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SŁAWOMIR JANECKIl

Geometrically nonlinear equations of a spatially curved and
pre-twisted beam with account of warping of the transverse

cross-section

In this work equations of motion are given for the one-dimensional elastic body. They ałe deri-
ved from three-dimensional theory of continuous media with the assumption of the finite displacements
and deformations. This model incorporates the constrained cross-sectional warping, due to the torsion
and shearing, and coupled bending, torsion and stretching. Complex geometry of the body was ta-
ken into consideration which is spatial curved, pre-twisted and tapered, and having non-symmetrical
cross-sections.

1. Introduction

The structural elements of machines, devices and bui]dings are spatial bodies,
frequently of complicated shapes. To carry out full analysis of their dynamical
behavior requires application of the three-dimensional continuum theory.

Application of this general theory to slender bodies is cumbersome and usually
redundant. For bodies with two transversal dimensions significantly smaller than
their length it is convenient to use special methods that reduce description of
motion of such bodies to equations dependent on a single spatial variable and
time. Then we deal with one-dimensional theories of continua - the theories of
rods and beams. In general, two different apploaches ale used to construct theories
of this tvpe.

In the first case the beam is being replaced with an a priori one-dimensional
material continuum whose particles are endov/ed with some definite vector struc-
ture. There is a series of papers that make use of this spatial line model, Ericksen
and Truesdell [1] treated an oriented cuTve as continuum embedded into the
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98 S, Janecki

three-dimensional Euclidean space. Research on this topic was carried out by
\\łritman and De Silva [2], Green and Laws [3] as well as others. In particular,
the authors of [4] established nonlinear equations of equilibrium for thin spatial
rods based on the assumption that the displacements are large, but the sirains
small. They accounted for stretching as well as contraction. Review of the theories
of this kind is given by Antmann in [5].

In the second case) one-dimensional models are constructed starting from the
theory of three-dimensional continua, Tlris task is carried out with the use of
diverse methods, In general, these theories fall into one of the two major cate-
gories: mathematically exact or technical. Starting from the three-dimensional
theory of elasticity Saint-Venant [6] gave an exact solution for displacements and
stlesses arising in a cylindrical beam with non-curved axis and simply-connected
cross-sections, assuming that the lateral surfaces of the beam are traction-free.
The solutions obtained are valid for smal] displacements and strains, Nevertheless,
they supply solid foundation for further development of the theory of rods and
beams. Another approach consists in prescribing distributions of displacements,
strains and stresses as polynomiais of the coordinates of points from transverse
cross-sections of the beam. This leads to infinite sequences of equations giving va-
rious approximations of the motion of the body. They are functions of the spatial
variabie along the length of the beam and time. Research on this topic was carried
out by Novozhilov [7], Volterra [8, 9], Medick [10]. Generalization of these results
may be found in the paper by Gamby [11]. Asymptotic methods are applied to
spatial rods and beams undergoing large displacements and rotations, too. These
methods consist in seeking solutions with respect to a fixed, small geometricai
parameter. In effect one obtains theories of different orders. Examples of such
solutions may be found in the papers by Antmann and Warner [12], Parkei [i3]
and Pleus and Sayir [14].

Technical theories of rods and beams are founded on assumptions concerning
displacements, strains or stresses arising in these bodies, One can distinguish two
principal approaches here. In the first case one assumes, on the a priori basis, the
order of magnitude of some definite geometric or static parameters and discards,
in the process of constructing the theory, quantities of order higher than assumed.
Examples of such theories may be found in the papers by Houbolt and Brooks [15]
and Rosen and Friedmann [rO]. Another way of constructing technical theories
of rods and beams is based on adopting hypotheses determining distributions
of displacements and stresses. These hypotheses are treated as internal constla-
irrts imposed on the motion and the state of stress of a really three-dimensional
bod1, - a beam or rod. The hypotheses of Euler-Bernoulli [17], Kirchhoff [1B],
Clebslr [20] and Love [21] supply examples of internal constraints of this kind.
I. ;s a-ssumed that displacements of the material points from the cross-section
';rCer consideration may be described by the rotational rigid-body motion of
:t:_. cross-section and the displacements normal to tlre rotated cross-section. In
c_as-.:ca- formulations small strains and rotations, and hence also small displa-
cĘ-'t--:s. a-re assumed. These formulations are then extended to finite rotations,
slęa: jeiormations and the effects coming from free and constrained warping of
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the transverse cross-sections as well as more advanced constitutive equations for
the material,

Within the linearized theory, Timoslrenko examined in [19] the influence of
strains generated by unconstrained shear, whereas Janecki [22,23] analyzed the
effects of constrained warpings of transverse cross-sections of a bended beam.
Extensive review of articles vrherein shear effects were considered may be found
in [23]. Dzhanelidze [24] and Vlasov [25] assessed the effects of constrained torsion
- a matter of importance in the theory of thin-walled structures. The equations
of statics accounting for finite rotations of the transverse cross-sections in a thin
beam were considered by a number of authors. Among the earliest important
contributions to the nonlinear theory of thin beams undergoing large displace-
ments, rotations and strains are the papers by Reissner 126_28], His work was
later extended via imposition of constraints on the three-dimensional continuum
!r Ju11I_29], Jura and Atluri [30, 31], Hodges [32], Danietsen and Hodges [33, 34],
Simo [35], Simo and Vu Quock [36-38], Hegemiei [39]. Extensive review of pup"i,
discussing the role of finite rotations may be found in [32]. Besides finite rotations
additional effects, connected with shear deformations, finite elongations and con-
strained warping of the cross-sections coming from torsion [40], were included in
the process of construction of the non]inear theory of rods and bea-s.

