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VITALLY GNESINl and ROMUALD RZĄDKOWSKI2

A theoretical model of 3D flutter irJ subsonic, transonic and
supersonic inviscid flow

A three-dimensional nonlinear time-marching method for aeroelastic behaviour of oscillating turbine
:lade row has been presented. The approach is based on the solution of the coupled fluid-structure
problem, where the aerodynamic and structural dynarnics equations are integrated simultaneously in
l:rrre, thus providing the correct formu]ation of a coupied probiem as the interblade phase angle at which

=-:ability (instability) wou]d occur is also a pa,rt of solution.
The ideal gas flow around multiple interblade pa§sages (with periodicity on the whole annulus) is

:.escribed by the unsteady Euler equations in conservative form, which are integrated by using the
.:plicit monotonous second-order accurate Godunov-Kolgan finite-volume scheme and moving hybrid
::_O (or H- H) grid.

The structural model is based on the 3D and 1D models. In 3D mode] the mode shapes and natural
:equencies have been obtained via standard FE analysis techniques. The lD b]ade model applied here
s a ons. dimensional beam described by an extended beam-theory including all important effects on a
::iating blade. The fluid and the structural equations are solved using the direct integration method
:,r the modal superposition ńethod. The fluid-structure model is also presented for a very simple two
:ęgree of freedom blade model.

1. rntroduction

The trend of improved gas turbine engine design with higher aerodynamic
: _ading and smaller physical size attracts much attention to the aeloelastic be-
'aliour of blades not only in compressors, but also in turbines. Flow-induced
::rbine and compressor blades oscillations can lead to fatigue failures of a con-
;iluction and so they represent an important problem of reliability, safety, and
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rInstitute of F'luid Flow Machinery, Department of Dynamics of Machines, Fiszera L4, 80-952
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46 V. Gnesin and R. Rządkowski

operating cost.
The blade vibrations can be stable, as in the case of forced vibrations from

upstream flow distortions, or they can be unstable, as in case of self-excited vi-
brations (flutter) caused by energy exchange between the oscillating blade and a
mean flow. Flutter is a self-excited instabilitv resulting from aerodynamic forces
induced by blade vibration. Forced lesponse is primarily caused by rotation of
the blading in nonuniform incoming flow fie}d. In turbomachinery environments
the problem is further compounded by the fact that blades vibrate with a relative
phase with respect to each other, the value of whiclr is not necessarily known.

In spite of aeroelasticity phenomena ale characterized by the interaction of
fluid and structural domain§, most prediction metłrods tend to treat the two do-
mains separately, and they usually assume some critical interblade phase angle,
for which the flutter analysis is carried out for a single passage.

The undeniable importance of spatial and nonlinear effects for practical trrr-
bomachinery configurations has led to the development of three - dimensional me-
thods, Since the early 1980's a number of time accurate Euler and Navier-Stokes
procedures have been developed to predict blade row unsteady flows, where unste-
adiness is caused by aerodynamic disturbances at the inflow or outflow bounda-
ries, relative motions between the blade rows) or blade vibrations,

At present, the traditional approach in flutter calculations of a palisade is
based on frequency domain analysis [1, 2], where the blade motions are assumed
to be harmonic functions of time witlr a constant phase lag between adjacent bla-
des, and the mode shapes and natural frequencies are obtained from in a vacuum
structural computations. This approach ignores the coupling of the fluid and the
structure vibration.

More recent approaches, the so-called integrated or coupled methods, link the
structural and fluid domains via set of boundary conditions that must be satisfied
simrrltaneously throughout the solution phase, A literature review is beyond the
scope of this papel, but a survey of aeroelasticity methods can be found in [3].

In recent times the new apploaches based on the simultaneous integration in
time of the equations of motion for the structure and the fluid are developed [4-7].
These approaches ale very attractive due to the correct formulation of a coupled
problem, as the interblade phase angle at which the stability (instability) would
occur is a part of solution.

In the present study the simultaneous time integration method has been de-
scribed to calcrrlate the aeroelastic behaviour for a three-dimensional oscillating
blade row in transonic gas flow.

2. Coupled fluid-structure problem formulation

The separate calculation for the fluid problern as well as the structure problem
is due to a lack of knowledge of the interaction between unsteady aerodynamics
and the ribrator1, motion of the biades. Aeroe]asticity is a multidisciplinary sub-
ject combining aerodl.namics and structural dynamics. The simultaneous integra-
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tion in time of the equations of motion for the structure and the fluid allows to
obtain the correct formulation of the energy exchange. The energy exchange can
occur through the transfer of energy from flow to the moving blade (self-excited
oscillations or flutter) or with dissipation of the vibrating blade energy in the
flovr field (aerodamping). This phenomenon is the important characteristic of an
aeroelastic stability (or instability) of the system.

In order to consider the flutter of the palisade the flow and structural models
must be assumed.

3. Fluid model

The 3D unstead,y transonic flow of an ideal gas is described by the Euler
equations, represented as conservation laws in an arbitrary Cartesian coordinate
system, rotating with the constant angular velocity o:

;F: ;6jt:

Here p and p are the plessuTe and densityi u!,,I)2,t;3 ar€ the velocity components;
a61 and ae2 aTe the transfer acceleration projections; E: ł(e +ńaŹ+-tŹ)
is the total energy of volume unit; e is an internal energy of 

'mass 
unit; r is the

distance from the rotation axis.
Tbe above system of equations is completed by the perfect gas state equation

p:e(x-7),

urhere x denotes the ratio of the fluid specific heats,
The aerodynamic equations forms a set of mixed elliptic-hyperbolic nonlinear

partial differential equations with unknown transition surface shape (where the
equation changes its type) and with moving boundaries, which are defined during
the calculation process.

