and uniqu-
eness of solution has yet been resolved and there is little hope that this problem
will be resolved. Numerical solution of these equation can be found. The estima-
tion of an accuracy of the numerical solution is defined by the difference scheme
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Fig. 1. A view of a sector of the whole blade assembly.

approximation order. The comparison between numerical and experimental re-
sults shows how the theoretical predictions are close to the reality.

The physical formulation of the transonic flow through the turbine blade row
follows from the fact that this problem does not have a smooth solution, but
includes various singularities (discontinuities). Use of the integral conservation
laws to construct the difference scheme provides the satisfactory computation of
the discontinuous solution without selecting of singularities (so-called through
calculation).

3.1. Generalization of Godunov difference scheme for the spatial domain
with moving grid

One of an efficient difference scheme known as the Godunov scheme to inte-
grate the hyperbolic equation system has been used for the numerical solution of
Eq. (3). This scheme is based on the ideas, which have been developed by Godu-
nov in 1957-1961 [10].

In Godunov’s method the conservative variables are considered as picewise
constant over the mesh cells at each time step and the time evolution is determi-
ned by the exact solution of the Riemann (shock tube) problem at the inter-cell
boundaries. Hence, properties derived from the exact local solution of the Euler
equations are introduced in the discretization. This approach has been extended
to higher orders, as well as to variants, whereby the local Riemann problem is
only approximately solved through approximate Riemann solvers. They are refe-
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reed to sometimes as flux difference splitting methods.

It is known that the specific conditions (Hugoniot relations which follow from
conservation laws) should be realized on the discontinuity surfaces. These discon-
tinuity could exist as a stable one in an ideal gas flow. So if these necessary condi-
tions are not fulfilled in an initial discontinuity then the discontinuity decomposes
into the shock wave, the tangential discontinuity or the expansion wave. Thus the
solution of the equation system reduces to the set of discontinuities, which can
be calculated relatively simply.

The numerical method based on presented above approach have been widely
used to solve of the stationary and non-stationary problems of gas dynamics.

In this paper the 3D unsteady flow through an oscillating turbine blade row
with use of Godunov scheme will be considered. The Godunov’s scheme has been
generalized for the case of three dimensional equations on the moving difference
grid.

The calculated domain, includes all blades on the whole annulus, inlet and
outlet domains, (see Fig. 2b) and is divided into the finite number of linear he-
xahedral elements. It is assumed that these elements covers the computational
domain. Subdivision of the domain into the hexahedral elements gives the possi-
bility to put them in the right order using indices (i,j,k) (see Fig. 2c).

In the general case, the number of interblade passages, taken into account in
the calculation domam depends on the value of the interblade blade phase angle

IBPA) and is equal to 2L = : Where 0 is IBPA (in radians), j is the minimal integer

number so that the value 2% %L is the integer number. The interblade blade phase
angle is constant for all blades in the whole annulus.

Computational grid is divided into 7” different passages (see Fig. 2d), each
of them includes a blade and has an extensmn in the circumferential dlrectlon
which is equal to the blade pitch. For example, if IBPA is equal to § = =7 the
Palculated domain includes four passages (see Fig. 2b). In turn each of the passages

is discretized using hybrid H-H or H-O grid (see Fig. 2d). H-grid remains fixed
during the calculation, while H(O) grid is rebuilt in each iteration by a presented
here algorithm. Hence the external points remain fixed, but internal points (points
on the blade surface) move according to the blade motion.

Geometrical and aerodynamical parameters of each passages are described in
Cartesian coordinate system x,y, z, fixed rigidly with the static (in equilibrium)
position of each blade. Axis x is parallel to the radial direction of a blade, axis z
is parallel to the axis of blade rotation, axis y is in the circumferential direction
of the cascade, so that the system z, v, z is the right-hand coordinate system (see
Fig. 2c).