Many structural elements, like compressor and gas oI steam turbine blades
under rotational motion, the blades of the wind-driven machines and helicopter
ProPellers, have complicated geometry. They are curved and twisted. In the natu-
ral state their cross-sections are asymmetric and strongly tapered along their. axis,
Therefore, in theoretical considerations on spatially curved ancl twisted beams a
lot of importance is attached to the problem of coupling between berrding, twi-
sting and stretching, including also warping of tlreir cross-sections. Formulations
confined to small strains and small or moderate rotations, accounting also for the
effects from coupled bending, twisting and stretching as well as the effects from
tlre Pre-twisting and warping of the transverse cross-sections) -weTe considered in
many papers focusing on applicative aspect - among the others in the publica-
tions by Hodges and Dowell [41], Hodges |42], Janecki [43, 44], Krenk [45l, Krenk
and Gunneskov [46], Reissner |47-49), Rosen [16, 50], Vorobev [51] and Óth"r..

In a number of dynamical problems - like stability of motion analysis, tran-
sient vibrations and aeroelasticity of structural elements under rotational motion
- aPPlication of the fully linearized theories leads to considerable errors in evalu-
ation of displacements, vibration parameters and stability [37]. Problems of this
kind were considered in the papers by Janecki [a3] and ReiŚsner [48].

Two different approaches are used in dynamics of beams undór rotational
motion. In the first case deformations of a beam are considered in a non-inertial
sYstem rotating with the body with respect to a stationary inertial system. This
Yields an uncomplicated expression for the strain energy. Large displacements
connected with the rotational motion of the beam are eliminated in this appro_
ach. This procedure has been used in many papers, e.g. in I47, 44, 45, 46, 51].
In tlie second case dynamics of a beam is described in a staiionary inertial sys-
tem, This simplifies the expression for the kinetic energy of the rotating body

99



100 S. Janecki

significantly. The strain energy of the body is more complicated, instead. The
equations describing the motion of a beam are less complicated in this approach
than in the first case, This method has been used generally in the papers by Simo
and Vu Quock [36-38].

This paper will focus on dynamics of one-dimensional model of an elastic body
based on exact, geometrically nonlinear description of deformation and nonlinear
equations of the three-dimensional continuum mechanics. The model will include
constrained warping of the cross-sections arising from twisting and shear as well as
mutual coupling between bending, twisting and stretching. Complicated geometry
of a curved, twisted and tapered body with asymmetricai transverse cross-sections
will also be included.

Essential elements in these considerations are;

a) adoption of a fully geometrically nonlinear model;

b) inclusion of constrained warping of the transverse closs-sections, which is
important for thin-walled or bulky structures;

c) inclusion of the inertial effects connected with rotational motion and effects
arising from the complexity of geometry of the body; this is of particular
importance in the description of blade dynamics of wind-driven machines,
helicopters and fluid-flow machines.

2. Kinematics of a beam

2.1. Basic assumptions

1. A beam is a slender body, which in the natura} state is twisted and curved,
and has variable, asymmetrical cross-sections.

2. During the motion initially flat cross-sections warp and form curved surfa-
CeS.

3. Warping of the transverse cross-sections is constrained and arises from twi
sting and shear.

4. The in-plane strains of the transverse cross-sections are neglected.

5. The axis of the beam remains a smootłr spatial curve all throughout the
deformation,

6. The material of the beam is linearly elastic.

2.2. Geometry of the undeformed beam

In continuum mechanics a beam is treated as the set 6 of material points .ł
that irr the natural state occupy some initial configuration .86 C t3 in the physical
space t3. This configuration is determined bv the Cartesian product

Bo:4x(O,tr) , (1)
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where ,4 is a flat cross-section of the beam, "L is the length of the beam measu-
red along the continuous spatial curve called the axis of the beam. It is assu-
med that this axis is the line that connects the gravity centers of the transverse
cross-sections. In general, transverse cross-sections perpendicu]ar to the axis of
the beam at any point may alter their shape, area and position. The position of
a cross-section is determined by the angle its principal axes of inertia make with
the normal and binormal of the beam axis. Location of an arbitrary point on tlre
axis may be determined by prescribing the length s0 mea§uTed from some chosen,
fixed point on this axis.

The beam in its initial configuration is placed in a global inertial system of
Cartesian coordinates (b,X?) with basis {i-}, (Fig. 1). To describe geometry,
a local orthogonal curvilinear coordinate system (0o,Xó') is introduced. The or-
thogonal basis connected with this system is {ę-}, The origin of this system is
located on the spatially curved axis of the beam, The coordinates (r$, rfr) of the
system are located in the plane l,6 of the transverse cross-section, perpendicular
to the axis and coincide with its principal axes of inertia. The coordinate zfi is
measured along the beam axis and may be identified with the arc length s6. The
axis of curved and twisted beam induces in a natural way yet another system of
unit orthogonal vector. {*z},the normal, binormal and tangent vector, respecti-
vely. Due to pre-twisting of the beam in the natural state, the following relation
exists between the base vectors {ę-} and {nł},

ęl : Qo(so)gt , (2)

where
Qg : cosd61+ sinr9g(qs x 1) * (1 * cosdo)(Ęs 8 qs) , (3)

is the tensor that determines the position of the base vectors {ęr}, 1: +n x n; is
the unit tensor, do("o) is the local angle of the pre-twisting of ihe beam'.