The Eq. (3) satisfied initial and boundary conditions in the spatial domain,
which are limited by the hub, casing and the inlet and outlet sections. Neither an
arralytical solution has been found nor even the problem of existence and uniqu-
eness of solution has yet been resolved and there is little hope that this problem
will be resolved. Numerical solution of these equation can be found. The estima-
tion of an accuracy of the numerical solution is defined bv the difierence scheme
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Fig. 1. A view of a sector of the whole blade assembly.

approximation order, The comparison between numerical and experimental re-
sults shows how the theoretical predictions are close to the reality,

The physical formulation of the transonic flow through the turbine blade row
follows from the fact that this problem does not have a smooth solution, but
includes various singularities (discontinuities). Use of the integral conservation
laws to construct the difference scherne provides the satisfactory computation of
the discontinuous solution without selecting of singularities (so-called through
calculation).

3.1. Generalization of Godunov difference scheme for the spatial domain
with moving grid

one of an efficient difference scheme known as the Godunov scheme to inte-
grate the hyperbolic equation system has been used for the numerical solution of
Eq, (3). This scheme is based on the ideas, which lrave been developed by Godu-
nov in 1957-1961 [10].

In Godunov's method the conservative variables are considered as picewise
constant over the mesh cel]s at each time step and the time evolution is determi-
ned by the exact solution of the Riemann (shock tube) problem at the inter-cell
boundaries. Hence, properties derived from the exact loca] solution of t]re Euler
equations are introduced in the discretization. This approach has been extended
to higher orders, as well as to variants, wlrereby the local Riemann problem is
only approximately solved through approximate Riemann solvels. They are refe-
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reed to sometimes as flux difference splitting methods.
It is known that the specific conditions (Hugoniot relations which follovr from

conservation laws) should be realized on the discontinuity surfaces. These discon-
tinuity could exist as a stable one in an ideal gas flow. So if these necessary condi-
tions are not fulfiIled in an initial discontinuity then the discontinuity decomposes
into the shock wave, the tangential discontinuity or the expansion wave, Thus the
solution of the equation system reduces to the set of discontinuities, which can
be calculated relatively simply.

The numerical method based on presented above approach have been widely
used to solve of the stationary and non-stationary problems of gas dynamics.

In this paper tńe 3D unsteady flow through an oscillating turbine blade row
with use of Godunov scheme will be considered. The Godunov's scheme has been
generalized for the case of three dimensional equations on the moving difference
$id.

The calcu}ated domain, includes ali blades on the whole annulus, inlet and
outlet domains, (see Fig. 2b) and is divided into the finite number of linear he-
xahedral elements. It is assumed that these elements covers the computational
domain. Subdivision of the domain into the hexahedral elements gives the possi-
bility to put them in the right order using indices (i,j,k) (see Fig. 2c).

In the general case, the number of interblade passages, taken into account in
the calculation domain, depends on the value of the interblade blade phase angle
(IBPA) and is equal to f , *her" ó is IBPA (in radians), j is the minimal integer
number so that the value f is tn" integer number. The interblade blade phase
angle is constant for all blades in the whole annulus.

_ Computational grid is divided ińo Ę different passages (see Fig, 2d), each
of them includes a blade and has an exiension in the circumferential direction,
which is equal to the blade pitch. For example, if IBPA is equal to ó : Ł[, the
calculated domain includes four passages (see Fig. 2b). In turn each of the pastages
is discretized using hybrid H-H or H-O grid (see Fig. 2d). H-grid remains fixed
during the calculation, while H(O) grid is rebuilt in each iteration by a presented
here algorithm. Hence the externa] points remain fixed, but internal points (points
on the blade surface) move according to the blade motion.

Geometrical and aerodynamical parameters of each passages are described in
Cartesian coordinate system t,U,z, fixed rigidly with the static (in equilibrium)
Position of each blade. Axis r is parallel to the radial direction of a blade, axis z
is parallel to the axis of blade rotation, axis g is in the circumferential direction
ofthe cascade, so that the system T,U,z is the right-hand coordinate system (see
Fig. 2c).

In the Godunov method the numerical fluxes are obtained from the solution of
the Riemann problem in the direction normal (unit normal u0) to the elementary
cell surface. The position of the normal is defined by three directional cosines of
angles (o,0,"y), between the normal and coordinate axes, It is obvious that the
below relation is an identity;
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Let n! : {er, 0t, ^yt}, n9 : {olz, §z,,yz}, n8 : {os, as, x} are external normals
to the cell surfaces, which are oriented normally to the axises t,a,z correspon-
dingly. Then symbolic vector of fluxes of density, impulse and energy (see Eq. 3)
(F.rr0 : {Fr,Fz,Fs}) can be represented as:

Fl:

Fz:

F3:

Eqs (3) and (4) are not completely divergent (conservative), because of the
presence of the constant vector H in Eq. (3). The rea§on for this is the noniner-
tiality of the chosen coordinate system, which is rotating with angular velocity
r,.l. When the difference scheme, based on equation system (3), is used, it is im-
portant to provide a precise realization of conservation laws of mass, energy and
the axial (along z) component of impulse due to the uniformity of corresponding
equations. The conservation law of the impulse for radial and angular compo-
nents are not fully satisfied. If we use the difference approximation for another
differential equations forms, all conservation law will not be satisfied.