In the Godunov method the numerical fluxes are obtained from the solution of
the Riemann problem in the direction normal (unit normal u°) to the elementary
cell surface. The position of the normal is defined by three directional cosines of
angles (o, 8,7), between the normal and coordinate axes. It is obvious that the
below relation is an identity:

)= + 52+ =1
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Fig. 2. Hybrid H-H (H-O) — type grid.
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Let n{ = {a1, 81,71}, nd = {02, B2, 72}, n3 = {as, 83,73} are external normals
to the cell surfaces, which are oriented normally to the axises z,y, 2z correspon-
dingly. Then symbolic vector of fluxes of density, impulse and energy (see Eq. 3)
(F -n® = {F;,Fy,F3}) can be represented as:

p(viaq + vafi + vzm)
pv(vieg + vaf + vsv1) + pay
Fi = | pva(viar +v261 +v371) + 061 |
pvs(viar + vaf1 + v3y1) + P71
(E + p)(viar + v2P1 + vam)

p(viag + vafs + v3y2)
pv1(viag + v2 B2 + v3y2) + parg
Fy = | pva(viag +v202 + v3y2) + 0B | (4)
pus(viag + v2f2 + v3Y2) + P2
(E + p)(viag + v282 + v372)

p(vias + vaf3 + v373)
pv1(vios + v203 + v37y3) + pas
F3 = | pva(viaz + v2f3 + v3y3) + pfs
pvs(vias + vaf3 + v3y3) + PY3
(E 4+ p)(viaz + v263 + v373)

Egs (3) and (4) are not completely divergent (conservative), because of the
presence of the constant vector H in Eq. (3). The reason for this is the noniner-
tiality of the chosen coordinate system, which is rotating with angular velocity
w. When the difference scheme, based on equation system (3), is used, it is im-
portant to provide a precise realization of conservation laws of mass, energy and
the axial (along z) component of impulse due to the uniformity of corresponding
equations. The conservation law of the impulse for radial and angular compo-
nents are not fully satisfied. If we use the difference approximation for another
differential equations forms, all conservation law will not be satisfied.

The general computation algorithm is based on the principle of relaxation over
time, i.e. it uses transition from the state in the time moment equal to ¢y to the
state in the time moment equal to ¢y + 7.

The discretized form of Eq. (3) was obtained for this transition on an arbi-
trary moving grid by the Godunov idea [7], but in more universal form extended
to three dimensional coordinates.

Let the problem is characterized by the set of parameters at the time tp in
the grid cells which cover all the calculated domain. The flow parameters in the
centre of the cell are given a fractional index ¢ +1/2,5 +1/2,k +1/2:

{p,p,m,vz,vg}i+%yj+%’k+% =1y 9=1, el k=030

The parameters at the time ¢ are given a subscript index (i.e. p;;1 /2,541/2,k+1 /2)
as distinct from the parameters at the time tg + 7, which are given a superscript
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(i.e. pit1/23+1/2k+1/2) Here subscripts and superscripts correspond to the points
of “old” and “new” grids respectively.

We presuppose that by knowing the given blade motion and using the presen-
ted above algorithm of H-H (H-O) — grid generation we can obtain the coordinates
(zbdk gldk, z"3*) and the velocity components of all points at time step T (the
velocity components assume to be constant during the time step):

Wik = {W1, 500 W2 50 W, 5 )
PR e T
yhik = Yige T W2 5 ° T
ik = Zijk T W35, T

(5)

In the moving grid calculation, let us introduce the “middle” side, the coordi-
nates of this side are defined as the half of the sum of the coordinates correspon-
ding to “old” and new grid respectively.

Let {oy, B;,7} are the direction cosines of the direction normal to I-th middle
cell interface (I = 1,2,3) and {wy,,ws,,ws, } are the velocity components of the
middle centre, which can be written as follows

0

Wy = 7\ Wi, T Wiy T Whjen T W1, 541041 ) 0
4
1

YT 3 (w2i,j,k + W2 iy T W2ijeir T w21‘,j+1,k+1) g
1

b oty (w?’i,j,k T W3 501 T Waijpn T w3i,j+1,k+1) :

Then the velocity of middle cell interfaces centre in the direction of its normal
can be written as follows

Wy, = w01 + wy, B + w3,V (1 =1,2.3). (6)

Applying the integrals (3) to the moving grid cell (Fig. 2d) with the number
(1 + %,j + %, k+ %) during the time integral from ¢y to tp 4+ 7, and assuming that
velocity of points and gasodynamic parameters on ‘middle’ cell interface remain
constant, the difference analogue of conservation laws was obtained in the form
of [7, 9]:

1

At
+H=(fown)it1 + (fown)i — (fown)js1 + (fown); — (fown) w1 + (fown)k]+
+H(F10)ir1 — (f10)i + (Fo0) j41 — (F20)j + (F30)kt1 — (F30)k]+

FH Lt Qi ged el =0 (7)

Sl ! s s Jeovei it
th5idtoikty L Ortsdtaikts ’
[P QRIS — bt Qordardeed] T
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Here subscripts and superscripts correspond to ‘old’ and ‘new’ cells; f are
‘small’ values in cell centres; Fi, Fy, F3 are ‘big’ values on the ‘middle’ cell inter-
face; o and wy, are the area and normal velocity of the ‘middle’ cell interface.

