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SEAWOMIR JANECKI!

Geometrically nonlinear equations of a spatially curved and
pre-twisted beam with account of warping of the transverse
cross-section

In this work equations of motion are given for the one-dimensional élastic body. They are deri-
ved from three-dimensional theory of continuous media with the assumption of the finite displacements
and deformations. This model incorporates the constrained cross-sectional warping, due to the torsion
and shearing, and coupled bending, torsion and stretching. Complex geometry of the body was ta-
ken into consideration which is spatial curved, pre-twisted and tapered, and having non-symmetrical

cross-sections.

1. Introduction

The structural elements of machines, devices and buildings are spatial bodies,
frequently of complicated shapes. To carry out full analysis of their dynamical
behavior requires application of the three-dimensional continuum theory.

Application of this general theory to slender bodies is cumbersome and usually
redundant. For bodies with two transversal dimensions significantly smaller than
their length it is convenient to use special methods that reduce description of
motion of such bodies to equations dependent on a single spatial variable and
time. Then we deal with one-dimensional theories of continua — the theories of
rods and beams. In general, two different approaches are used to construct theories
of this type.

In the first case the beam is being replaced with an a priori one-dimensional
material continuum whose particles are endowed with some definite vector struc-
ture. There is a series of papers that make use of this spatial line model. Ericksen
and Truesdell [1] treated an oriented curve as continuum embedded into the
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98 S. Janecki

three-dimensional Euclidean space. Research on this topic was carried out by
Whitman and De Silva [2], Green and Laws [3] as well as others. In particular,
the authors of [4] established nonlinear equations of equilibrium for thin spatial
rods based on the assumption that the displacements are large, but the strains
small. They accounted for stretching as well as contraction. Review of the theories
of this kind is given by Antmann in [5].

In the second case, one-dimensional models are constructed starting from the
theory of three-dimensional continua. This task is carried out with the use of
diverse methods. In general, these theories fall into one of the two major cate-
gories: mathematically exact or technical. Starting from the three-dimensional
theory of elasticity Saint-Venant [6] gave an exact solution for displacements and
stresses arising in a cylindrical beam with non-curved axis and simply-connected
cross-sections, assuming that the lateral surfaces of the beam are traction-free.
The solutions obtained are valid for small displacements and strains. Nevertheless,
they supply solid foundation for further development of the theory of rods and
beams. Another approach consists in prescribing distributions of displacements,
strains and stresses as polynomials of the coordinates of points from transverse
cross-sections of the beam. This leads to infinite sequences of equations giving va-
rious approximations of the motion of the body. They are functions of the spatial
variable along the length of the beam and time. Research on this topic was carried
out by Novozhilov [7], Volterra [8, 9], Medick [10]. Generalization of these results
may be found in the paper by Gamby [11]. Asymptotic methods are applied to
spatial rods and beams undergoing large displacements and rotations, too. These
methods consist in seeking solutions with respect to a fixed, small geometrical
parameter. In effect one obtains theories of different orders. Examples of such
solutions may be found in the papers by Antmann and Warner [12], Parker [13]
and Pleus and Sayir [14].

Technical theories of rods and beams are founded on assumptions concerning
displacements, strains or stresses arising in these bodies. One can distinguish two
principal approaches here. In the first case one assumes, on the a priori basis, the
order of magnitude of some definite geometric or static parameters and discards,
in the process of constructing the theory, quantities of order higher than assumed.
Examples of such theories may be found in the papers by Houbolt and Brooks [15]
and Rosen and Friedmann [16]. Another way of constructing technical theories
of rods and beams is based on adopting hypotheses determining distributions
of displacements and stresses. These hypotheses are treated as internal constra-
ints imposed on the motion and the state of stress of a really three-dimensional
body — a beam or rod. The hypotheses of Euler-Bernoulli [17], Kirchhoff [18],
Clebsh [20] and Love [21] supply examples of internal constraints of this kind.
It is assumed that displacements of the material points from the cross-section
under consideration may be described by the rotational rigid-body motion of
this cross-section and the displacements normal to the rotated cross-section. In

ical formulations small strains and rotations, and hence also small displa-
ce ts. are assumed. These formulations are then extended to finite rotations,

shear deformations and the effects coming from free and constrained warping of

al



Geometrically nonlinear equations ... 99

the transverse cross-sections as well as more advanced constitutive equations for
the material.

Within the linearized theory, Timoshenko examined in [19] the influence of
strains generated by unconstrained shear, whereas Janecki [22, 23] analyzed the
effects of constrained warpings of transverse cross-sections of a bended beam.
Extensive review of articles wherein shear effects were considered may be found
in [23]. Dzhanelidze [24] and Vlasov [25] assessed the effects of constrained torsion
— a matter of importance in the theory of thin-walled structures. The equations
of statics accounting for finite rotations of the transverse cross-sections in a thin
beam were considered by a number of authors. Among the earliest important
contributions to the nonlinear theory of thin beams undergoing large displace-
ments, rotations and strains are the papers by Reissner [26-28]. His work was
later extended via imposition of constraints on the three-dimensional continuum
by Jura [29], Jura and Atluri [30, 31], Hodges [32], Danielsen and Hodges [33, 34],
Simo [35], Simo and Vu Quock [36-38], Hegemier [39]. Extensive review of papers
discussing the role of finite rotations may be found in [32]. Besides finite rotations
additional effects, connected with shear deformations, finite elongations and con-
strained warping of the cross-sections coming from torsion [40], were included in
the process of construction of the nonlinear theory of rods and beams.