The position vector of an arbitrary material point located on the undeformed
axis of the beam is given by

ro: rTi- ,

Whereas in the natural reference system it is:

r6:rg(s6). (5)

Then, the vectors of the natural system of the undeformed axis of the beam follow
from the relations
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1 dus
T1: Ęń, Ęz: Ęs x Ęl:

dro
+3: dso '

(4)

(6)

where rc6 : |dgs/dsg| is the curvature of the beam axis,
The directions of vectors belonging to the natural system vary from point to

point along the beam axis. These variations may be determined with the aid of



Before deformation

After deformation

Fig. 1. Diagram illustrating kinematics of deformation of a beam.

i* - basis of the global reference system,
ę", e* - basis of the local reference system, related to the transverse

cross-section of the beam in the initial and current configuration,

t , X - position vectors of a material point of the beam from the
transverse cross-section in the initia] and current configuration,.W. * the warping vector of the transverse cross-section of the beam,

e; - the vector tangent to the axis of the deformed beam,

position vectors of an arbitrary materiai point
of the beam from the transverse cross-section
in the initial and current configuration,
position vectors of the material point located
on the axis of the beam in the initial
and current configuration,
the displacement vectors of the material point located
of the beam and of an arbitrary point on the axis.

Xo,X

fo, f

Uo, U

F
t\)

a
cł
H

o
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their derivatives with respect to the arc length s6 of the beam axis. They follow
from the Frenet-Serret formulas

103

dn,
a* 

: Ko+o or
dn,
;g:ńoXIlł,
CtSo

(7)

Components of the tensor K6 and the coordinates of the vector of curvatuie rc6
in the basis {gł } are given by the matrices

lą]:[ j. s §] [eó] :[0,rc9,r6] , (B)

where 16 is the torsion of the beam with undeformed axis. Using the relations (2)
and (B) we obtain

H:^oU' or *:łt,gx§il (9)

(10)

where
Ko : -o6 eźjk eJ 8 e.ł .

Components of the curvature tensor K6 arrd the coordinates of the vector rc6 in
the basis {ęo } ur" given by the matrices

l- 0 -"8 rc?n 
'l

lNT]:|"3 0 -"ól,L-"3 rcfi 0 .]

[o6] : [rcgsind6,lcgcosdo,ro * d'o], (.)' : a} .

The position of an arbitrary point located in a transverse cross-section
beam is determined by the position vector (Fig. 1).

X0: r0 **o ,

*o : ró $+ rf; §z: {o §o, (a : 7,2) ,

vrhere

(11)

of the

(l2)

( 13)

is the position vector of the point located in a transverse cross-section of the
beam.

The base vectors {*,; } i" an arbitrary material point of the beam follo-w from
differentiation of the position vector x6 with respect to the variables rb. Then,
we get

ą, :Ao§ł, (14)
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where the components of the tensor A.6 in the basis {ęr} ur"

Loa]:
],

r1
Io
Lo

0 -r|(rg + S|0)

t rb?o + 0|o)

0go
( 15)

(16)

(17)

Bo: 9o, ą3:ę3*rc6x*6
The vectors ą; do not form an orthonormal basis, because the vector a3 is

not a unit one and perpendicular to the vectors $a The contravariant basis may
be determined from the relation { +": 6T , where óff is the Kronecker symbol.
Then

1.,: ę* * 
tfirc$ęz,

1: ę2- ńró 
rcó ęs ,

9o : I - r[ngcos 196 * r2gngsin,ł9g

al
o

r,

a'
o

a3
o

1: -9s,go"

2.3. Geometry of the deformed beam

Under the action of external loads the beam deforms. Its configuration in
the physical space alters. The transverse closs-section of the beam, made up of
material points initially located in a plane perpendicular to the axis, rotates and
walps forming a curved surface (Fig. 1). Then, location of an arbitrary material
point of the deformed beam may be given by the position vector [44]

x: r(so)**(r1, 12,so) *w(r1, 12,so) , (1B)

where r, i and w are; the position vector of a fixed material point located on the
axis of the beam, the position vector of the projection of a selected point on the
plane arisen from a rigid-body rotation of the transverse cross-section cutting the
undeformed beam, and the warp vector normal to the rotated plane, respectively.
\\ arping of the transverse cross-sections arises as a result of twisting, bending
and shearing of the beam. The rotated material plane is not perpendicular to the
ari_. of the deformed beam because of shearing,

\\-e =ha]l describe the geometry of the deformed beam in a local coordinate
ł§TĘ:- 0. _r- arisen from a rigid-body finite rotation of the original local system
u, _\l " T;e ba_.:s of thś s}-stem is made up of the orthonormal vectors {e-},

Co--i_ićl: l"_:: ::_= :c,l3.]ec plarre (treated as t]re transveTse cross-Section of the
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deformed beam). The basis {e,,} may be obtained from a rigid-body rotation of
the basis {e-}.