The following condition at the discrete realisation of the conservation laws (7)
are assumed:

e the “big” values calculated on the “old” cell interfaces transfer without
change to the “middle” cell interface;

e the normal velocity w;, of the ‘middle’ cell interfaces and the normal velocity
of flow are defined as projections of vectors w and v on the normal to the
“middle” cell interface.

Taking into account the Eqgs (6) and (7) the difference conservation laws of
density, momentum and energy for an arbitrary moving cell of calculated domain
was written in the following way:

n : Q
i+ ikl _ it bat gty At 5

s g s s 1 SO B
p Q’l+§' ]+§ k+§ p"‘+27]+27k+2 Ql+%)]+%ak+%

% { [(=wn + vn)polit1 — [(—wn + vn)poli + [(=wn + vn)po]j41— }
_[(_wn a5 ’Un)pd]j B [(_wn el U?l)pU]k+1 = [(_‘wn o= 'Un)po]k 2

as Fhs s AN Qz+z IR ) At
p 1 Q1+'2‘ J+§ k+§ p 1 'L+27]+21k+2 Q1+%1J+%;k+§

[ovi(=wn + vn) + paulolir1 — [pv1(—wn + vn) + paa]o|i+ (9)
+[pvi(—wn + vn) + paz]o|jr1 — [pvi(—wn + vn) + poz]o|;+

3 Hlpvi(—wn + vn) + pasloletr — [pvi(~wn + vn) + paslofe—
=] Pit 1+l k+1w(27f2 B e + wr cos(r, ))]Q i+l gLkl
'H-%,j-l—%,k—k% e QH'Q J+§ k+§ At
<PU2 s wews gl Ul R S e ga
[pv2(—wn + vn) + pBi]oi+1 — [pva(—wn +vn) + pBiloli+ (10)
S +[pva(—wn + vn) + pBa]olj+1 — [pva(—wn + vn) + pBalol;+

+[pva(—wn + vn) + pBslo k1 — [pv2(—wn + Ung + pBs]olk—

[ Pity1 Sy k+1w(2v1+1 i+ %kt +wrcos( )] Z+§J+§>k+5

vi+%;j+%,k‘+% afs QH—§ i ki ( % ) ANt %
PUs T it Eatiktd PU3)itL j+3 k+3 it Ee+d

+pv3(—wn + vn) + pyololir1 — [pvs(—wn + vn) + pyo]o]i+

{ [ovs(—wn, + vp) + p11]oliv1 — [pvs(—wn + vn) + p1a]oli+ } (11)
X
+[pvs(—wp, + vp) + p13]o k1 — [pv3(—wp + vn) + Py3lolk
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losiD vitv +vs—u At
X [ ("—— e ST e T
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The formulas (8-12) characterize the change of density, impulse and energy in
the cell in dependence from fluxes of mass, the impulse and the energy through the
interface of this cell. The gasodynamic parameters on the lateral sides (expressions
in square brackets with integer indexes) are defined using the problem about
the break-down (Riemann problem) of an arbitrary discontinuity on the moving
interfaces between two adjacent cells and by using of the iteration process.

3.2. The problem about the break-down of an arbitrary discontinuity on the
moving side

The description of the difference scheme (8-12) is presented together with the
algorithm for calculation of the “big” values (F1,F2,F3), of the fluxes of mass, the
impulse and the energy through the lateral sides of difference cell. This algorithm
is based on the solution of an auxiliary problem about the break-down of arbitrary
discontinuity on the moving side (Rlemann problem).

Let o, 3,7 are the direction cosines of angles of the normal to the cell 1nterfaces
in the d1rect10n of x,y, z axes respectively; wi,ws, ws are the velocity projections
of cell interfaces centre on the coordinate axes. Then the normal velocity of the
cell interface centre can be written as

wy, = wia + w2l + w3y.