Many structural elements, like compressor and gas or steam turbine blades
under rotational motion, the blades of the wind-driven machines and helicopter
propellers, have complicated geometry. They are curved and twisted. In the natu-
ral state their cross-sections are asymmetric and strongly tapered along their. axis.
Therefore, in theoretical considerations on spatially curved and twisted beams a
lot of importance is attached to the problem of coupling between bending, twi-
sting and stretching, including also warping of their cross-sections. Formulations
confined to small strains and small or moderate rotations, accounting also for the
effects from coupled bending, twisting and stretching as well as the effects from
the pre-twisting and warping of the transverse cross-sections, were considered in
many papers focusing on applicative aspect — among the others in the publica-
tions by Hodges and Dowell [41], Hodges [42], Janecki [43, 44], Krenk [45], Krenk
and Gunneskov [46], Reissner [47-49], Rosen [16, 50], Vorobev [51] and others.

In a number of dynamical problems — like stability of motion analysis, tran-
sient vibrations and aeroelasticity of structural elements under rotational motion
— application of the fully linearized theories leads to considerable errors in evalu-
ation of displacements, vibration parameters and stability [37]. Problems of this
kind were considered in the papers by Janecki [43] and Reissner [48].

Two different approaches are used in dynamics of beams under rotational
motion. In the first case deformations of a beam are considered in a non-inertial
system rotating with the body with respect to a stationary inertial system. This
yields an uncomplicated expression for the strain energy. Large displacements
connected with the rotational motion of the beam are eliminated in this appro-
ach. This procedure has been used in many papers, e.g. in [41, 44, 45, 46, 51].
In the second case dynamics of a beam is described in a stationary inertial sys-
tem. This simplifies the expression for the kinetic energy of the rotating body
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significantly. The strain energy of the body is more complicated, instead. The
equations describing the motion of a beam are less complicated in this approach
than in the first case. This method has been used generally in the papers by Simo
and Vu Quock [36-38].

This paper will focus on dynamics of one-dimensional model of an elastic body
based on exact, geometrically nonlinear description of deformation and nonlinear
equations of the three-dimensional continuum mechanics. The model will include
constrained warping of the cross-sections arising from twisting and shear as well as
mutual coupling between bending, twisting and stretching. Complicated geometry
of a curved, twisted and tapered body with asymmetrical transverse cross-sections
will also be included.

Essential elements in these considerations are:

a) adoption of a fully geometrically nonlinear model;

b) inclusion of constrained warping of the transverse cross-sections, which is
important for thin-walled or bulky structures;

c) inclusion of the inertial effects connected with rotational motion and effects
arising from the complexity of geometry of the body; this is of particular
importance in the description of blade dynamics of wind-driven machines,
helicopters and fluid-flow machines.

2. Kinematics of a beam

2.1. Basic assumptions

1. A beam is a slender body, which in the natural state is twisted and curved,
and has variable, asymmetrical cross-sections.

2. During the motion initially flat cross-sections warp and form curved surfa-
ces.

3. Warping of the transverse cross-sections is constrained and arises from twi-
sting and shear.

4. The in-plane strains of the transverse cross-sections are neglected.

5. The axis of the beam remains a smooth spatial curve all throughout the
deformation.

6. The material of the beam is linearly elastic.

2.2. Geometry of the undeformed beam

In continuum mechanics a beam is treated as the set B of material points X
that in the natural state occupy some initial configuration By C &3 in the physical
space &3. This configuration is determined by the Cartesian product

BO = 1(‘)1)( <07L> ) (1)
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where zg is a flat cross-section of the beam, L is the length of the beam measu-
red along the continuous spatial curve called the axis of the beam. It is assu-
med that this axis is the line that connects the gravity centers of the transverse
cross-sections. In general, transverse cross-sections perpendicular to the axis of
the beam at any point may alter their shape, area and position. The position of
a cross-section is determined by the angle its principal axes of inertia make with
the normal and binormal of the beam axis. Location of an arbitrary point on the
axis may be determined by prescribing the length sy measured from some chosen,
fixed point on this axis.