The general computation algorithm is based on the principle of relaxation over
time, i.e. it uses transition from the state in the time moment equal to ź6 to the
state in the time moment equal to t6 ł r.

The discretized form of Eq, (3) was obtained for this transition on an arbi-
trary moving grid by the Godunov idea [7], but in more universal form extended
to three dimensional coordinates.

Let the problem is characterized by the set of parameters at the time'źg in
the grid cells which cover all the calculated domain. The flovr parameters in the
centre of the cell are given a fractional index i + tlz, j + Llz,k + Ll2:

{p, p,rt,uz,us}+!,i+},ł+} (ź : I,...M; j : 1, ,..ly'; k : 1,,..L)

The parameters at the time ź are given a subscript index (i,e. Pl+l/z,j+I/2,k+I/2)
as distinct from the parameters at the time źg * r, which are given'a superscript
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/ p@pt * u2P, + u371) \
I pu1@1q ł uz7t * uelr) + pdĄ l

| łrr(urorłuz/t *us7r) +ph | ,

I pą(ulq*uz7t*us,yr) +p,n l

\ (B + p)(oror * uz§t * uzl) l
/ p(upz ł u2B, ł usl) \
I pu1@1a2 * uzlz ł us,yz) + paz I

l prr(rrorłuz7z+uzlz)+p§z l ,

I pą(ula2 * uz7z * uslz) + nz l

\ (e + p)(upz * uz7z + uzlz) /
/ p(rpl * u2P, * ts7s) \
l prr(rrasłuz1s + u3?3) +po,s l

I pu2(upg ł uz1z + ua,ys) + p1z | .

I pug(ulag * uz1s * osls) + plz l

\ (e + p)(ul oa * uz§z + ,ni l

(4)
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(i,e. ,ł+tlz,i+1/2,k+I/2). Here subscripts and superscripts colrespond to the points
of "old" and "new" grids respectively.

We presuppose that by knowing the given blade motion and using the presen-

ted above algorithm of H-H (H-O) - grid generation we can obtain the coordinates
(r',j,r,ai,j,k)zi,j,k) and the velocity components of all points at time step r (the
velocity components assume to be constant durirrg the time step):

W i,j,k : {-tn,r,r, U2r,j,,,, W3o,i,r}
*i,j,k-ry.,,-L,: Lź,j,k -r w7r,i,p , Tl 

(5)
aŹ'j'k - a;i,ł ł u2n,j* ,T,

zi'j'k - zi,j,p *'t])Si,j,t, , T,

In the moving grid calculation, let us introduce the "middle" side, the coordi-
nates of this side are defined as the half of the strm of the coordinates.corTesPon-
ding to "old" and new grid respectively.

Let {c1, Ąt,.r} are the direction cosines of the direction normal to l-th middle
cell inteiface (l : 1,2,3) and {,ł_u1,,1])2r,u3r} are the velocity components of the
middle centre, which can be written as follows

,l1)It 
Ż(ry,,,-ł 

ulł.j+l.i" ł 1xlr,j,ł+, + rln,r*,.o*,) ,

,ll2l 
Ż(.rr,,,r ł 1JJ2ł,j+t.t" l -rr,j,r*r+ .zn r*,,.*r) ,

u3L 
ż('r,.r,^ * U3l.j+1.1" ł U3,.j,r*, * Us,i,;+r,ł+, ) ,

Then the velocity of middle cell interfaces centre in the direction of its normal
can be written as follows

Il)nl: ul,a1 ł w2,B1 ł uz,lt (l :7,2,3).

Applying the integrals (3) to the moving grid cell (Fig, 2d) with the number
(ź + +, 

j + +,k + }) during the time integral from ź6 to źo * ", ?ld assuming that
velocity of-pointJand gasodynamic parameters on 'middle' ce]I interface remain
constant, the difference analogue of conservation laws was obtained in the forrn
of [7, 9]:

[Ylr*+,'*ź,t 
+ł, e.l,+|,i+!,ł+Ź - .fo*+,i*ł,*+ł .0;+1,i+l,ł+1] +

+|-(f ou,)*t * (f ow,)ł - (f o.,,)j+r t (f o.,)i - (f o-.)r+t * Uoąu")ł)ł

+[(Ą");+l - Up)t -| (F2o)ia1- (Fz")i * (Ęo)ł+r - (Ę")ł]+

(6)

*Hu ź,j tł.ł+ł 'Qi+ł,j- i.o,i : 0, (7)
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Here subscripts and superscripts coTlespond to 'old' and 'new' cells; / are
'sma"ll'values in cell centres; F1,Fz,Ę are'big'values on the'middle'cell inter-
fałe; o and un are the area and normal velocity of the 'middle' cell interface.

The following condition at the discrete realisation of the conservation laws (7)
are assumed:

o the "big" values calculated on the "old" cell interfaces transfer without
change to the "middle" cell interface;

o the normal velocity rur, of the 'middle' cell interfaces and the normal velocity
of flovr are defined as projections of vectors w and v on the normal to the
"middle" cell interface.