Thus, at every point of the beam axis there exists an orthogonal transforma-
tion [52j

(19)

(20)

(21)

1 is the

(22)

and then, according to (19) and (20), the components of the tensor Q in the basis

§rn are given by the matrix
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such that

oT

e- : Q(so)€",r,

Q : cosc..,1 * sinc.l(k x 1) * (1 - cosc..,)(k 8 k)

- sino. 1-cosa,.
Q : cos aL + -:::(c.; x 1) * -f(c..l O co) ,

where l, : u)k, k is the versoT of rotation axis, c,.l is the angle of rotation,
unit tensor,

In the basis ęrn we lrave
u: aźEł ,,

lQźj]:

I coscut r?!=ff9,, _rryłup2l_Ę9,
I

| ,, + "# łuzu}=ffe, cos o* ,3!=ff' ,

I

l_ -rr* T ł rzrtLsĘg, a7 ł 4ff * wgu2!-Ęe,

and

6o-p §ln-9 -pa;r r. l -cost,laa

cosu+ull=ffp

(23)

detQ:1, trQ:7a2cosu, Q":-Q. Q4)
Since |k| : 1, lcll : (r, we deal with three independent parameters determining
the matrix [Qt.l].

One should notice that ele1 * ezęz This means that the angles that the
principal axes of inertia make viith each other before and after the deformation
are not identical, unless u7: u2.

By the hypothesis about the in-plane urrdeformability of the cross-section du-
ring deformation of the beam l*l : |T|, the coordinates (r1,,r2) and ("'o,"'o)
are the same, though related to the basis {e1} or {ęł}, ."rp"ctively. As a result
of deformation, the axis of the beam culves and elongates. Due to shearing the
vector e§ tangent to the deformed axis differs from the vector e3 normal to the
conventional transverse cross-section of the deformed beam, The vector e§ de-
termines a plane additionally rotated with respect to the plane of the transverse
cross-section. It is given by the formula

*dr€i : -;-- ,- oSo
(25)
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vrhere r : r0 -l u6 and uo : uT srn are the vectors of position and displacement
of a material point located on the axis of the beam. Using relations (9) we obtain

e§: g' e"l (26)

(11), we may represent the components gi of the vector e§ in the basis ętUsing
aS

91 : Ą^ - u?oio + S'o) + ulnocosdg ,

92 : # - utko + S'g) - uf;ngsindg,

93 :' * H - uboocos,ł9g * u!n6sinr96,

The cosines of the angles that the vector e§ makes with the vectors of the rotated
basis {e,"} are

cosB-: i5"rT : kź/dęł Q §-, g: le§l .

|.il 
\J I Jl

Hence, the vector e§ may be written in the basis {e-}

(27)

(28)

(32)

eź : g cos P-ern . (29)

We may determine the spatial derivatives of the basis using the transformation
(19) as

*:§§u-*aH (30)

The tensor of rotation Q, given in the basis ę-, is the function of the place
a material particle located on the axis of the beam occupies in space. It may be
thought of as a line in the space ^9O(3) of rotation group of ortogonal tensors. To
determine the tangent to this line we need to differentiate the relation

Q'Q:t
Introducing a skew-symmetric tensor A6 defined by the relations

(31)

Ao:Q'ffi, Afl+Ao:g,

9: Q^ooso

§€ get

(33)
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The tensor A6 from the manifold so(3) of skew-symmetric tensors, written in the
basis ęrn represents rotations of a material line. It may be brought to the form

A6:)6X1, (34)

|o7

where [52]

.\6 : ,irr$+(1 _cosc,.,) +"k+9koso clso clso
oI (35)

_ sin u,, / du dc.,, c..l \ 1 - cos cl do dw uA6 : 
" 

(dr. -d"r;)----rr-dąXŁ)rdr. ;,
is an axial vector. Applying the formulas (9) and (33) to (30) we obtain

de--_, : KXem
Clso

where

K : Q(Ao+Ko)Q?:AłQKoQ"
A : AoQ",

is a skew-symmetric tensor in the basis {e-}. This tensor
the deformed beam. Its axial vector may be represented as

o3*:n"r, 
oI

ClSo
(36)

(37)

describes the axis of

and hence

The base vectors at an arbitrary material point of the deformed beam may be
determined by differentiating the position vector of this point with respect to the
coordinates rm. The position of this point follows from the general formula (18),
where *: trdza, (a : 1,2). To make its description precise we need to fix the
warping vector w. We assume that it is normal to the conventional transverse
cross-section. Then

w : w(rI ,12,r3)eg , (40)

where u is the amplitude of the distribution of warping. With this choice we have

a} : ea+lD)a e3 )

a§ : e§+rcx(*+w) +tu'es, (41)

where ('),o: fu, (,)': **, aL: OxlOrff, Since K: Km€rn, tlre latter formula
may be rewritten as follows

ai : (g cos 0r - o'*3 ł wn2)el t (9 cos §z * n3rln - wol)e2 +

K: Kmem

1,

K"" : 
ź€mjk 

(ei,e eł) ,

(38)

(39)

*(9 cos §z ł w' + nlrf; _ o2rl)eg . (42)
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In the technical theory it is also assumed [4a] that the amplitude of warping is of
the form

2

u(r[, rf;,so, ź) : I v^@L,rfr)01(s6, t) .