The beam in its initial configuration is placed in a global inertial system of
Cartesian coordinates (07, X7*) with basis {in,}, (Fig. 1). To describe geometry,
a local orthogonal curvilinear coordinate system (0p, X§*) is introduced. The or-
thogonal basis connected with this system is {e,,}. The origin of this system is
located on the spatially curved axis of the beam. The coordinates (zJ,x3) of the
system are located in the plane Ay of the transverse cross-section, perpendicular
to the axis and coincide with its principal axes of inertia. The coordinate x} is
measured along the beam axis and may be identified with the arc length sg. The
axis of curved and twisted beam induces in a natural way yet another system of
unit orthogonal vectors {n;}: the normal, binormal and tangent vector, respecti-
vely. Due to pre-twisting of the beam in the natural state, the following relation
exists between the base vectors {en,} and {n;}:

ei = Qo(so)n , (2)

where
Qo = cos¥pl +sindp(nz x 1) + (1 — cos¥p)(n3 @ n3) , (3)

is the tensor that determines the position of the base vectors {e;}, 1 = n; X1n;is
the unit tensor, Yo(sp) is the local angle of the pre-twisting of the beam.
The position vector of an arbitrary material point located on the undeformed
axis of the beam is given by
T = E7 i « (4)

Whereas in the natural reference system it is:
ro = ro(s0) - (5)

Then, the vectors of the natural system of the undeformed axis of the beam follow
from the relations
1 dlgg, i dI‘()

2 = 13 X 1Ny, Igs—dSO )

(6)

n=——=
2 Ko dsg :
where ko = |dns/dsg| is the curvature of the beam axis.

The directions of vectors belonging to the natural system vary from point to
point along the beam axis. These variations may be determined with the aid of



Before deformation

. Diagram illustrating kinematics of deformation of a beam.

— basis of the global reference system,

— basis of the local reference system, related to the transverse
cross-section of the beam in the initial and current configuration,

— position vectors of a material point of the beam from the
transverse cross-section in the initial and current configuration,

— the warping vector of the transverse cross-section of the beam,

— the vector tangent to the axis of the deformed beam,

Xo, X

To, I

Up, U

After deformation

position vectors of an arbitrary material point

of the beam from the transverse cross-section

in the initial and current configuration,

position vectors of the material point located

on the axis of the beam in the initial

and current configuration,

the displacement vectors of the material point located
of the beam and of an arbitrary point on the axis.
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their derivatives with respect to the arc length sg of the beam axis. They follow
from the Frenet-Serret formulas

dn; i dn;
o 8 Kon; or Pl Ko X n; . (7)
dsg = dsg &

Components of the tensor Ky and the coordinates of the vector of curvature &g
in the basis {n;} are given by the matrices

s 0 -7 ko :
&= 00\, (R = [0l (8)

where 7 is the torsion of the beam with undeformed axis. Using the relations (2)
and (8) we obtain

de; de;
d.;:) =Koe; or d;; =Ko X €, 9)
where :
Ko = —ky €ijk € D €k . (10)

Components of the curvature tensor Kg and the coordinates of the vector kg in
the basis {e;} are given by the matrices

3 0 ==pd Sl
[K(Z)]] = "58 0 _K'(l) )
—K3 K} 0
) 5]
[ko] = [Ko sin Vg, ko cos g, 70 + T, ()= 5 (11)
S0

The position of an arbitrary point located in a transverse cross-section of the
beam is determined by the position vector (Fig. 1).

Xg =Tp+ Xgp , (12)

where
Xo=zje1tefe=%%¢, (a=12), (13)

is the position vector of the point located in a transverse cross-section of the
beam.

The base vectors {a; } in an arbitrary material point of the beam follow from
differentiation of the position vector xg with respect to the variables z§. Then,
we get

a =Apeg;, (14)
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where the components of the tensor Ag in the basis {e;} are

1 0 ——.’L‘%(To—i—l?ﬁ)

48]=]0 1 zim+vh) |, " (15)
00 90
g = 1-— x(l)/-cg cos ¥g + 1:(231-;0 sin Yy
or (16)
8 = €o, as=e3+ Ko X Xg

The vectors a; do not form an orthonormal basis, because the vector as is
not a unit one and perpendicular to the vectors a, The contravariant basis may
be determined from the relation a™ a,, = &), where d;;" is the Kronecker symbol.
Then

1 1

¢ = gt _-Tme,
a2 = eg—ixllﬂ??’e;?, (17)
o c g0 0 ™0 %53 »
1
0 S
90

2.3. Geometry of the deformed beam

Under the action of external loads the beam deforms. Its configuration in
the physical space alters. The transverse cross-section of the beam, made up of
material points initially located in a plane perpendicular to the axis, rotates and
warps forming a curved surface (Fig. 1). Then, location of an arbitrary material
point of the deformed beam may be given by the position vector [44]

x =r(sg) + )“c(acl,:rQ, so0) + w(ml,wz, s0) , (18)

where r, f and w are: the position vector of a fixed material point located on the
axis of the beam, the position vector of the projection of a selected point on the
plane arisen from a rigid-body rotation of the transverse cross-section cutting the
undeformed beam, and the warp vector normal to the rotated plane, respectively.
Warping of the transverse cross-sections arises as a result of twisting, bending
and shearing of the beam. The rotated material plane is not perpendicular to the
axis of the deformed beam because of shearing.