Let us choose two sets of gasodynamic parameters in two adjacent cells, which
have the same interface, and calculate the “big” values on this interface. The signs:
+ and — denote right and left states across the interface, so the velocity vectors
vt and v~ can be written in terms the normal and the tangential components
relatively of the interface

SoEsl s =
V=V Y,

where

Uihvla—i—uzﬁ-i—%'y
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v;h =vt— vf,
or through the components
e o = e = e o=
Vip = QUL Uon = ﬁv’n ’ U3n = Tln

2L
Vi = VF — aiy; vy = vy — BUhn; Ui = U3 — TUin ()

To calculate the gasodynamic parameters on the cell boundaries let us use the
one-dimensional scheme of the break-down of an arbitrary discontinuity (Riemann
problem), following to Godunov [10], [11, p. 159).

As a result of the breakdown of an arbitrary discontinuity three waves were
formed, two of them can be the shock wave or the expansion wave, and one of
them is the tangential discontinuity. Schematically, the model of the flow structure
on the plane can be represented as one of four possible configurations, shown in
Fig. 3. The configuration includes the contact discontinuity (CD), in which both
the pressure Pop and the tangential velocity component Ugp are continuous, but
density and the internal energy are discontinuous. In turn these subdomains have
been separated from nonperturbed domains with parameters (P~,p~,v™) left,
and (P, pT,v") right with the shock wave (SW) or the expansion wave (EW),
which are the left or right waves.

SV By an) Y,

SW ¢

SW - ghodk wave
@D - contact disoortiruity
BEwW- exparsion wane

Fig. 3. The break-down of arbitrary discontinuity scheme.

Let us input into consideration the mass velocity of wave [10, p. 108]:
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for the “left” shock wave (Pop > P™)

alz\/p_(A‘f'l)PCD;“()‘_l)P— : (14)

for the “right” shock wave (Pcp > P™)

A+1)Pep+ (A—=1)P*
2oL \/p+< -t ) C'D2 ( ) ; (15)
for the “left” expansion wave (Pop < P7) [10, p. 109]
A—1 1-feo
e Nfiprn Inicte s oyl 16
aj 2\ PP e (1—;%)% ( )
and for the “right” expansion wave (Pcp < P7) [10, p. 109
A—1 1—&gp
k4 gk P 17
aG==5 \/Appl*(%%)?;Al (17)

The iteration process to calculate Pcp,Ucp is constructed in the folldwing
way. Let P4p is i-th approximation of pressure in the contact discontinuity.

Then values of a},a} (see Egs. (14-17)) can be found in dependence on values
Pé ps P~, PT. Then the next approximation of Pgbl is defined by formula [10, p.
110]

P~ab+ P*al +aids(v™ —vt)

T ;
Pgb :<P(Pé‘D): a%_’_ag

and so on.
After the iteration process converges, the value of Usp can be calculated

a1v- +agvt + P~ — Pt
a1 + ag .

Ucp = (18)

Next it is supposed, that
B B

This assumption is not a limitation of generality, because the direction of axis
and velocity signs can be changed and after the calculation the inverse operation
be performed.

In dependence on a value of Pop the following conditions are possible:
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1. Pop > P* and hence Pop > P
Then shock waves spread to the left and to the right (see Fig. 3a) with
velocities [10, p. 114] '

Py
Dy=v — p_p (left wave), (19)
and [10, p. 115]
e
Dy =vt + = right wave), 20
ot

The considered moving interface can be in one of the zones 1-4 (Fig.
3a), in dependence on values of D1, Ds, w,. The gasodynamic parameters
on this interface are calculated with the use of the following conditions [10,
p. 120]:

sfw=9"; P=P< g=p D > wy Zone 1;
bl v=w" B =Pl a=p' i Hi= u, Zone 4;
c) v=UP; p= Pgp, if By~ w< P~ pedl 15

VAP

p= \/—F ( = ), if w, < Ucp, Zone 2; (21)
o= Ol == UdD)
p

VAPFpT

p= == £ it >ille py,
A+ phluh = Uop)

2. P~ < Pgp < PT, then (see Fig. 3c) the shock wave spreads to the left with
velocity D; is calculated from Eq. (19), the expansion wave spreads to the
right with velocity [10, p. 115]

: bRy Ao
D2=UCD+ )\F— B (U —UCD) (23)

In this case gasodynamic parameters on the interface are equal to:

Zone 3. (22)

a) =9 PP = Dy Sy Zone 1;
b} p=ury Pe=Prp=pt i DS, Zone 4;
¢) v=U’P; P= Pgp, if D1 < wy, < D%;  [10, p. 115]
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A Eap (A~ 1P
(A=1)Pcp +(A+1)P~’

fis APcp
[A %% = 251 (v* — Ucp)P?