A:0

The functions 01(s6,ź) are unknown functions of the distribution of warpings in
the cross-sections along the axis of the beam arisen from twisting and shearing,
(p) are prescribed functions of distribution of warping in the cross-section under
consideration and are defined in the local coordinate system connected with the
cross-section of the undeformed beam. Another assumption made in dynamics is
that the function p6 is determinable from a static problem for pure twisting of a
prismatic beam, and the functions rp1 and ę2 fuom a static problem for bending
of a beam under transverse forces [44]. With these assumptions we may write

(43)

(44)

where

(45)

after we use the transformation formulas (2).
If the constraints on warping of the transverse cross-sections are neglected, it

is assumed that 0! : g,

3. Measures of deformation

The gradient of deformation

#:Śtrt,nr^ +ę','x)

dx óx
Ń sę" + fr 8ęs : a} x ęo +a§ oęs

* a)ęx
Q^: €a0 ro aą

(46)

furnishes full information about the strains and rotations of the material line
elements in the neighborhood of a material point of a deformable body. In the
above formula x6 and x are the position vectors of an arbitrary material point in
the undeformed and deformed configuration, respectively, In our case of a beam
treated as a one-dimensional body, this gradient may be brought to the form

F : Q f es 8Vwt [(.§ * e3) f n x (*+w) +,ru'e3] oęs (47)

x,hen we use the relations (18), (40) and (41), and (36), Alternatively, we may
rr-rite

r,: Q{l *ęsaVw* [(Q""J -ęe)+ Qr*, (+ +q) +?r/ę3]aę3} (48)

p:9":
OXo
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where

Q : e, 8 §zl Vw : ffiu., *o : r3§o, TT: ?rę3 . (49)

Since i f Ę: Q"(* - r), we must also have

F: Q{l*ęsaVw-t [(QT.§ -ęe)+Q"," " QT(*-r) +u'ęs]oęs}. (50)

The tensor of rotation Q appearing in the above formulas determines the mean
rotation of the transverse cross-section of the deformed beam. It does not account
for the local rotations of the material points connected with the deformation of
the beam axis nor for the warpings in these cross-sections. The vectors occrirring
in these formulas

109

and tensors

describe strains of the beam in the basiq {e-} or the basis {ę-}, .".p"ctively.
TheY describe stretching, contraction and alterńtion of curvatui8. frr"y *"." .r!-
gested bY Reissner [27]. The vector e determines the difference between the vector
tangent to the axis of the deformed beam and the vector normal to the transverse
cross-section of this beam.

other measures of deformations are also introduced in mechanics of deforma-
ble body. For large strain problems the Green tensor is often used

e:ei-es oT

A:K-QKoQT oI

eg:Q?e:Q?e§-ęe

A6:Q?KQ-Ko,

(51)

(52)

(53)

(54)

(55)

(56)

(57)

where F is the gradient of deformation. For a body of initially complex geometry,
to grasP alteration of strain resulting from loads, one may int.odoce a relative
measure of deformation

n: }{r'r - 1) ,

E:E-Eo

1^Eo:r(FóFo_1) .

r- :}{r + r'I)

,I-_Q"F-1,

where

E9 and F6 describe the initial geometry of the body. In tlre case of small strains
it is convenient to use a symmetric tensor of strain

where
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is a tensor of deformation introduced by Jaumann [54].
For the model of beam considered in this paper the gradient of full deformation

is defined by the formula (48).
On the other hand, the gradient of the natural geometry of the beam

(59)

(61)

ExFo:ń:$;8e;,

Then the Green tensor of relative strain is
-1n: ,Iałń - Bź e"r](ę8 e.J) .

Using the formulas (18), (41) and (a2) we may write the components of this tensor
in the material basis as

-IEoa : :w,ąu,Bl (a, {3 : 1,2)

--lEr, : fis + ;[(s"o. 0s - I) - r'oo' + xzgrcI + lu'lfwJ,

Erz : fla + il{n*rbr- 1) - ,1go2 +rf;o] +u,s7w,z, (60)

Er, : ffu + }{r.o, h - r3o3 - ro2)2 *;bcosP2ł rlgns -.o172+ ,

1 .:
}r"'rr + r!)211rc$1' - }{-"b"f; + ,!o1o12 ,

where
1ri. : 
}b """ h - ,2ok3 * unz * u,t) ,

1fis : 
}b "o" 

0z + r[n3 - wo1 * w,z) ,

f§r: (gcosfu-1) -*[x2+rf;kl +.',
are the components of a symmetric relative Jaumann tensor and ńi : ni - rcb.

Proceeding further we also need to work out a model for warping of the
trarrsverse cross-sections.

In the case of constrained twisting of a beam, pre-twisted in the natural state,
Dzhanelidze's hypothesis [24] is used. According to this hypothesis the amplitude
of warping is governed by the following relation

1x : ę(*g)k3("o,ź) , (62)

rvhere rp(*6) is the Saint-Venant twisting function defined in the local coordinate
sl,stem - a system connected with the transverse cross-section of the beam.
Hence

(58)

w,s: $'opók3 + ęltol1n31', (.)' : +l\'" ,l ) \./ aso '
(63)
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where

(a,0 :1,2) -

1-
ło: }Xt, ń+pt, 1ń2;

Then the symmetric Piola-Kirchhoff stress tensor is

* a09Qo: €ą0 'o Ń'
(64)

(65)

(66)

(67)

Taking into account the foregoing assumptions, and assuming additionally that
the warpings of the cross-sections ale small, the components of strain f[, may
be represented as fo]lows

fil : ł|+* (#-,a)ń,f ,

fis : 
ł|,a * ,#,*,ó)ń'] ,

f§, : e3o - rloe2 + rf;al + 0'gp[k3 + ę(k3)'

They are functions of generalized strains

,T : g cos B- - 6^3, k- , (ń')'.

where 6."3 :0 for a : I,2, óss : 1.