We shall deccribe the geometry of the deformed beam in a local coordinate
system (0. X™) arisen from a rigid-body finite rotation of the original local system
Do is of this system is made up of the orthonormal vectors {em},
connected with the rotated plane (treated as the transverse cross-section of the
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deformed beam). The basis {e;,} may be obtained from a rigid-body rotation of
the basis {en}-

Thus, at every point of the beam axis there exists an orthogonal transforma-
tion [52]

em = Q(so0) €m , (19)
such that
Q =coswl +sinw(k x 1) + (1 — cosw)(k ® k) (20)
or ,
Q=cosw1+§12—w(w><1)+1—:£§—s—ui(w®w), (21)

where w = wk, k is the versor of rotation axis, w is the angle of rotation, 1 is the
unit tensor.
In the basis e, we have
w = wigi y (22)

and then, according to (19) and (20), the components of the tensor Q in the basis
e, are given by the matrix

QV] =
cosw+w21 cosw, _w3si2w+wlw21—£osw’ w2+sizw+wlw31——<§su
w3+Sigw+w2w1 1-505(0’ cosw+w21 cosw’ _w1+sinw+w2w31 cosw (23)
_w2+sigw+w3w1 1—:)osw, w1+sinw+w3w21 cosw’ cosw+w21 cu?sw
and
det Q =1, trQ =1+ 2cosw, QT =-qQ. (24)

Since |k| = 1, |w| = w, we deal with three independent parameters determining
the matrix [QY].

One should notice that eie; # ezey This means that the angles that the
principal axes of inertia make with each other before and after the deformation
are not identical, unless w; = ws.

By the hypothesis about the in-plane undeformability of the cross-section du-
ring deformation of the beam [%| = |%|, the coordinates (z!,2?) and (z§,z3)
are the same, though related to the basis {ei} or {e;}, respectively. As a result
of deformatlon the axis of the beam curves and elongates Due to shearing the
vector e3 tangent to the deformed axis differs from the vector ez normal to the
conventional transverse cross-section of the deformed beam. The vector e} de-
termines a plane additionally rotated with respect to the plane of the transverse
cross-section. It is given by the formula

dr
* TRt 2
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where r = ro + up and up = ug’ €, are the vectors of position and displacement
of a material point located on the axis of the beam. Using relations (9) we obtain

el = g e; (26)

o

Using (11), we may represent the components g* of the vector e} in the basis e;
as

1 ducl) 2 / 3
Joaii— o ug (70 + ) + ugko cos o
9 dU(Q) 1 / 3 :
(R — _dso + ug (10 + Yp) — ugkosindp , (27)
3 dug il 2
g = 1+ SR ugko cos Yo + ujro sin vy .
50

The cosines of the angles that the vector e3 makes with the vectors of the rotated
basis {e,} are

ele
oS B, = -1

" =(¢'/9) ei Qem  g=le}|. . (28)
lesl

Hence, the vector e} may be written in the basis {e,,}
€3 = gcos fmem - (29)

We may determine the spatial derivatives of the basis using the transformation
(19) as
de,
—_— = em+ =
dsg dsg i Q dsg
The tensor of rotation Q, given in the basis €, is the function of the place
a material particle located on the axis of the beam occupies in space. It may be
thought of as a line in the space SO(3) of rotation group of ortogonal tensors. To
determine the tangent to this line we need to differentiate the relation

QF Qe (31)

Introducing a skew-symmetric tensor Ag defined by the relations

den, _ dQ

(30)

d 5
AO:QTﬁ, ARy (32)

we get
dQ

o = Qo (33)
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The tensor Ag from the manifold so(3) of skew-symmetric tensors, written in the
basis e, represents rotations of a material line. It may be brought to the form

AO = AO %l 5 (34)
where [52]
dk dk dw
e e = oy st
Ao sinw e + (1 — cosw) P x k + 7
or (35)
A % sinw <dw d_wg) 1—cosw%_xw+d_w£
Bt o= w dsg dspw w?  dsp dsg w'’

is an axial vector. Applying the formulas (9) and (33) to (30) we obtain

de,, de,,

ES—O-:Kem or d—SO:K)XQm (36)

where
K = Q(A¢+Ko)QT = A+ QKoQT,
A = MO (37)

is a skew-symmetric tensor in the basis {en}. This tensor describes the axis of
the deformed beam. Its axial vector may be represented as

and hence i
Kim = §6mjk: (ej,3 ek) S (39)

The base vectors at an arbitrary material point of the deformed beam may be
determined by differentiating the position vector of this point with respect to the
coordinates ™. The position of this point follows from the general formula (18),
where X = 2%, (o = 1,2). To make its description precise we need to fix the
warping vector w. We assume that it is normal to the conventional transverse
cross-section. Then

w = w(z!, 2%, 2%)es , (40)

where w is the amplitude of the distribution of warping. With this choice we have
az = eO: + 1-U7a e3 )
a; = el+rx(X+w)+uwes, . (41)

where (-) o = g—xa, (-} = g—s? al, = 0x/0z§. Since Kk = K™ey,, the latter formula

may be rewritten as follows

a3 = (gcos B — k*z§ + wk?)e; + (gcos By + K2z — wr)ey +
+(gcos B3 + w' + k'z2 — K2x))es . (42)
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In the technical theory it is also assumed [44] that the amplitude of warping is of

the form
2

w(z, 22, s0,t) = Z ox(zd, 23)0x(s0, 1) - (43)
A=0

The functions 0)(sg,t) are unknown functions of the distribution of warpings in
the cross-sections along the axis of the beam arisen from twisting and shearing.
) are prescribed functions of distribution of warping in the cross-section under
consideration and are defined in the local coordinate system connected with the
cross-section of the undeformed beam. Another assumption made in dynamics is
that the function g is determinable from a static problem for pure twisting of a
prismatic beam, and the functions ¢; and @9 from a static problem for bending
of a beam under transverse forces [44]. With these assumptions we may write

dw .
5o =) " (90050x + a8'N) (44)
A=0
where 5
* O
O Eaﬁ l’g 8_:13(01 (45)

after we use the transformation formulas (2).
If the constraints on warping of the transverse cross-sections are neglected, it
is assumed that 6} =