3. Pcp < P; (Fig. 3d). Then expansion waves spread to the left and to the
right with velocities [10, p. 115]

Dl =Ucp — )\P—__ o ; : (v= = Ucp) (the left wave)
Ve

and D3 is calculated from Eq. (23) for the right wave.
In this case we have :

g=p if w, < Ugp, Zone 2 (24)

; if wy, > Ucp, Zone3  (25)

alu=tr \ P=P p=p , H1h >, Zone 1;
b =gy P=Ph o= gt 50 12y Zone 4;
¢) v=U°P; P= Pgp, ED} < we< Db

AFPcp

p= ; if we < Uch, Zone 2.  (27)
[ALE — 252 (v — Uop))?

If w, > Ucp, the wave is in Zone 3, and density is calculated from Eq. (25).

At each cell interfaces, the Riemann problem is solved for some specified pair
of left and right states according to the presented above procedure.

As a result we obtain the values of gasodynamic parameters on the interfaces
as pressure p, density p and the normal component of the total velocity v. The
tangential component of velocity is equal to v; if wy, < Uy or vj" if aoy < Ugps
The velocity projections on coordinate axes are defined with use of Egs (13).

Thus the calculation of difference equations (8-12) is reduced to the definition
in the explicit form of the gasodynamic parameters f**! at the time moment ¢ =
tn + At, for gas dynamic parameters at the moment ¢, and values of (F1,Fa, F3)
calculated with the use of above formulas.

The time step At is constant for all calculated domain and is defined from the
stability condition of the difference scheme for linearized equation system [10]:

T Ty T

b
TaTy + TaTz + TyT

INt =<

(28)

Fi min
max(u; + |alv; — |a]) ’

T U= YR

where a is the sound velocity.
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3.3. Increase of difference scheme accuracy

One of serious requirements imposed on the difference schemes, is their adap-
tation to the nonregular calculation grids, which can include the cells of different
size. The calculated grids for the calculation domains of the complex configura-
tion as a rule include some singularities. The approximation order of the difference
scheme decrease in the neighbourhood of these singularities. In order not to lose
the approximation order the Kolgan [12] modified the Godunov scheme. The mo-
dified Godunov-Kolgan scheme has been applied here.

The Godunov difference scheme uses gasodynamic parameters in the cell cen-
tres to calculate the Riemann problem of an arbitrary discontinuity on the cell
interface. It supposes that the gasodynamic parameters inside the grid cell are
piecewise constant. The Godunov-Kolgan difference scheme supposes piecewise
linear distribution of parameters in grid cells. The derivatives used for the li-
near extrapolation of gasodynamic parameters inside the cell are calculated with
the use of minimal value of the derivative principle. In this case the Values of
parameters inside the cell are defined in the following way:

1 1
ke =i
e | 1
g i Ko gl e e L

f(o,0,2) = fi+

el

1 1 1
il 3
+fy(7a+§,]+§,k+§)-(y—yi+%1j+%’k+%)+
; 1
+f;(z+2a]+ ket ) ( Zi-'-%,j-a-%,]gq_%)) (29)

where f, f., fé, f, are the gasodynamic parameters and their derivatives in the
direction of axes z,y, z

To calculate these derivatives, the values of gasodynamic parameters in the
centre of considered cell and in centres of six adjacent cells must be known. One
set of derivatives f;’, f?;_, f;_ can be calculated from the system of three linear
~quat10ns usmg the parameters increment in cells centres (i — 5, J + ,k + )
i+5,0—5k+3), i+ i+ 5. k— ) and unknown values of derlvatlves For
example for the cell with number (i — 3,5 + 1,k + 3) Eq. (29) can be written:

fl_”v]+2ak+2 f7’+%:‘7+%7k+§ =

i sils i 1

=fo (50 + 5k +5) (@i y it ped — Tord b )t
e S el 1

Hy (904 5k +5) Wim gt perd =~ Yird g pr d)F

g SlEe s i
tefs ok 57 i 5 k + 5) ; (Zi—%,j+%,k+% oo zi+%,j+%,k+%) . (30)
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System of Egs. (30) has an unique solution ( fi=, f:;_, f.~ ) when the intervals
between cell centres are not parallel. The similar equations can be written for cell
centres ( i+1/2, j-1/2, k+1/2) and (i +1/2,5 +1/2,k — 1/2).