4. Constitutiveequations

Determination of the resultant stresses arising in the material of tire body,
compatible with the model of deformation assumed, is an important issue, A lot
of attention was devoted to this question in the tlreory of beams [35, 53].

For elastic isotropic and homogenous material the strain enelgy measured per
unit volume of the undeformed body is most often assumed to have the form

T- )(tI ń)1 ł2p,ń, (6B)

where ) and p are the Lame material constants. Analogous relations apply to the
tensor of strain l* and the symmetric stress tensor T*, introduced by Jaumann,

The relations written above are valid for sufficiently small strains, but do not
exclude occulrence of finite rotations and displacements for sufficiently slender
bodies. In the case of beams undergoing small strains it is assumed that

0rlro

aE

Tłz:2GTL3, Tłs: E|ź, , (69)



1l2 S. Janecki

where G and E are the Kirchhoff and Young moduli, respectively. Then, the
strain energy for beams may be expressed as follows

(70)

where ,4'6 is the transverse cross-section of the beam in the natural configuration,
Taking into account (65) and (ZO) one obtains

i[o = (71)

as the function of generalized strains. Then, constitutive equations for internal
forces in the material description are

(72)

*o : 
* lo" lr"rla fls f EGh)2f dA ,

Vo(.b, ab,@\') ,

q,:#,LIź:#, B:ffi
Hence we get

Qt : GAelg

Qz : GArf;',

Qz : n|nćo* ,9l&1 - Szkz + 8'0Jak3 + Jęę(#)') ,

M1 : E[s1€3 łJnkI -Jnk2+0'oĄak3+ĄęG\|f, (73)

M2 : E|- S2e3 - JnkI ł Jzzk2 - ó'oJ2nk3 - Jrr(k')'f ,

M3 : GJ,k3 +ls'oa|lne!*Ąpk1 *Jrnk'+8'0Jaań3 +Jaę(#|7, 
.

B : a|Sre3o* Jrykl - Jrrk'+fl'oJ'ęk3 + JęęG3)'f ,

where A, So, Sę,, J, JoB, Jp, Jop, Jpp, Joę, Jpę are geometrical characteristics of
the cross-sections transverse to the undeformed beam defined in [44], see (117),
The forces Qo are the transverse forces, Q3 the longitudinal force, Mo are the
bending moments, M3 is the total twisting moment and B is the bending-twisting
bimoment.

Relations for the transverse forces Qo do not account for the decrease of
stiffness due to nonuniform distribution of the shearing stresses in the transverse
cross-sections of the beam. To include tlris effect it is necessary to consider warping
of the transverse cross-sections caused by shearing. To this end the following
hlpothesis is assumed [44]

w : ęt(ź)eÓ("o,t) + ęr({r?o(so,ź) ,

wb,ere ,;,; a:e bendinq fulctions of a prismatic beam.

(74)
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To simplify considerations we shall confine attention to a prismatic beam
undergoing merely stretching arrd shearing. For small strains the components of
the deformation tensor take the form

i,. : (r * #).:,+ (ffi),a,

i,, : r#l.ł+(r+ W),r, (75)

ir3 : e3 +,pr(eó)' + ęz(r3)' ,

Using (70) we determine the elastic energy

Vo : iŁo(e6, (.3)') (76)

and the resultant internal forces

d\Ło H^: 0,Vo 
(77)Lłt : 

ą, 
no : 

ąr1y 
.

They are given by the relations

Qt : GA(k6[ł kpefl) ,

Qz : GA(kl2elg ł k22ef;) ,

Qs : EAe|,, (78)

H1 : r|sr,ef; ł Ję,r,(uó)' + lr,r,G?i') )

H2 : n|sr,ef; + Jr,r,(e[)' ł Jr,r,(.3)'] ,

where

ko.: * I^,(óoo 
* ftlruu-+ffi)ae, (79)

are the coefficients of shearing and

Sr.: [ ąodA ,Jr,ru: [ ąogadA, (80)
JAo JAo

are the geometrical characteristics of the transverse cross-sections associated with
constrained shearing.

The algorithm of determination of the bending function and the geometrical
characteristics was presented in [aa]. The forces Ho are self-equilibrated moments
of constrained shearing.

Introducing the vector of generalized forces

fI : col (Ql, Mt, B) , (81)

113
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and vector of generalized strains

? : col (rb,u,o,(ń')') , (82)

and using the relations (73) and (78), we may write the following constitutive
relation 

H: K7 , (83)

valid within the kinematics assumed and small strains. one should notice that in
the case considered here the stiffness matrix K is symmetric

[K] : (84)

-EJ"," 8,0EJaę EJ*

5. Equations of motion

5.1. Internal forces

To derive equations of dynamics of a beam subjected to the action of surface
and mass forces, we need to determine the internal forces arising in its transverse
cross-sections. We derive them from the variation of work measured per unit
undeformed volume performed by the stresses [54]

klGA kl2GA 0 0
kztGA kzzGA 0 0

000
000

-ESz 8|0EJa ES,
-EJp 8'gEJk EĄę
EJzz -ó|OEJ1a -EJzę

-*6EJza GJ,s + 8'łEJap 0|0EJaę

00
00
00
00
00

EA ESl
E& EJl
-ESz -EJzl
0|oEJa $lOEĄa
ES," EJ,,"Y^Y

6Wo: Iur' : 6TJ d,V , (B5)

where TB is the Biot stress tensor and U is the stretch tensor; symbol : denotes
full contraction of two tensors. For the beam model under consideration, by (50)
and (51), we have