3. Measures of deformation

The gradient of deformation

L el Wi 46
B ®e3=ay X e, + a3 ® €3 (46)

furnishes full information about the strains and rotations of the material line
elements in the neighborhood of a material point of a deformable body. In the
above formula xp and x are the position vectors of an arbitrary material point in
the undeformed and deformed configuration, respectively. In our case of a beam
treated as a one-dimensional body, this gradient may be brought to the form

F=Q+e3®@Vw+[(ej—e3)+rx (X+w)+uwes]®@e;z- (47)

when we use the relations (18), (40) and (41), and (36). Alternatively, we may
write

F=Q{1+ e3® Vw + [(QT6§ - %3) + QTKZ X ():g + V\g) + w’%g] ® %3} (48)
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where

ow

Q:e’i®§ia vw:3x8 €a;

X0 =z(¢a, W=wez. (49)

i = i T L
Since X +w = Q" (x —r), we must also have

F=Q{1+e®Vw+[(Q7e;—e3)+Q 'k x QT(x—r) +w'es] ®es}t. (50)

The tensor of rotation Q appearing in the above formulas determines the mean
rotation of the transverse cross-section of the deformed beam. It does not account
for the local rotations of the material points connected with the deformation of
the beam axis nor for the warpings in these cross-sections. The vectors occurring
in these formulas

€e=ej—e3 or s =0 e s el = €3 (51)
and tensors
A=K-QKoQT o A;=QTKQ-K,, (52)

describe strains of the beam in the basis {e,;,} or the basis {em}, respectively.
They describe stretching, contraction and alteration of curvature. They were sug-
gested by Reissner [27]. The vector € determines the difference between the vector
tangent to the axis of the deformed beam and the vector normal to the transverse
cross-section of this beam.

Other measures of deformations are also introduced in mechanics of deforma-
ble body. For large strain problems the Green tensor is often used

E= %(FTF — (53)

where F is the gradient of deformation. For a body of initially complex geometry,
to grasp alteration of strain resulting from loads, one may introduce a relative
measure of deformation :

E=E-Eg . (54)

where 4
Eo = §(F§FO =1} (55)

Eo and Fp describe the initial geometry of the body. In the case of small strains
it is convenient to use a symmetric tensor of strain

I = %(r LT (56)

where
r=qQ'r-1, (57)
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is a tensor of deformation introduced by Jaumann [54].

For the model of beam considered in this paper the gradient of full deformation
is defined by the formula (48).

On the other hand, the gradient of the natural geometry of the beam

ox
= 81?0 =3 ®e¢;. (58)

Then the Green tensor of relative strain is

Fo

i :
E=;lajaj -aiglle®e) . (59)

Using the formulas (18), (41) and (42) we may write the components of this tensor
in the material basis as

~ 1
Bag = SWal,p, fo, B =71,2)
. 1
B3 = Tig+ 5[(9 cos B3 — 1) — zgk” + gk +walwy ,
s 1
Eypy = T3+ 5[(g cos B3 — 1) — zjk® + z3s' +wslws , (60)
X 1 1
Es3 = Iiz+ —2—(9 cos By — zakd — wr?)? + 5(9 cos Bz + x5k — wel)2+
1 1
— Lebr + PR - Leahed ey,
where
1
Ty = 5(9 cos By — 23R>3 + wk? + wi),
* 1 13 1
Iy = E(g cos B2 + Tpk® —wk' +wpo) , (61)
I3 = (geosfs—1) —zlR® + 22k o',

are the components of a symmetric relative Jaumann tensor and & = x* — k.
Proceeding further we also need to work out a model for warping of the
transverse cross-sections.
In the case of constrained twisting of a beam, pre-twisted in the natural state,
Dzhanelidze’s hypothesis [24] is used. According to this hypothesis the amplitude
of warping is governed by the following relation

w = Lp(ﬁo)/%?’(so,t) ; (62)

where ¢(Xp) is the Saint-Venant twisting function defined in the local coordinate
system — a system connected with the transverse cross-section of the beam.
Hence

0

w3 =9oR® + p(20)(R3), () = el
S0

(63)
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where

" 0
Op = € woﬁ 3—;’%, (CV)B = 172) s ) (64)

Taking into account the foregoing assumptions, and assuming additionally that
the warpings of the cross-sections are small, the components of strain I'},s may
be represented as follows

[eo -+ (? = a:tl))fc?’] ; (65)

o= Sla+ (g -2,
2

1

2

1
'y = =
23 D)
33 = €= apR” +afR! + 0hepR’ + p(R°) .
They are functions of generalized strains

€' = gcos B — Om3, K™, (B3 (66)

where 03 =0 for a = 1,2, 633 = 1.

