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VITALLJ GNESIN!, ROMUALD RZADKOWSKI?

Aeroelastic behaviour of the last stage steam turbine blades.
Part II. Coupled fluid-structure oscillations

This paper presents the partial integrated method which has been employed for aeroelasticity pre-
dictions of the long steam turbine blades. The approach is based on the solution of the coupled fluid
— structure problem in which the aerodynamic and structural dynamic equations are integrated simul-
taneously in time, thus providing the correct formulation of a problem. The ideal gas flow around the
blade row is described by the unsteady 3D Euler equations in conservative form, which are integrated by
using the explicit monotonous second-order accurate Godunov-Kolgan, finite volume scheme and moving
grids. In the structural analysis the modal approach is used. The natural frequencies and modal shapes
of the blade were calculated by using 3D finite element model. The coupled fluid-structure oscillations
were shown for 5 modes shapes separately and with taking into account the interaction of five natural
modes.

1. Introduction

Modern turbomachines operate under very complex flow regimes where a mi-
xture of subsonic, transonic and supersonic regions coexist.

Recent times the new approaches based on the simultaneous integration in
time of the equations of motion for the structure and the fluid are developed (Mar-
shal and Imregun [1], Bakhle et al. [2], He [3]; Moyround et al. [4], Rzadkowski
et al. [5], He and Ning [6], Bendiksen [7], Gnesin et el. [8-9], Carstens and Belz
[10], Gnesin et al. [11]). These approaches are very attractive due to the correct
formulation of a coupled problem, as the interblade phase angle at which the
stability (instability) would occur is a part of solution.

In the present study the simultaneous time integration method has been de-
scribed to calculate the aeroelastic behaviour for a three-dimensional oscillating
long steam turbine blade in the transonic gas flow. The coupled fluid-structure

nstitute of Problems in Machinery, Ukrainian National Academy of Sciences, 2/10 Pozhar-
sky st., Kharkov 310046, Ukraine

2Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdarisk,
Poland
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oscillations were shown for 5 modes shapes separately and with taking into acco-
unt the interaction of five natural modes.

2. Aerodynamic model

In the present work considered is the 3D transonic flow of an ideal gas thro-
ugh a space multipassage blade row. In general case the flow is assumed to be
aperiodic function from blade to blade (in pitchwise direction), so the calculated
domain includes all blades of the whole assembly.

The ideal gas flow around blade row is described by the unsteady 3D Euler
equations in conservative form, which are integrated by using the explicit mono-
tonous second-order accurate Godunov-Kolgan, finite volume scheme and moving
grids.

The aerodynamic model was presented in details by Gnesin & Rzadkowski [12].

3. Structural model

The structural model is based on a linear model, the mode shapes and natural
frequencies being obtained via standard FE analysis techniques. The mode shapes
are interpolated from the structure mesh onto aerodynamic mesh.

The structural part of the aerodynamic equations of motion can be unco-
upled by using the mode shape matrix and the modal superposition method (see
Rzadkowski [14], Gnesin and Rzadkowski [12]).

Boundary conditions from the structural and aerodynamic domains are exchan-
ged at each step and the aeroelastic mesh is moved to follow the structural motion.

4. Numerical results

The numerical calculations have been carried out for the long steam turbine
cascade. The important properties of the blade disc are as given below: the disk
inner radius: r, = 0.27 m, the bladed-disk junction radius: R = 0.667 m, the
blade length: L = 0.765 m. All geometrical parameters of the blade are presented
in Rzadkowski [14].

In paper [16] the individual stability of each mode in turn for a harmonic
oscillation with the assumed interblade phase angle is shown.

In this paper the numerical results of coupled oscillations for each of natural
modes at the IBPA values corresponding to the minimal values of aerodamping
coefficient are presented and next the interaction between five modes is conside-
red. The excitation frequencies were chosen close to the natural frequencies.