Taking into account the Eqs (6) and (7) the difference conservation laws of
density, momentum and energy for an arbitrary moving cell of calculated domain
was written in the following way:

6,+!,i 
+},k++ : ?+#i+ p +ź,i +ź,l,+ź - nąff;7ą x

(8)

,, I lF." * u,)po]i,,1 - lG." ł u,)po]i ł |?." * u,)po]7a1- \
^ \ -[(-r" * u.)poli ł |?." ł u,.)po]pat - I?w" ł un)po]p I

/ t+ł,i+*,ł+ł\ oł+*,r+*,ł+ł,

|łóĘ 
e' - z' "-' 

) 
: ń;Ćń ( łu ),i + ;,i + ź,ł* ż -,y+T,j+I,k+}- X

( lpur(-." + u,") + pol)ok+t - lprr(-.n + un) + pc-t]okł ) rgl
. l +Iprr(-w, + a,) + pa2]o|j+I - |prr(-.n + u,") + pa2]o|ił l
" 1 +[p"r(-wrł u,.) * pa3)o|p*, - Iprr(--n+ u,) ł pos\olr- i

[ -[-rł+i,l +tr,*+tru(2u2+!,i+!.l,+} * or cos(r, z))Joł+},i+ ź,r*ź )

wnł u,) * p§|o.k+t - Iprr(-rn 1r") t p7t]olr+ 'l (ro)
-wn ł u.) + pB2]oli+, - Lpur(-., + u,") + p7z1oli+ l

-wn ł u") + pls)o|ł+, - Ipur(-.n + u,) + p1s]olr- i
r |,i + }, t+ }a 

(2Ą 
r* +,i * ł,o+ ł + c,lr cos (r, UDla + i, i + ź,r* ź )

( Ipr"(-., + un) ł m|o|ł+l - lpuz(-., + un) + w|o|ia ) (11)

x { +[p,u3(-wnłu,) + p.y2]olj+I-Ipur(-r*+u.) *plr]"|i+ l .

[ +[pu3(-un ł u") -| pls]olt+t - lprs(-., + u,") + pls]ol* )

,r(-
Iprr(
lprr(
|- pr.

,(-
n( -

)t+

|pu,
+Ip,
+lp
_ r_"{

(e,'r*Ź'i*+'***) : H##Guz)*l,i+ż,*+Ł - p;,,_*;..;;- "

(*'{ź,'*1,***) :



54 V, Gnesin and R. Rządkowski

|p (hr * ńfr#ź;] ź+},i++,ł+ + : |ffffi *

|o (r=r * ńB#Ź) {-r, + o,,) * p,,f ,ll+t_

- |, (r--ź * ń!r4!) t-.,+ u,") * pu,f oft+

* i, (u- tr * Ył!) (-,, + u,,) * p,,)o|i*r
' 1 hi*r"; fuźr=) L,,+ un) * p,,f o1i+

| * [o (*r+njŹY) (-.,, +un) łpu,f oln+,-

L - h @r*rfr#!) t-.,+ u,) * p,,f olł

(12)

The formulas (8-12) characterize the change of density, impulse and energy in
the cell in dependence from fluxes of mass, the impulse and the eneTgy through the
interface of this cell, The gasodynamic parameters on the lateral sides (expressions
in square brackets with integer indexes) are defined using the problem about
the break-down (Riemann problem) of an arbitrary discontinuity on the moving
interfaces between two adjacent cells and by using of the iteration plocess.

3.2. The problem about the break-down of an arbitrary discontinuity on the
moving side

The description of the difference scheme (B-12) is presented together with the
algorithm for calculation of the "big" values (Fr, Fz, F3), of the fluxes of mass, the
impulse and the energy through the lateral sides of difference cell. This algorithm
is based on the solution of an auxiliary problem aborrt the break-down of arbitrary
discontinuity on t}re moving side (Riemann problem).

Let a, P ,1 are the direction cosines of arrgies of the norma] to the cell interfaces
in the direction of r,y,z axes respectivelyi,l1)Ilw2,u3 ale the velocity projections
of cell interfaces centre on the coordinate axes. Then the normal velocity of tlre
cell interface centre can be written as

lDn: ,u7a * uz7 ł ws1.

Let us choose two sets of gasodynamic parameters in two adjacent cells, which
have the same interface, and calculate the "big" values on this interface. The signs:
* and - denote right and left states acloss tlre interface, so the velocity vectors
vł and v- can be written in terms the normal and the tangential components
re}ativeiy of the interface

v*:v**rI,
where 

,*:rf*+u{O+rłl
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-l -l- _l-vi : v- -v;,
or through the components

(13)

To calculate the gasodynamic parameters on the cell boundaries let us use the
one-dimensional scheme of the break-down of an arbitrary discontinuity (Riemann
problem), following to Godunov [10], [11, p. 159].

As a result of the breakdown of an arbitrary discontinuity three waves were
iormed, two of them can be the shock wave or the expansion wave, and one of
:hem is the tangential discontinuity. Schematically, the model of the flow structure
on the plane can be represented as one of four possible configurations, shown in
Fig. 3. The configuration includes the contact discontinuity (CD), in which both
:he pressure Pco and the tangential velocity component Ugp are continuous, but
,density and the internal energy are discontinuous. In turn these subdomains have
ceen separated from nonperturbed domains with parameters (P-, p-,u-) Ieft,
and (P+, p+,r+) right with the shock wave (SW) or the expansion wave (EW),
n-hich are the left or right waves.