4. Constitutive equations

Determination of the resultant stresses arising in the material of the body,
compatible with the model of deformation assumed, is an important issue. A lot
of attention was devoted to this question in the theory of beams [35, 53].

For elastic isotropic and homogenous material the strain energy measured per
unit volume of the undeformed body is most often assumed to have the form

Yo = %Atr E + ptr (E?) . (67)

Then the symmetric Piola-Kirchhoff stress tensor is

= =y : .
RN TR (68)
OE
where A and p are the Lame material constants. Analogous relations apply to the
tensor of strain I'* and the symmetric stress tensor 7*, introduced by Jaumann.
The relations written above are valid for sufficiently small strains, but do not
exclude occurrence of finite rotations and displacements for sufficiently slender
bodies. In the case of beams undergoing small strains it is assumed that
Tas = 2GT T53 = ET33, (69)

a3
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where G and FE are the Kirchhoff and Young moduli, respectively. Then, the
strain energy for beams may be expressed as follows
1
Wo=3 [, [26T%Ths + BT%)’] 44, (70)
2207,

where Ag is the transverse cross-section of the beam in the natural configuration.
Taking into account (65) and (70) one obtains

\IJO = \IIO (665 /%67 (’:"’3)/) ) (71)

as the function of generalized strains. Then, constitutive equations for internal
forces in the material description are

Qizg—\?, Miz%, Bz%. (72)
Hence we get
Q1 = GAgq,
Q2 = GAé,
Qs = E[AS+ iR} — Sok? + 853 + Jp(R] |
My = E[S$i€+ R — JuR® + 8hJ1R + hp(RYY] (73)
My = E[= S} = J1aR! + Tk — 9JaoR® — (R ,
Mypoes BT R0 %E[Jgeg + J1oRkt — Jopk? + I peR> + Jg«p(fi‘"’)’] i3
B = B[S+ ik — ook + 0T + @]

where A, Su, Sp, Ju, Jags Jos Jaor Joor Jap, Jop are geometrical characteristics of
the cross-sections transverse to the undeformed beam defined in [44], see (117).
The forces @, are the transverse forces, @3 the longitudinal force, M, are the
bending moments, M3 is the total twisting moment and B is the bending-twisting
bimoment.

Relations for the transverse forces @, do not account for the decrease of
stiffness due to nonuniform distribution of the shearing stresses in the transverse
cross-sections of the beam. To include this effect it is necessary to consider warping
of the transverse cross-sections caused by shearing. To this end the following
hypothesis is assumed [44]

w = ¢1(%)eg(s0,) + 2(X)ed (50, 1) (74)

where o, are bending functions of a prismatic beam.
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To simplify considerations we shall confine attention to a prismatic beam
undergoing merely stretching and shearing. For small strains the components of
the deformation tensor take the form

e = (1 22)4+ (32)4.

T = (goa)b+ 1+ 8“’2)6’ (75)

Igs = 60+<P1(€o)+ 2(5)" -

Using (70) we determine the elastic energy

Wo = Wo(eh, (€5)") (76)
and the resultant internal forces
0¥, A
= —, H,=——. e
Q’L 866 ) (e 8(68), ( )

They are given by the relations

Q= GA(]{:HE(l) -+ k1258) )
Q2 GA(kmeé = k225%) )
Q3 = EAES ) (78)
Hi = E[Spe+ Jpon () + Joion(d)] '
2

Hg = E[Stpzeg i J«pupz(e(l)), + szwz(fo)l} )

where

s 1 0pq a(pﬂ
ka,@ e AO ~/Ao (5an+ a%( )(5 % 8Xk)dA7 (79)

are the coefficients of shearing and

Bl = / i ol / SxpRUA (80)
Ag Ao

are the geometrical characteristics of the transverse cross-sections associated with
constrained shearing.

The algorithm of determination of the bending function and the geometrical
characteristics was presented in [44]. The forces H, are self-equilibrated moments
of constrained shearing.

Introducing the vector of generalized forces

H— COl (Qi,Mi,B) P (81)
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and vector of generalized strains
v = col (b, &b, (7)) , (82)

and using the relations (73) and (78), we may write the following constitutive
relation

valid Within the kinematics assumed and small strains. One should notice that in
the case considered here the stiffness matrix K is symmetric

Tk11GA k1sGA 0 0 0 0 0
ko1GA kyeGA 0 0 0 0 0
0 0 EA ES -ES; I EJ, ES,
[K] = 0 0 ES1 EJii —EJio Q%Ejlg EJhp . (84)
0 0 —ES; —EJy EJy —9)EJyy  —EJa,
0 0 Y EJ, SEJ, —9EJsy Gy +IFE Ty 9hEJp,
B 0 EBS, iBh, .—EJ LT Bl

5. Equations of motion

5.1. Internal forces

To derive equations of dynamics of a beam subjected to the action of surface
and mass forces, we need to determine the internal forces arising in its transverse
cross-sections. We derive them from the variation of work measured per unit
undeformed volume performed by the stresses [54]

T / TB. U4V, (85)
B

where TP is the Biot stress tensor and U is the stretch tensor; symbol : denotes
full contraction of two tensors. For the beam model under consideration, by (50)
and (51), we have