The 'second set of equations with dependence on derivatives f;+, f;f, f;+can
be written similarly using the parameter increments in cells (i + %, j+ %, k+ %),
(i+3,5+3,k+3) and (i+5,5+5,k+3).

If one-sided derivatives f~, f are of the same sign, then the minimal absolute
values of considered derivatives must be assumed. In the case of different signs of
considered derivatives the derivative equal to zero must be assumed. For example:

2 Pl [ st it 0 e,
Vi { 0, jptickeogy dl Fkigap; (34

Such a procedure of choosing the derivatives provides a small ‘spreading’ of
parameters on the interfaces and eliminates the possibility of appearance of the
negative pressure values in the linear approximation. Obtained values of deriva-
tives are applied to calculate the parameters at the interface centre (29), which
in turn are used to calculate the Riemann problem.

The Godunov-Kolgan scheme presented above is monotonous and has the
second order accuracy on the smooth solutions with respect to the spatial coor-
dinates, and has the first order approximation with respect to the time.

To increase the approximation order with respect to the time coordinate it
is required that the linear approximation of parameters by spatial coordinates
should be completed with the linear approximation at time from the cell centre
to the interface centre.

3.4. Initial approximation. Boundary conditions

The steady and unsteady flow calculation for a cascade requires the imple-
mentation of different boundary conditions, which determine the solution. These
boundary conditions are the kinematic flow condition (vanishing normal velocity
at the blade surface), inlet and outlet boundary conditions and periodic boundary
conditions at pitchwise boundaries.

As the initial approximation of the unsteady problem, the results of the
steady-state calculation were used. Although the strong proof of the correctness
of the direct problem formulation does not exist hence only the physical concepts
and the experiment can be a criterion to accept the results of the numerical cal-
culation.

On the blade surface, because the grid moves with the blade, the normal
relative velocity is set to zero

(v—w) n=0 (32)

It is assumed that the unsteady flow fluctuations are due to prescribed blade
motions and the flows far upstream and far downstream from the blade row are
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at most small perturbations of uniform free streams. So the boundary conditions
formulation is based on the one-dimensional theory of characteristics, where the
number of physical boundary conditions depends on the number of characteristics
entering the computational domain.

In the general case, when axial velocity is subsonic, at the inlet boundary,
initial values for total pressure, total temperature and flow angles are used in
terms of the rotating frame of reference, while at the outlet boundary only the
static pressure has to be imposed. Nonreflecting boundary conditions can be used,
i.e., incoming waves (three at inlet, one at the outlet) have to be suppressed, which
is accomplished by setting their time derivative to zero.

The total system of boundary conditions can be represented in the following form:

At inlet [10, p.323], [13] '

To=Thlz.u): -po=mnlmy) o= alz,y)

v=7(z,y); d(vs —2%) =0, o

at outlet [13]

p=p(z,y); dp—a?dp=0; dv; — (WP — 2wv2)dt =0 (34)
dvg + 2wvidt = 0; d(vs + £%) =0,

where a = , /)\% — sound velocity.

In the general case, computations are made using a number of blade passages
equal to the number of blades in the cascade. Periodic conditions are applied at
the upper and lower boundaries of the calculation domain at each time moment.
However there are some situations when it is possible to reduce the number of
passages used in the calculations. For unsteady flows, where all blades perform
harmonic oscillations with the same mode shape, frequency and a constant inter-
blade phase angle (IBPA) (tuned cascades), the number of blade passages depends
on the value of the interblade phase lag. For instance, in the case of computations
with the interblade phase angle § = 180 deg it is sufficient to use two passages,
in the case of computations with the interblade phase angles 6 = 90 deg, four
passages can be used (as shown in Fig. 2a).

The preceding procedure is applicable when the motion of the blades is khown
in advance. In the time domain method, since the motion of the blades of a co-
upled fluid-structure problem is not known in advance, it is necessary to include
in the numerical calculations all blade passages.

4. Structural model

The structural model is based on the 3D and 1D models. In 3D model, the
modes shapes and natural frequencies are being obtained via standard FE analysis
techniques. The 1D blade model applied here is a one- dimensional beam described
by an extended beam-theory including all important effects on a rotating blade.