[.

r)

51ły'- d-pd< waruę

CD - ffi]tacE dffi-ltjt-Litr'
Bfu- e>q=lsifl.r wa\€

Fig. 3. The break-down of arbitrary discontinuity scheme.

Let us input into consideration the mass velocity of ,wave 
[10, p. 10B]:

-l!-L^L-]-luń : auł; u-* : Pufi; uń:,yu;
l!!!]^t!!!ui: uf - aufn; ułt: uń- §uł"; ułt: uł -'yułn

o
b)
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for the "left" shock wave (Pgp > P-)

[ (.ł + r)pr, + (,l - r)p-or:VP-T'

for the "right" shock wave (P6l2 > P-)

ff^+1)PCŃO-r;.*oz:\p-r 2 ,

for the "left" expansion wave (Pcn < P-) [10, p, 109]

^-1 
l-ryP

at : 2), l ^P* 
P- 

I _ er-)* '

and for the "right" expansion wave (Pgp < P-) [10, p. 109]

l Pcn
/. -, L--PĘ'

V^p'P I_ ęF

(14)

( 15)

(16)

^_1 (17)a2:

The iteration process to calculate Pcn,Ucn is constructed in the following
way. Let P[p is.i-th approximation of pressure in the contact discontinuity.
Then values of a|, a'2 @ee Eqs, (14-17)) can be found in dependence on valrres
PbD, P- ,P+. Then the next approximation of P[+} is defined by formula [10, p,
110] 

oźłl _ , ^l rli , _ P- o', -l P+ a\ ł a\ai(u- - ,+)
r CD : Y\I CD)

and so on.
After the iteration plocess convelges) the value of Uęp can be calculated

UCD: afl-ła2u++P-_P+
(18)

at*az

Next it is supposed, that
P- <P+.

This assumption is not a limitation of generality, because the direction of axis
and velocity signs can be changed and after tlre ca]culation the inverse operation
be performed.

In dependence on a value of PgD the following conditions are possible:

2^
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L. Pco ) P+ and hence Pgp ż P-,
Then shock waves spread to the left and to the right (see Fig. 3a) with

velocities [10, p, 114]
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,tĘDL: u- _ (19)(left wave),

(20)

if usn < Ug7l, Zone 2; (21)

if wn ż UgL), Zone 3, (22)

p-

and [10, p. 115]

p-

p-

l-:pł
ll Ą-

D2: uł + + (right wave),p-

The considered moving interface can be in one of the zones 1_-4 (Fig.
3a), in dependence on values of. Dl,D2,tun.The gasodynamic parameters
on this interface are calculated with the use of the folIowing conditions [10,
p, 120]:

a) u:u-;P-P-;p:p-,if D7żwn ZoneI
b) u : u+; P - P+; p: p*, if D1 ś w, Zone 4;

c) u : UCD; P : PcD, if D1 < un 1 D21 [7, p. 115]

P- < Pco 4 P+, then (see Fig. 3c) the shock wave spreads to the left with
velocity D1 is calculated from Eq, (19), the expansion wave spreads to the
right with velocity [10, p. 115]

r--4
Dź:Ucn*,,/^# -^r'r,* -ucn) (23)

\ p,

In this case gasodynamic parameters on the interface are equal to:

tJ:,u-i P: P-; p: p-,if D1 żwn ZoneI;
u: uł; P : P+; p: pł, if D$ < uln Zone 4i

u : (JCD; P : PcD, if. Dl < un ś D5; [10, p. 115]

a)

b)
c)
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p: p
_ (^ + 1)PCD + (,\ _ 1)P-
(^-I)PCD+()+1)P-'

APcn

Zone 2 (24)

Zone3 (25)

if wn ś Ug2l,

if. w, ż Ugp,p-
l{Ę: *@* -uco)]2'

3. Pco < Ą (Fis. 3d). Then expansion waves spread to the left arrd to the
right with velocities [10, p. 115]

Dł : t]cn _ ,E_ ^ ; '(r- _ rJcn) (the left wave)
Vp- 2

and D$ is calculated from Eq. (23) for the right wave.
In this case v/e have ;

a) u:u-;P-P-;p:p , tf.Dlżw, ZoneL;
b) u : u+; P - P+; p: p*, if Dj ś u* Zone 4;

c) u:UCD; P : PcD, ifDi < unś Dj;

\Pco
U-_" Y{Ę - *(,- -ucr)]''

If.wnż (Jgp,the wave is inZone 3, and density is calculated from Eq. (25),

At each ce]l interfaces, the Riemann problem is solved for some specified pair
of left arrd right states according to the presented above procedure.

As a result we obtain the values of gasodynamic parameters on the interfaces
as plessule p, density p and the norma] component of the total velocity v, The
tangential component of velocity is equal to u| if wn 1(Jp, or ur+ if wn 1(Jgp.
The velocity projections on coordinate axes are defined with use of trqs (13),

Thus the calculation of difference equations (B-12) is reduced to tlre definition
in the explicit form of the gasodynamic parameters f'*1 at the time moment ź :
tn+ 

^t, 
for gas dynamic parameters at the moment tn and values of (F1 , Fz, Fe)

calculated with the use of above formulas,
The time step Aź is constant for a]I calculated domain and is defined from the

stability condition of tire difference scheme for linearized equation system [10]:

Aź< l:x,1llz

lIl1]-T lxlz-r lUlz

hź 
^.i,

if. un 1Ugp, Zone2, (27)

)

ź: rrgrzTi-
max(ą ł|a|ui * |ol) '

t here o is the sound velocitv.