U=QTF=1+¢®Vw+[eo+rox QT (x —1) +uw'esl ®es, (86)

where kg = QT k.
Taking into account warping of the transverse cross-sections, caused by twi-
sting and bending, and according to the hypothesis (43), we get

2l =
U = deg®e3+ [(m x Qf(x—r)]®es+ Y _ 66\pr(e3® es) +
A=0
2
+ > 60, I:SO)\,a (e3®eq) + @a(Ko X €3) + Ph(e3® tgs)} 3 (87)
A=0 .
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where (-) = 3=, (),a= afa . Since

o

TP =T ®¢a+T{@gs, (88)
by (85) we get for the unit undeformed length
SWo = / (Néeo + Mok + M,600 + G166, + G266; +
Ao
+ Bé&Y + H1607 + H260%)dA , (89)
where

N = T5 dA = Nee,
Ao

M =/ QT (x— 1) x T§] dA = Mse,
Ao

IS
Il
o®

3 /A [SOO,aTa + 0o(TF x ko) + ¢6Tﬂ dA ,
0
Gy = & /A [e2aTE +oa(TF x k) + 4 TE]d4, (A =1,2), (90)
» .
B = 93/ woTE dA
Ap
Hye= tgg/ PATH dA .
Ap

These are material forces, defined in the undeformed configuration, valid for fi-
nite deformations. As is visible from the relation (89) for the variation of work
performed by the internal forces, the strain measures work-conjugate with the
forces N, M, M, Gy, B and H), are €p, k, 66y, 605, 66; and 86}, respectively.

The components of the vector N are the transverse forces and the longitudinal
force, of the vector M the bending and twisting moment, M, and B is the
moment and bending-twisting bimoment, occurring at constrained twisting, and
G and H) are the components of the transverse force and moment, respectively,
caused by constrained shearing.

In the case of a pre-twisted beam, the derlvatlve with respect to the distribu-
tions of warping appearing in (90) is equal to

0oy
i Sead 4 91
x 880 09,\ ) ( )

where o3 is given by the formula (45).
Introducing asymmetrical Piola-Kirchhoff stress tensor T? related to the Biot
tensor through the formula T® = QTE, one obtains

N = QTn, n— T(S) dA 5
Ao
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M = QTm, m=/] (x—r)xTidA,
Ao

M, /A (0,0 TS + 0(TS x ) + 4 TS| dA , (92)
0

i eg/ 0oTYdA .
Ao

Similar relations hold for the forces @) and H,, (A =1,2).

The spatial vectors of forces n and m act in the transverse cross-sections in
the deformed configuration. Their components in the basis {e;} are the same as
those of the vectors N and M in the basis {e}.

Upon introducing the Saint-Venant’s twisting moment

Op B
M, = _—— TordA 93
v T (8%:04 eaﬁ%{ﬁ) a3 ) ( )

one may represent the bending-twisting moment as follows
My = M, — Mz + 9B’ — eaptia /A oo dA , (94)
0

where

B:= / oiTE dA (95)
Ao

and g is given by the formula (64).
The relation (94) is a generalization of the well-known Vlasov’s relation [25]
to the case of finite deformations of a spatially pre-twisted and curved beam.

5.2. Equations of dynamics

We shall derive the equations of motion for the -model assumed using the
material principles of conservation of momentum and moment of momentum of
the three-dimensional continuum mechanics.

. 3 15
Div T%+ gobo = 0%, 5 x TV =0, (96)

17

where TV is the Piola-Kirchhoff stress tensor, by is the mass load and gg is the
specific density of the body, all related to the unit undeformed volume of the
body.

Using the definition of the vector of forces (92) n and the principle of conse-
rvation of momentum (96) we get

On oTY
eI —dAz—/ L by)dA X dA . 97
F 0, i ( ea T 8D 0) aE i ©oX (97)
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Applying the Gauss-Ostrogradsky formula we obtain

on dl
e 98
380+q+q = (98)

where

q= T n,d(0A), &= | oobodA, (99)
OAgp Ag

are the mass and surface loads, respectively, n, are the direction cosines of the
normal to the lateral surface of the beam and

2 / ook dA (100)
Ao

is the momentum measured per unit length of the undeformed beam.
In view of the definition of the vector of internal forces (92) and the principle
of conservation of momentum we must have

om 0 0x or
Sl . e TYdA = — x T9dA - — TIdA
05 Osp /Ao (e =5y Ao 050 e 0so G o 5
+ i (x — 1) x [oo% — oobg — T, 5] dA .
0

Applying the Gauss-Ostrogradsky formula and using (96) for the moment of
momentum we obtain the equation

om dh

R * Y % = —
+e3xXxn+m-+m pTE

101
5 (101)

e / [(x—1) x T%] - nad(84), M= / S % B A D)
aAo AO
are the loads from the surface and mass moments, respectively, and
h= oo[(x —r) X X]dA , (103)
Ao

is the moment of momentum measured per unit length of the underformed beam.
We shall now derive the equations relating the generalized forces with constrained
twisting. Proceeding in a manner similar as for the vector of forces n above we
obtain

0B

L ML DS = X dA 104
- s +b+0b eg/Aogocpox ; (104)

where

b=e; 0o Tona d(0A),  b=es / 00 w0 bodA , (105)
Ao
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are the bimoment and mass loads. The equation for constrained shearing may be
obtained in a similar way

oOH e s
—A—G,\+h+h:e3/ e, (106)
880 Ag
where
h=e3 / ox T o d(0A), h=e3 / 00 pxbodA . (107)
8A0 AO

The material form of the equations of motion is more convenient in a number
of applications. To obtain this form one needs to define the tensor 29 and vector
wy of the material angular velocity in the rotational motion.