U: Q"F: ]_ł§l8Vw* luo+,i0 x QT(x-r)+t,'ęa] 8ęs, (86)

where ng : QT n.
Taking into account warping of the transverse cross-sections, caused by twi-

sting and bending, and according to the hypothesis (43), we get

óU : óeo8ęs*
,
D 6 0'^ę^(ę3 a ę3) +
.\:0

2

+ D aa^ |r^,. (e, o g.) -r ęx(no x ęa) + v'x(ęze ęr)] ,

):0

[a,c 
x q"(x - r)] 8 ęs +

(87)
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where (.)/: a
a;o

rO:TBo8ęo*tf oęa,
by (B5) we get for the unit undeformed length

where

a
ag" Since

6Wo: 
Io"

(Nóe6 * Mórc + Mę606 ł GńĄ ł Gz6Oz +

+ B6//t0 + Hń0| + H260'2) d,A , (B9)

'I? dA: Ą9,

(88)

(91)

N: 
Io,

- 9'Io,

: ę'Io"
: E'lo,
: 

""' Ioo

M,^

B

Hs

Gs

n: 
lo"

M : 
,f,. [n''"-r) x r!]aa: Mł,ż,

|vo,.r3 + po(Tf x ,r,0) + ęlor!]aa ,

|v^,.r'. + p.l(Tf x rc) + ę'^r!f a,l, , (A: I,2) , (90)

9gr! aA,

9p{ aA .

These are material forces, defined in the undeformed configuration, valid for fi-
nite deformations. As is visible from the relation (89) for the variation of work
performed by the internal forces, the strain measures work-conjugate with the
forces N, M, Mr, G). B and .FĄ are €0, r-n,609,60s, óOfi and dd!, respectively.

The components of the vector N are th.e transverse forces and the longitudinal
force, of the vector M the bending and twisting moment, M, and B is the
moment and bending-twisting bimoment, occurring at constrained twisting, and
G1 and fltr aTe the components of the transverse force and moment, respectively,
caused by constrained shearing.

In the case of a pre-twisted beam, tlre derivative with respect to the distribu-
tions of warping appearing in (90) is equal to

, 0(x ^t *9^:, :?g0trl
U50

where o! is given by the formula (45).
Introducing asymmetrical Piola-Kirchhoff stress tensor T0 re]ated to the Biot

tensor through the formula T0 : QTB, one obtains

N : QTrr, TldA,
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Similar relations hold for the forces Q1 and 11.ł, () :7,2).
The spatial vectors of forces n and m act in the transverse cross-sections in

the deformed configuration. Their components in the basis {e1} are the same as
those of the vectors N and M in the basis {ę}.

Upon introducing the Saint-Venant's twisting moment

ru,: [ (+ - eoąTdT:3dA ,Jag OĘa

one may represent the bending-twisting moment as follows

Mę : Mu - Ms + sbB; - €aOKa f o" vorlrdA ,

M : Q"*, *: 
Ioo(* - ,) x rld,A ,

Mę : 
", lo" [ro,.r1 + po(Tg x rc) + 9'or!) a,ł, ,

B : ., 
Io"ę6rOraA.

uI: 
Io" 

p$rrFrae

Div T0 -| pobo : p0*, # "T9 
: 0 ,

1i

(92)

(93)

(94)

(95)

(96)

where

and p§ is given by the formula (64).
The relation (9a) is a generalization of the well-known Vlasov's relation [25]

to the case of finite deformations of a spatially pre-twisted and curved beam.

5,2. Equations of dynamics

We shall derive the equations of motion for the.model assumed using the
material principles of conservation of momentum and moment of momenturn of
the three-dimensional continuum mechanics.

where T0 is the Piola-Kirchhoff stress tensor, b6 is the mass load and p6 is the
specific density of the body, all related to the unit undeformed volume of the
body.

Using the definition of the vector of forces (92) n and the principle of conse-
rvation of momentum (96) we get

# : I^,#dA: - !o,{ro*,--l- 
pobo) oo* Io"poxd,A, (97)
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Applying the Gauss-Ostrogradsky formula we obtain

are the mass and surface loads, respectivelyJ na aIe the direction cosines of the
normal to the lateral surface of the beam and

0n dl

Ę*ą+q: dt,

': Iuo"TLnod@A), tr: Io,p6bgd,A,

': Io, ooi<d,A

K - Mę * U +ó : ", Io, pgggxd,A ,

where

(100)

is the momentum measured per unit length of the undeformed beam.
In view of the definition of the vector of internal forces (92) and the prińciple

of conservation of momentum we must have

ómar
ar, : ń Jo"(x- r) 

xr!d,A: Io"ff " rgdA- # * Io",\oon
+ t (* - ") x [po;i - pobo - rL,.)dA .