(28)
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3.3. Increase of difference scheme accuracy

One of serious requirements imposed on the difference schemes, is their adap-
tation to the nonregular calculation grids, which can include the cells of different
size. The calculated grids for the calculation domains of the complex configura-
tion as a rule include sorne singularities. The approximation order of the difference
scheme decrease in the neighbourhood of these singularities, In order not to lose
the approximation order the Kolgan [12] modified the Godunov scheme. The mo-
dified Godunov-Kolgan scheme has been applied here.

The Godunov difference scheme uses gasodynamic parameters in the cell cen-
tres to calculate the Riemann problem of an arbitrary discontinuity on the cell
irrterface. It supposes that the gasodynamic parameters inside the grid cell are
piecewise constant. The Godunov-Kolgan difference scheme supposes piecewise
jlear distribution of parameters in grid cells. The derivatives used for the li-
near extrapolation of gasodynamic parameters inside the cell are calculated with
:he use of minimal value of the derivative principle. In this case the values of
parameters inside the cell are defined in the following way:

f (r,a,z): f (ź*ł,i *Ż,r+ }l+
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+ f :(ż * Ź,i * ł,* *;) (r - ,*1,i+i,*+1)+

+f[(i *ł,i *ł,r *ł) (a - u,4;,1-."r,ł+;)*

+f:(i +Ź,, *ł,r *ł' U - zl,+ź,j+ź,ł+!),

t'here f,f'",fł,f', are the gasodynamic parameters and their derivatives in the
lirection of axes I,U,I.

To calculate these derivatives, the values of gasodynamic parameters in the
centre of considered cell and in centres of six adjacent cells must be known. One
set of d,erivatives ff , fł- , f'r- can be calculated from the system of three linear
ąuations using the parameters increment in cells centres (ź - +, 

j + ł,r * +),
i + +, 

j - l,n + +), (i + ł, j + +,k- }) and unknown values of derivatives. For
example for the cell with number (ź - +, 

j + +,k + *) Bq, (29) can be written:

f ;ź,i+ł,t +ł - f +ź,i+ł,n+ź:

(29)

: f ,- (ź * ł, i * ł,r * ;) @t-l,i+}ł+Ą

+ fu- G, * ł,i * ł,r *;) (a;+,i++l +ź

+f:-U,*ł,i *ł,r* }l Qł-tr,i+;,ł+}

- rt+},i+},l,+)+

- ał,+ź,i+ł,k+)+

.\,i+ź,j+ź,k+ź) , (30)
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fl_Jr
(31)

Such a procedure of choosing the derivatives provides a smail 'spreading' of
parameters on the interfaces and eliminates the possibility of appearance of the

negative pressuTe values in the linear approximation. Obtained values of deriva-
tivis are applied to calculate the parameters at the interface centre (29), which
in turn are used to calculate the Riemann problem.

The Godunov-Kolgan scheme presented above is monotonous and lras the

second order accuracy on the smooth solutions with respect to the spatial coor-

dinates, ancl has t}re first order approximation with respect to the time.
To increase tlre approximation order witlr respect to tire time coordinate it

is required that the linear approximation of parameters by spatial coordinates
shoul-d be completed with tlre linear approximation at time from the cell centre

to the interface centre.

3.4. Initial approximation. Boundary conditions

The steady and unsteady flow ca}culation for a cascade requires the imPle-

mentation of different boundary corrditions, which determine tlre soiution. These

borrndary conditions are the kinematic flow condition (vanishing normal velocit,v

at the blade surface), iniet and outlet boułdary conditions and periodic boundar;-
conditions at pitchwise boundaries,

As the inilial approximation of the unsteady problem, the results of t}re

steady-state calcuiation weTe used. Although the strong proof of tlre correctness
of the direct problem formulation does not exist ]rence oniy the physical concePts
and t}re experiment can be a criterion to accept the results of the numerical cal-

culation.
On the blade surface, because tlre grid moves with the blade, the norma]

relative velocity is set to zero

(" - *) .n:0 (32)

It is assumecl that the unsteady flow fluctuations are due to prescribed blade
motions and the flows far upstream and far downstream from the blade row are

System of Eqs. (30) has an unique solution (f:-, f;- ,/,- ) when the intervals
betwóen cel] centres are not paralle}. The similar equalions can be written for cell

centres ( i+712, i-L12, k+l12) and (z + t12, j + 1f 2,k - 112).

The second set of equations witlr dependence on derivatives /j+, fo*, f'"+"un

be written similarly using the parameter increments in ceils (i + 3, j + +,r * +),

(ź+ź,j +ż,r*+) and (ź +ł,j +Ł,k+t).
Ifone-sided deiivatives f - , f+ are of the same sign, then the minimal absolute

values of considered derivatives must be assumed. In the case of different signs of

considered derivatives tlre derivative equal to zeto must be assumed. For examPle:
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at most small perturbations of uniform free streams, So the boundary conditions
formulation is based on the one-dimensional theory of characteristics, where the
number of physical boundary conditions depends on the number of characteristics
entering the computational domain.