62 V. Gnesin and R. Rzadkowski

The beam is pre-twisted and tapered with the variable cross-sectional area and
the stagger angle at the blade root. The model was described in detail in reference
(see Rzadkowski [9, 10]). The disc is modelled by a moderately thick plate theory.
The blade and the disc material are modelled as a Hooke’s material. Assuming
rigidly fixed blades on the disk rim, the displacements u of any particle of the
bladed disc can be found (see Rzadkowski [9, 10]).

In order to find an approximate solution for the forced vibrations of the bladed
disc, the Hamilton principle can be used

t2 12
§ [(E—K)dt= [ §(W — D)dt, (35)
i

where E and K are elastic and kinetic energies, respectively and W and 6D are
the variations of external work and the internal dissipative forces, respectively.

Following the above equations, the equation of motion of the bladed disc for
the forced vibration is represented by the equation

Mii+ Ci+ Ku=F, (36)

where: M, C,K are the mass, damping and stiffness matrix of the bladed disc,
respectively, and F' is the vector of external forces, u is the general displacement
of the system.

The aeroelastic Eq. (36) will be solved by the direct integration methods or
the modal analysis method.

In direct integration methods Eq. (36) is written in the form:

Mﬁtm + Cl:ltm =+ Kutm = th, (37)

and is integrated at a considered point of time t,, = to + mt, by a method of the
constant average acceleration [18]. .

For each point of time ¢,,, the generalised excitation forces Fy,, must be cal-
culated from the flow model, for the position of the blades in cascade.

In the time domain method, the equation of motion was integrated in time,
by a method of constant average acceleration (Wilson ©-method). The initial
conditions are the steady flowfield and an assumed unsteady forces applied to the
blades.

A direct solution of system (36) can be difficult for the large size of the system
(bladed disc). This drawback can be efficiently overcome using a linearized modal
approach [17, 18].

In the modal approach to the coupled problem, the dynamic model of the oscil-
lating blade in linearized formulation without taking into account of mechanical
damping is governed by the matrix equation

Mii + Ku = F, (38)
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Fig. 4. Model of the bladed disc.

where u(z,t) and i(z,t) are respectively blade displacement and acceleration
vectors; M and K are the mass and stiffness matrices; F' is the vector of unsteady
zerodynamic forces, which are a function of blade displacements.

The eigensolution of (38) for F = 0 yields the natural frequencies and the
associated mode shapes.

Then the displacement of each blade can be written as a linear combination
of the first N mode shapes with the modal coefficients depending on time:

N
u(z,t) = Uz, t)x(t) = EUi(x)Qi(t) (39)

where U;(z) denotes the i-th mode shape vector, x(t) are the time dependant
modal coordinates.
Functions U satisfy the orthogonality condition [18]

UTMU =1, UTKU = 22, (40)

where the U matrix column are the eigenvectors U; and £22 is a diagonal matrix
which stores eigenvalues; I is an identity diagonal matrix.
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Taking into account Egs. (39) and (40) the Eq. (38) reduces to the set of
independent differential equations relatively to modal coefficients

(1) + wiqi(t) = Mi(t), (41)

The modal forces )\; are calculated at each iteration with the use of the in-
stantaneous pressure field in the following way:

Ai = fpr,; -n°do

T/ TP0%, 4

where p is the pressure.

In Eq. (42) the numerator represents the work of pressure forces at the blade
displacement in accordance with i-th mode, the denominator represents the nor-
malising factor.

Having defined the modal coefficients from the set of Egs. (41), blade displa-
cement and velocity can be obtained in form of (39).

In order to compare the numerical results with the experimental 2D results,
the very simple two degrees of freedom discrete model will also be presented.