4.1. The coupled oscillations of the blade row when considering one of five
natural modes separately

The aeroelastic response of the blade row vibrating according to the 1°* mode,
the excitation frequency of 50 Hz and IBPA equal to —90 deg. is presented in Fig.
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1. In Fig. 2 the aerodamping coefficient distribution over the blade length at the
harmonic oscillations has been shown. The transfer of energy from the flow to the
blade (flutter condition) appeared from the root to 4/5 of the blade length and
the dissipation of blade energy took place in the tip blade region. The averaged
aerodamping coefficient over the blade length takes the positive value (D = 0.02),
that corresponds to the stability of the blade oscillation.

Mode 1
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Fig. 1. The coupled oscillations according to the 15¢ mode for two adjacent blades, IBPA= —90 deg,
d =0.155, t = 7/316 s.

All calculations were run from the very beginning for harmonic oscillations.
After some time, at the moment named as the started regime, there began the
coupled vibrations (the coupled fluid-structure interaction). Figure 1 illustrates
the response of two adjacent blades. The harmonic oscillation continued through
one period then the coupled vibration began. It can clearly be observed that the
amplitude of oscillations according to the 1% mode decay.

The logarithmic decrement (loddec), is defined as

LAy
0 = = In e
where n is the number of cycles; A; and A,, are amplitudes of the first cycle and
n-th cycle of blade oscillation.

In this case the logarithmic decrement is equal to 6 = 0.155.

The work coefficient for each of blades (four passages in this case) is shown in
Fig. 3a and for the blade row as a whole is presented in Fig. 3b. The monotonous
convergence of the work coefficient to zero demonstrates the dissipation of the
vibrating blades energy to the flow field.

The aeroelastic response of the blade row vibrating according to the 2”¢ mode
and the excitation frequency of 100 Hz and IBPA equal to 0 deg was calculated.

The aerodamping coefficient distribution over the blade length at the harmo-
nic oscillations is presented in Fig. 4. The averaged aerodamping coefficient for
harmonic oscillations according to the 27¢ mode is positive and equal to 0.09.
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Fig. 2. The aerodamping coefficient distribution over the blade length for the 1°¢* mode, IBPA= —90 deg.

The stability of the 2" mode is higher than of the 15 mode.

The modal coefficient change versus time for the coupled fluid-structure vibra-
tions according to the 27¢ mode is presented in Fig. 5. The first cycle corresponds
to the harmonic oscillations, the others to the coupled oscillations. The coupled
vibrations decay. The logarithmic decrement for this mode of vibration is equal
to 6 = 0.195. The work coefficient for the blade row as a whole is presented in
Fig. 6. The monotonous convergence of the work coefficient to zero demonstrates
the dissipation of the vibrating blades energy to the flow field. In Fig. 7 the phase
trajectory for the oscillations according to the 2"¢ mode is presented. The bold
ellipse corresponds to the harmonic oscillations, and the spiral corresponds to
aerodamping.

The aeroelastic response of blade row vibrating according to the 3"¢ mode,
the excitation frequency of 200 Hz and IBPA equal to 90 deg has been calculated.

The averaged aerodamping coefficient for harmonic oscillations according to
the 3™ mode is negative and equal to —0.25 (see Fig. 8).

The modal coefficient versus time for the coupled fluid-structure vibrations
according to the 3"¢ mode is presented in Fig. 9. The first cycle corresponds to
the harmonic oscillations, the others to the coupled oscillations. The coupled vi-
brations decay. The logarithmic decrement corresponding to this mode is equal
to 0:=10.2.

In Fig. 10 the phase trajectory for the oscillations according to the 2*¢ mode
is presented. The bold ellipse corresponds to the harmonic oscillations, and the
spiral corresponds to aerodamping.

The work coefficient for each of blades (four passages in this case) is shown in
Fig. 11 and for the blade row as a whole is presented in Fig. 12. The monotonous
convergence of the work coefficient to zero demonstrates the dissipation of the
vibrating blades energy to the flow field.