In the general case, when axial velocity is subsonic, at the inlet boundary,
initial values for total pressule, total temperature and flow angles are used in
terms of the rotating frame of reference, while at the outlet boundary only the
static pressure has to be imposed, Nonreflecting boundary conditions can be used,
i.e., incoming v/aves (three at inlet, one at the outlet) have to be suppressed, which
is accomplished by setting their time derivative to zero,
The total system of boundary conditions can be represented in the following form:

At inlet [10, p.323], [13]

Tg : Tg(r,a); po : po(r,a); a: a(r,y)
l: l(r,a); d(r, - #) : O,

p: p(r,a); dp - a2dp _ g; dur - (r', - Zuu2)dt:0
duz + 2uuldt : 0; d(u, + #) : O,

where ": ffi - sound velocity.

In the general case) computations are made using a number of blade passages
equal to the number of blades in the cascade. Periodic conditions are applied at
the upper and lower boundaries of the calculation domain at each time moment.
flowever there are some situations when it is possible to reduce the number of
passages used in the calculations. For unsteady flows, where all blades perform
harmonic oscillations with the same mode shape, frequency and a constant inter-
blade phase angle (IBPA) (tuned cascades), the number of blade passages depends
on the value of the interblade phase lag, F'or instance, in the case of computations
with the interblade phase angle ó : 180 deg it is sufficient to use two passages,
in the case of computations with the interblade phase angles ó : 90 deg, four
passages can be used (as shown in Fig, 2a).

The preceding procedure is applicable when the motion of the blades is kirovrn
in advarrce. In the time domain method, since the motion of the blades of a co-
upled fluid-structure problem is not known in advance, it is necessary to include
in the numerical calculations all blade passages.

4. Structural model

The structural model is based on the 3D and 1D models. In 3D model, the
modes shapes and natural frequencies are being obtained via standard FE analysis
techniques. The lD blade model applied here is a one- dimensional beam described
by an extended beam-theory including all important effects on a rotating blade.
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at outlet [13]

(33)

(34)
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The beam is pre-twisted and tapered witlr the variable cross-sectional area and
the stagger angle at the blade root. The model was described in detail in reference
(see Rzadkowski [9, 10]). The disc is modelled by a moderately thick plate theory.
The blade and tlre disc material are modelled as a Hooke's material. Assuming
rigidly fixed blades on the disk rim, the displacements u of any particle of the
bladed disc can be found (see Rządkowski [9, 10]).

In order to find an approximate so]ution for the forced vibrations of the bladed
disc, tlre Hamilton principle can be used

t2

a Io - K)dt: I ut* - D)dt, (35)

t1 t7

where -E and K are elastic and kinetic energies, respectively and óW and óD are
the variations of external work and the internal dissipative forces, respectively.

Following the above equations, the equation of motion of the bladed disc for
the forced vibration is represented by the equation

Mii+Cfi+Ku:F, (36)

where: M,C, K are the mass, damping and stiffness matrix of the bladed disc,
respectively, and F is the vector of external forces, u is tlre general displacement
of the system.

The aeroelastic Eq, (36) will be solved by tlre direct integration methods or
the modal analysis metlrod.

In direct integration methods Eq. (36) is written in the form:

Miit- +Cut^łKUt-:Ft-, (37)

and is integrated at a considered point of time tm : t0 ł mt, by a method of the
constant avelage acceleration [1B].

For eaclr point of time trn, the generalised excitation forces F12 must be cal-
culated from the flow model, for the position of the blades in cascade.

In tlre time domain method, the equation of motion was integrated in time,
by a method of constant average acceleration (Wilson O-method). The initial
conditions are the steady flowfield and trn assumed unsteady forces applied to tlre
blades.

A direct solution of system (36) can be difficult for the large size of the system
(bladed disc). This drawback can be efficiently overcome using a ]inearized modal
approach [17, 18].

In the modal approach to the corrpled problem, the dynamic model of the oscil-
Iating blade in linearized formulation without takilig into account of mechanical
damping is governed by the matrix cquation

Mii + Ku: F, (38)
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Fig. 4. Model of the bladed disc,

n,here u(r,t) and ii(r,ź) are respectively blade displacement and acceleration
r-ectors; M and K are the mass and stiffness matrices; F is the vector of unsteady
aerodynamic forces, which are a function of blade displacements.

The eigensolution of (38) for F : 0 yields the natural frequencies and the
associated mode shapes.

Then the displacement of each blade can be written as a linear combination
of the first l/ mode shapes with the modal coefficients depending on time:
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N
l(r, t) : IJ(r, t)x(t) - |u i@)qię)

ż:1,

rn,here Ut(r) denotes the z-th mode shape vector, x(t) are the time dependant
modal coordinates.

Functions U satisfy the orthogonality condition [18]

U"MLJ : I, UTKU - 02, (40)

ł-here the U matrix column are the eigenvectors IJ; and d)2 is a diagonal matrix
which stoTes eigenvalues; I is an identity diagonal matrix.