Jao'

Applying the Gauss-Ostrogradsky formula and using (96) for the moment of
momentum we obtain the equation

dm dll^ *ełxn+m+m:--.dso dt'
where

^: Iroo [(" - ") 
- 

'1] 
,nod,(ŁA), 

^: Io,po(* - r) x b6 d.4 , (102)

are the loads from the surface and mass moments, respectively, and

n: 
Io,po[(* - r) x x] d,4 , (103)

is the moment of momentum measured per unit length of the underformed beam.
We shall now derive the equations relating the generalized forces with constrained
twisting. Proceeding in a manner similar as for the vector of forces n above we
obtain

(98)

(99)

(101)

(104)

lb:es l
J aAo Io"

where
porLnod(OA), b: es p6ęgbgdA, (105)
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are the bimoment and mass loads. The equation for constrained shearing may be
obtained in a similar way

# - G|xłń+ń: ", Io, pgęsxd,A, (106)

where
ń: es luo"r^T}*nod@A), ń,: ee 

Io" noęlbgd,A. (107)

The material form of the equations of motion is more convenient in a number
of applications. To obtain this form one needs to define the tensor O6 and vector
c116 of the material angular velocity in the rotational motion.

Oo : QTQ , u)o x l: d)0 , (10S)

where (',) : &,Using the relations for forces and loads

n: QN, m: QM, T0 : QTB ,

Q: QQo, m: Qmo, 8: Qąo, ń: Qńo , (109)

the equations of motion may be brought to the form

H-RoM*(uo+€s) xN : #*d)oho,

K - M, +6 +6 : ur(# + o0k3) , (110)

* - Gx+ h+ń : ę,(# + o0k1) ,

where' according to (37)' 
Ro : Ko ł Ao . (111)

Besides

16 : 
Ioo norooo, ho: 

Ioo|oo(* 
+ *; x v6] aa,

l-U/.r..,Ki : 
Joo oovxro dA, () : 0, 1, 2) , (112)

where

v0 : Vo * OoT + (?l,l + lnd)o)eoz,

V6 : ńlE, D:f-f6l ug:QTu. (113)
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Using (11a) and (43) we may bring the vectors of momentum arrd moment of
momentum to the form

16 : oo |Aolvo + t..,0 x uo) * §o(.o x 9a) + f Sr^{Ó^* 0*lox r)ęs] ,

A:0
2

h6 : oo [S.19. x vo) * D Sr^9^(ęs x vo) +D Jop^Ó.x(go , sr)] +

2

+ ao[.l+;
):0

,

.\:0 }:0
2

Jr^0^+ 

' 

J9^9"0sf.r(ę* 8 9o)] alo ,

\,lr:O
D,

kl : oo fSr^vo ł Joęx(ro * F.) + Y, Jr^rrÓręu+ Ę Ję^ęrL1,(,sg 
" ęr)],

ll:O tl:O
(.\ : 0, 1,2)

where

J : Jog?o89B+Joęe8€s,
Jr^ : Joę^ląo8ę3+ ę3 89d], (115)

and

(114)

(116)
Joa: eap,eall [eo tp€trdA, Jo: Iao ĘaSadA,
Joę^: Io. qoęidA, Ję^9": Ią ?xapdA ,

So : [.ą,o qo dA, Sr^ : Iao vxdA .

The functions p) of distributions of warpings of the transverse cross-sections
are determined up to a constant. These constants may be determined so that
Sqr" : 0. Assuming that the line of centers of gravity of the transverse cross-sections
coincides with the axis of the beam we have so :0. These assumptions simplify
the formulas (115) significantly. If the transverse cross-sections ale additionally
bisymmetric, then Jor^ : 0.

6. Conclusions

We have developed a model of a finitely deformable, curved and pre-twisted
beam, accomodating the warping distorions of the cross-sections caused by she-
aring and twisting. The model is based on concepts of 3D material continurrm. The
mechanical work of the beam is derived exactlv from stress work of 3D continuum,
and provides.an exact identification of the resultant forces and conjugated strain
measures. The model incorporates the bi-moment, tlre bending-twisting moment
for the constrained twisting, and the moments connected with the constrairred she-
aring of the beam. A generalization of the Vlasov formula for the bending-twisting
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moment to the case of finite deformations of curved and pre-twisted beams is gi-
ven. For the constrained warping the decrease of stiffness of the beam, due to
non-uniform distribution of stress in the cross-sections, is naturally accounted,
The dynamics equations for the 1D problem, in particular for the bi-moment, and
moments connected with constrained shearing, are derived, Properly invariant 1D
constitutive relations are developed vrithin the framework of linear elasticity,
The proposed formulation can be applied to a broad range of practical problerns.
For instance, the non-linear treatment of the flexible beams is the basis for analy-
sis of the helicopter, windmill and turbine slender blades, as well as of the rotors
vlith flexible shafts. The non-linear geometric effects are of special importance in
dynamic analysis of flexible rotating structures.
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Geometry cznie nieliniowe równania przestrzennie zakrzywionej i
wstępnie skręconej belki z uwzględnieniem spaczenia przekrojów

poptzecznycl:,

streszczenie

W pracy przedstawiono równania ruchu jednowymiarowego mode]u ciała sprężystego. Wyprowa-
dzono je z trójwymiarowej teorii ośrodków ciągłych i ptzy założeniu skończonych deformacji. W modelu
uwzględniono skrępowaną deplanację przekrojów poprzecznych spowodowaną skręcaniem i ścinaniem
oraz wzajemne sprzężenie zginania, skręcania i rozciągania. Wzięto pod uwagę skomplikowaną geome-
trię ciała przestrzennie zakrzyłvionego, wstępnie skręconego i zbieżnego oraz mającego niesymetryczne
przekroje poptzeczle.