However, the flutter conditions appeared in the harmonic oscillations, the
blade response in the coupled vibration decreases. This fact can be explained in
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Fig. 5. The coupled oscillations according to the 24 mode and IBPA= 0 deg, § = 0.195, t = 7/316 s.
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Fig. 6. The work coefficient change at the coupled oscillations according to the 274 mode and
IBPA= 0 deg, t = 7/316 s.

the following way. The value and sign of the nondimensional aerodamping coeffi-
cient at the harmonic oscillations depends only on nondimensional aerodynamic
parameters of the flow field and blade oscillations law. So, the aerodamping co-
efficient characterizes the energy exchange between the flow and the blade. The
sign of the aerodynamic coefficient may be considered only as a necessary but not
sufficient condition for the existence of self-excited vibrations. The blade response
depends on the energy value transfer from the flow to the blade, and on the blade
kinetic energy at the coupled fluid-structure oscillations. If the value of transfer-
ring energy is much less than the blade kinetic energy at the coupled vibrations,
the blade oscillations after removing the kinematic excitation are damped.

The aeroelastic response of blade row vibrating according to the 4" mode, the
excitation frequency of 220 Hz and IBPA equal to 90 deg. is presented in Fig. 14.
The averaged aerodamping coefficient is equal to —0.1 (see Fig. 13).

In Fig. 15 the phase trajectory for the oscillations according to the 2"¢ mode
is presented. The bold ellipse corresponds to the harmonic oscillations, and the
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Fig. 10. The phase trajectory at the coupled oscillations according to the 37% mode and IBPA = +90 deg.

spiral corresponds to aerodamping.

The work coefficient for each of blades (four passages in this case) is shown in
Fig. 16a and for the blade row as a whole is presented in Fig. 16b. The monoto-
nous convergence of the work coefficient to zero demonstrates the dissipation of
the vibrating blades energy to the flow field.

As in the previous case the aerodamping coefficient in the harmonic vibration ‘
takes the negative value, that corresponds to the flutter condition, but in the co-
upled oscillations the blade response is damped (see Fig. 14) with the logarithmic
decrement equal to 0.195.

It should be noted that the blade displacements at the coupled oscillations
depend not only on IBPA and excitation frequency, but also on such parameters
as the mass flow rate and mass of the blade. Let us input into consideration the
mass ratio coeflicient y, which is defined as a ratio of blade density to flow density.

The change of modal coefficients for coupled oscillations of blade row ac-
cording to the 4* mode at the different mass ratio values is presented in Figs.
17. The decrease of mass ratio leads to the increase of the amplitude of blade
oscillation.

Figure 18 shows the logarithmic decrement change in function of the mass ra-
tio. The negative values of the logarithmic decrement correspond to the self-excitation
the positive value to the aerodamping, and the logarithmic decrement value which
is equal to zero, corresponds to the limit cycle oscillations.

The aeroelastic response of the blade row vibrating according to the 5* mode
and the excitation frequency of 320 Hz and IBPA equal to —45 deg. is presented
in Fig. 20.

The aerodamping coefficient distribution over the blade length at the harmo-
nic oscillations is presented in Fig. 19. The averaged aerodamping coefficient for
harmonic oscillations according to the 2”¢ mode is positive and equal to 0.3.

The work coefficient for each of blades (four passages in this case) is shown in
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Fig. 11. The phase trajectory at the coupled oscillations according to the 2% mode and IBPA = 0 deg.
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Fig. 13. The coupled oscillations according to the 3¢ mode, IBPA= 490 deg, § = 0.2.
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Fig. 15. The phase trajectory at the coupled oscillations according to the 4tk mode, IBPA= 490 deg.

Fig. 21a and for the blade row as a whole is presented in Fig. 21b. The monoto-
nous convergence of the work coefficient to zero demonstrates the dissipation of
the vibrating blades energy to the flow field.

In Fig. 22 the phase trajectory for the oscillations according to the 5"* mode
is presented. The bold ellipse corresponds to the harmonic oscillations, and the
spiral corresponds to aerodamping.