(39)
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Taking into account Eqs. (39) and (a0) the Eq. (38) reduces
independent differential equations relatively to modal coefficients

ą(t) + a?si,(t): }.;(ź),

The modal forces ,\; ale calculated at eaclr iteration with the
stantaneous pressuTe field in the following way:

to the set of

(41)

use of tlre in-

),6: I J pUi,rrodo
(42)

t l f pu'udu,

where p is the pressure.
In Eq, (a2) the numerator represents the work of pressure forces at the blade

displacement in accordance with i-th rnode, the denominator represents the nor-
malising factor.

Having defined the modal coefficients from the set of Eqs. (41), blade displa-
cement and velocity can be obtained in form of (39),

In order to compare the numerical resu]ts with the experimental 2D results,
the very simple two degrees of freedom discrete model will also be presented.

In this model all blades perform tlre torsional and the bending oscillations
under the given law:

h"(r,t) : h,o(r).sin[r,.,i,ź + (3 - 1)ó],

ho@,t) : huo(r). sin[u,,,7,ź + (j - 1)ó],

ę"(r,t) : ęo(r). sin[curź + U - 1)ó],

where T,a,z are the Cartesian coordinate system fixed rigidiy with j-th biade
(origin of coordinates is coincided with tlre bending centre in the case of the
torsional oscillations); hr(r,ź) and hu@,t) define the bending oscil]ations, ę(r,t)
- the torsional osci}]ations h.g,hyo,90 are the amplitudes of vibration; u,.l1, is the
bending oscillation frequency; ru, is tlre torsional oscillation frequency, ó is IBPA.

The equations of motion of the paiisade

i:r"nlt1 + r2n łr,ult\ : f "ł(t),

ńu,;Q) + u21it,ol(t) : fu,t(t),

ę "l(t) 
+ u?r*łt) : -l(t),

were so]ved for bending and torsion [14, p. 95]. For example in the time interval
(ćl, ćr + At)

h"t : (Czsincu6Aź ł C1 sinu7Ar) + f ,nl r7
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where

C{t) : h,n(tt) _ f ,ź(t) l azh, Cz(t) : (dh.io(t:) l dt - f zię) l a2) lah,

h,io(tt) displacement at the beginning of the period Lt,, u7:Zruh.
In this model the blades are free at the root cross-section.

5. Aeroelasticity model

The fluid and the structural Eqs. (1,9) are solved in a closely coupled manner as
shown in Fig, 5.

Fig. 5. Computational aeroelasticity proglam.

The aeroelastic mesh is moved at each time step to ensure correct modelling
of the fluid-structure interface,

Here / is a symbol vector of aerodynamic parameters; u, ż are the blade di-
splacement and velocity; -F' is the vector of forces distributed on the blade surface.

The time step of calculation is tlre same for both fluid and structural calcu-
lation and is fixed throughout the time integration, A minimum number of 24
time steps per period has been used for the structural modes in order to ensure
accuracy of the dynamic method.
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un_r(x,t), ńn_r(x,t)
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, structure problem

a n*r(x,t) , ił o*r(x,ł
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6. Conslusions

In the present study, the direct integration method and the modal superpo-
sition method is used to determine the aeroelastic stability of the cascade. The
unsteady equations of motion for the structure and the fluid are integrated si-
multaneously in time starting with a steady flowfield and an assumed unsteady
forces. Each blade is allowed to move independently and the motion of all blades
is analvsed to determine the aeroelastic stability of the bladed disc,

The presented time domain method allows a more realistic simulation of the
motion of the fluid and the cascade blades that should lead to a better physical
understanding.

Received l2 April 2000
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Teoretyczny model trójwymiarowego flatteru nielepkiego przepływu
poddźwiękowego, transonicznego i ponaddźwiękowego

streszczenie

Przedstawiono trójwymiarową, nieliniową metodę ktoczącą w czasie do badair zachowait aet,oe}astycz-
nych drgającego szelegu łopatek turbiny. Metoda jest oparta na rozwiązaniu zagadnienia sprzężonego

67
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płyn-wieniec turbiny, gdzie równania opisująpe aerodynamikę i dynamikę konstrukcji całkowane są rów-
nocześnie w czasie i dlatego przedstawiają właściwy opis zagadnienia sprzęźonego, gdyż międzyłopatkowy
Ęt fazowy, dla którego obserwujemy stabilność (niestabilnosć), jest także częściąrozwiryania.

Przepływ kanałami międzyłopatkowymi gazu doskonałego (z określoną okresowością na całym pier-
ścieniu) jest opisany niestacjonarnymi równaniami Eulera w formie zachowawczej, które są całkowane
ptzy llżyclu jawnego schematu drugiego rzędu w formie objętości skoirczonych Godunovra-Kolgana oraz
przemiazczajryej się siatki hybrydowej H-O (lub H-H).

Model struktura.lnv jest oparty na modelach 3D i 1 D. W przypadku modelu 3D cz5tości własne oraz
postacie drgań własnych otrzymy,wane są przy pomocy standaidowych technik elementów skończonych.
Jednowymiarowy model łopatki, za§tosowany w pracy, jest jednowlłniarową belĘ opisaną przy pomocy
rozszerzonej teorii belek, która umożliwia opis wszystkich waźnych efektów wirująpej łopatki. RÓwnania
płynu oraz konstrukcji rozwiązywane są przy użyciu metody bezpośredniego całkowania lub superpozycji
modalnej. Model płyn-konstrukcjajest także pokazany dla przypadku bardzo prostego modelu łopatki o
dwóch stopniach swodoby.