‘QO = QTQ y wp X 1= QO ) (108)

where (-) = 2. Using the relations for forces and loads

n = QN, m= QMa ™ = QTB ) (109)
q= qua m = QﬁlOa q = QQOa m = Qﬁ]O ’
the equations of motion may be brought to the form
N s 3 ol
— +KoN+q+a = — +2l,
880 ot
oM oh
8—50+K0M+(€o+%3)><N = -(T%—O-i-ﬂoho,
0B i k)
— =M, +b+b = e3(—=2+ 20k} 11
330 <P+ + %3( Ot + 29 O)a ( 0)
aH}\ = = akg)\ 0
a—so_G)\—i-h—i-h = %3(_8T+90k>\).
where, according to (37), +
Besides
ly = / Qovo dA, hy = / [Qo(% +w) X Vo] dA,
Ao AO
L / ek e BT 6 (112)
Ao
where

vo = Vo+ 20X + (v +w)es,

Vo = ﬂie, u=r—ry, Ug = QTﬁ . (113)

o
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Using (114) and (43) we may bring the vectors of momentum and moment of
momentum to the form

2

-1g "= pg [AO(‘_/() + wo X Tp) + Sa(wo X ga) + Z S(p)\(é)\ + Orwo X 1)903] ;
A=0
2 2 _
hy = oo [Sa(ga X ‘—"O) e Z S(p)ﬂ/\(%{% X Vo) + Z JaLpAe)\(ga X %3)] e
A=0 A=0
2 5 3
+ 0o [J 0 Z JorOn + Z Jor0u0r0u(€a ®§a)] ol ¥ (114)
A=0 A,u=0
2 : 2
K = o [SLPA‘_’O + Jap, (wWo X €a) + Z Joron0u€s + Z Jorpufu(wo X %3)],
p=0 u=0
(A=0,1.2)
where
J = Jupea ®es+ Joes®es,
Jon = Jop\l€a ®e3t+e3®eal, (115)
and
Jap = €ap€pu [a, Tutu A4, Jo = 4y TaZa dA,
Japs = [, Tatpr dA, Joren = Jao PrPudA, (116)
Sa = [4, TadA, Sps = Ja, PrdA.

The functions @) of distributions of warpings of the transverse cross-sections
are determined up to a constant. These constants may be determined so that
Sy, = 0. Assuming that the line of centers of gravity of the transverse cross-sections
coincides with the axis of the beam we have S, = 0. These assumptions simplify
the formulas (115) significantly. If the transverse cross-sections are additionally
bisymmetric, then Ju,, = 0.

6. Conclusions

We have developed a model of a finitely deformable, curved and pre-twisted
beam, accomodating the warping distorions of the cross-sections caused by she-
aring and twisting. The model is based on concepts of 3D material continuum. The
mechanical work of the beam is derived exactly from stress work of 3D continuum,
and provides-an exact identification of the resultant forces and conjugated strain
measures. The model incorporates the bi-moment, the bending-twisting moment
for the constrained twisting, and the moments connected with the constrained she-
aring of the beam. A generalization of the Vlasov formula for the bending-twisting
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moment to the case of finite deformations of curved and pre-twisted beams is gi-
ven. For the constrained warping the decrease of stiffness of the beam, due to
non-uniform distribution of stress in the cross-sections, is naturally accounted.
The dynamics equations for the 1D problem, in particular for the bi-moment, and
moments connected with constrained shearing, are derived. Properly invariant 1D
constitutive relations are developed within the framework of linear elasticity.
The proposed formulation can be applied to a broad range of practical problems.
For instance, the non-linear treatment of the flexible beams is the basis for analy-
sis of the helicopter, windmill and turbine slender blades, as well as of the rotors
with flexible shafts. The non-linear geometric effects are of special importance in
dynamic analysis of flexible rotating structures.
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Geometrycznie nieliniowe ré6wnania przestrzennie zakrzywionej i
wstepnie skreconej belki z uwzglednieniem spaczenia przekrojow
poprzecznych

Streszczenie

W pracy przedstawiono réwnania ruchu jednowymiarowego modelu ciala sprezystego. Wyprowa-
dzono je z tréjwymiarowej teorii osrodkéw ciaglych i przy zalozeniu skonczonych deformacji. W modelu
uwzgledniono skrepowang deplanacje przekrojéw poprzecznych spowodowang skrecaniem i écinaniem
oraz wzajemne sprzezenie zginania, skrecania i rozciagania. Wzigto pod uwage skomplikowang geome-
trig ciala przestrzennie zakrzywionego, wstepnie skreconego i zbieznego oraz majacego niesymetryczne
przekroje poprzeczne.