In this model all blades perform the torsional and the bending oscillations
under the given law:

h.(z,t) = hyo(z) - sinfwpt + (5 — 1)4],

hy(z,t) = hyo(z) - sinfwpt + (§ — 1)d],

©0x(z,t) = po(z) - sinfw,t + (5 — 1),
where z,y,z are the Cartesian coordinate system fixed rigidly with j-th blade
(origin of coordinates is coincided with the bending centre in the case of the
torsional oscillations); h,(z,t) and hy(z,t) define the bending oscillations, ¢(z,t)
— the torsional oscillations; k.o, hyo, @0 are the amplitudes of vibration; wp, is the

bending oscillation frequency; wy, is the torsional oscillation frequency, ¢ is IBPA.
The equations of motion of the palisade

hzz (t) + w%ihzi(t) = filt)

hyi (t) + waLihyi (t)= fyi(t),
Bi(t) + wiipi(t) = ms(2),

were solved for bending and torsion [14, p. 95]. For example in the time interval
(tl, t1 + At)
hzi = (Cosinwp At + Cy sinwpAt) + fzi/cu,z1
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where

C1(t1) = Raio(t1) — fui(tr)/w?, Ca(t1) = (dhuio(tr)/dt — frs(tr)/wh)/wh,

h.io(t1) displacement at the beginning of the period At, wy, = 27vy.
In this model the blades are free at the root cross-section.

5. Aeroelasticity model

The fluid and the structural Egs. (1,9) are solved in a closely coupled manner as
shown in Fig. 5.

un_}(xﬁr)J i}n_l(x}r)

/ ™~

aerodynamuc  |.[ z 1.lstructure problem

problem n-1 /

fn-] un (x,f), Hnéx;v

Z =

aer ggoylﬁglriﬂc »{ F, {=structure problem
fn un+1 (X,IQ 3 HnH (x,ﬂ

Fig. 5. Computational aeroelasticity program.

The aeroelastic mesh is moved at each time step to ensure correct modelling
of the fluid-structure interface.

Here f is a symbol vector of aerodynamic parameters; u, @ are the blade di-
splacement and velocity; F is the vector of forces distributed on the blade surface.

The time step of calculation is the same for both fluid and structural calcu-
lation and is fixed throughout the time integration. A minimum number of 24
time steps per period has been used for the structural modes in order to ensure
accuracy of the dynamic method.
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6. Conslusions

In the present study, the direct integration method and the modal superpo-
sition method is used to determine the aeroelastic stability of the cascade. The
unsteady equations of motion for the structure and the fluid are integrated si-
multaneously in time starting with a steady flowfield and an assumed unsteady
forces. Each blade is allowed to move independently and the motion of all blades
is analysed to determine the aeroelastic stability of the bladed disc.

The presented time domain method allows a more realistic simulation of the
motion of the fluid and the cascade blades that should lead to a better physical
understanding.

Received 12 April 2000
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Teoretyczny model tr6jwymiarowego flatteru nielepkiego przeplywu
poddzwiekowego, transonicznego i ponaddzwiekowego

Streszczenie

Przedstawiono tréjwymiarows, nieliniowa metode kroczaca w czasie do badan zachowain aeroelastycz-
nych drgajacego szeregu lopatek turbiny. Metoda jest oparta na rozwigzaniu zagadnienia sprzezonego
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plyn-wieniec turbiny, gdzie réwnania opisujace aerodynamike i dynamike konstrukeji catkowane sg réw-
noczesnie w czasie i dlatego przedstawiaja wlasciwy opis zagadnienia sprzezonego, gdyz miedzyltopatkowy
kat fazowy, dla ktérego obserwujemy stabilno$¢ (niestabilnosé), jest takze czescig rozwigzania.

Przeptyw kanalami miedzylopatkowymi gazu doskonalego (z okreslong okresowoscig na catym pier-
$cieniu) jest opisany niestacjonarnymi réwnaniami Eulera w formie zachowawczej, ktére sa catkowane
przy uzyciu jawnego schematu drugiego rzedu w formie objetosci skonczonych Godunowa-Kolgana oraz
przemieszczajacej sie siatki hybrydowej H-O (lub H-H).

Model strukturalny jest oparty na modelach 3D i 1 D. W przypadku modelu 3D czestosci wiasne oraz
postacie drgan wtasnych otrzymywane sg przy pomocy standardowych technik elementéw skornczonych.
Jednowymiarowy model lopatki, zastosowany w pracy, jest jednowymiarows belks opisang przy pomocy
rozszerzonej teorii belek, ktéra umozliwia opis wszystkich waznych efektéw wirujacej topatki. Réwnania
plynu oraz konstrukcji rozwigzywane sg przy uzyciu metody bezposredniego catkowania lub superpozycji
modalnej. Model ptyn-konstrukcja jest takze pokazany dla przypadku bardzo prostego modelu topatki o
dwéch stopniach swodoby.