It is found that for each considered modes the coupled damping oscillations
are realised with approximately the same logarithmic decrement (§ =~ 0.195) but
with different frequencies of coupled vibration. Generally, the frequency of the
coupled vibration decreases from 40 to 50% in comparison to the excitation har-
monic frequency (see Figs. 2, 5, 9, 14, 20). So the damping time is inversely
proportional to the excitation frequency of oscillations.
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2. The coupled oscillations of the blade row when considering the interac-
tion of five natural modes

=

In this chapter we will consider the aeroelastic behaviour of the blade row
“sking into account the interaction of the first five natural modes. Calculations
were performed for the different interblade phase angles. Each of natural modes is
“aracterized by its natural frequency of oscillations, so taking into consideration
“ve modes, the total IBPA is dependant on the ith interblade phase angle IBPA;

IBPA; = IBPAZL
fo

wiere fo is the frequency corresponding to the common period of oscillations (in
wur case 20 [Hz]), f; the natural frequency for i-th mode. Tab. 1 shows the values
« total IBPA corresponding to ith interblade phase angles.

The energy exchange between the gas flow and vibrating blades at the harmo-
wc oscillations is characterized by value and sign of the aerodamping coefficient.

- e aerodamping coefficient distribution over the blade length for the total IBPA
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shown in Tab. 1, is presented in Fig. 23. It is interesting to see that the middle
blade sections is at the regime of aerodamping for all total IBPA values, while the
peripheral blade sections are characterized by the aerodamping or the self-exciting
vibration.

In Fig. 24 the blade aerodamping coefficients, averaged over the blade length
(Daver), in the middle blade length (Dp;qae) and the tip blade section (Dper)
versus the total IBPA is shown.

The averaged aerodamping coefficient for the harmonic oscillations according
to first five modes with the different total IBPA (see Tab. 1) is positive (damping)
(see Figs. 23-24).

Table 1
The interblade phase angles corresponding to 5 natural
modes
IBPA, deg
IBPA; -90 | —60 —26 +45 | +160
IBPA; (fi =40 Hz) | 180 | —120 | —50 90 —40
IBPA: (f2 =100 Hz) | —90 60 —130 | =135 80
IBPA3 (fs =200 Hz) | 180 120 105 90 160
IBPA4 (fs =220 Hz) | 90 60 80 135 —40
IBPAs (fs =40 Hz) 0 120 —50 0 40

The blade response is shown in Figs. 25-29. In Figs. 25 the aeroelastic blade
behaviour of each of the natural modes separately can be seen. During the time
interval from 0 to 14.64 s the harmonic oscillations take place, then after remo-
ving the kinematic excitation the coupled fluid-structure vibration continues. In
this case the oscillations are damped. In Figs. 26-28 the response of the blade ac-
cording to the 1-5 modes for different interblade phase angle is shown. Generally,
in the case of considered blade the interblade phase angle does not change the
response.

The logarithmic decrement of the coupled vibration for each modes as a func-
tion of the total IBPA is shown in Fig. 30.

The blade response for each of the natural modes is damped with the loga-
rithmic decrement, which does not practically depend on the total IBPA value.
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Fig. 23. The aerodamping coefficient distribution over the blade length for the first 5 modes.
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Fig. 24. The aerodamping coefficient versus the total IBPA.

5. Conclusions

In the present study, the simultaneous time domain method and the modal
superposition method have been used to determine the aeroelastic stability of the
cascade.

It is shown that the blade response for all considered regimes is damped.

The interaction between the natural modes leads to the practical independence
»f damping for each mode from IBPA value.

The interaction between the natural modes leads to different distribution of
the aerodamping coefficient along the blade length in comparison to distribution
‘or the particular mode shapes.

The sign of the aerodynamic coefficient may be considered only as a necessary
sut not sufficient condition for the existence of self-excited vibrations. The blade
response depends on the energy value transfer from the flow to the blade, and on
the blade kinetic energy at the coupled fluid- structure oscillations.

The calculation of the damping coefficient is very important from the forced

“bration point of view, because generally blades are design out of resonance.
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Fig. 25d. The coupled oscillations according to the 4th mode, IBPA=—90 deg.
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