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Thermodynamics of Rapid Non-Equilibrium Expansion of Two-Phase
Media

The dynamics of thermal processes in non-equilibrium wet-steam flows has been analysed on

‘== basis of a general model of multiphase media behaviour. The governing dynamic equations

~zve been derived and a method of determining additional exergy losses due to non-equilibrium

=7ects, based on an introduced concept of predicted entropy increments has been suggested. An
snalysis of flow choking and methods of defining the critical parameters have been presented. Two

computational methods have been developed and calculations of non-equilibriun flows around a pro-
Sle have been carried out.

n

1. Nomenclature

sound velocity, in general,

»frozen flow” sound velocity,

sound velocity at zero frequency,
sound velocity at infinite frequency,
specific exergy per mass flow unit of the
mixture,

specific heat at const. pressure (for gas
and liquid respectively),

coefficient in eq. (4.20),

flux of thermal energy per volume unit,
thermal energy flux density (referred
to droplet surface unit),
cross-section area per mass flow unit
of the mixture,

droplet surface area per mass flow unit
of the mixture,

mass flux content (for gas and liquid
respectively),

coefficient in eq. (4.20),

specific heat of evaporation (condensa-
tion),

specific enthalpy (for gas and liquid,
resp.),

—
|

m,m’
N

coefficient in eq. (4.20),
coefficients in eq. (4.17),
coefficients in eq. (4.21),

— mass transfer coefficients in eq. (3.9),

droplet concentration

heat transfer coefficients in eq. (3.9),
mass force per volume unit,

static pressure,

time derivative of the pressure,

heat flux per volume unit,

heat flux density (referred to droplet
surface unit),

gas constant,

drag coefficient in eq. (3.13),

specific entropy (of gas and liquid resp.),

— specific entropy per mass flow unit

of the mixture,

’predicted” entropy values per mass
flow unit of the mixture,

absolute temperature (of gas and liquid
resp.),

saturation temperature,

time,
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388 'A. Konorski

— velocity deviation,

o — entropy source per volume unit,
v, v/ — specific volume (of gas and liguid resp.), @ — droplet surface area per volume unit,
w, w — absolute velocity (of gas and liquid ¥ — steering functions in eq. (5.19),
resp.), @ — entropy source per mass flow unit of
x — path coordinate, the mixture,
Y — mass flux per volume unit, w* — predicted” entropy source per mass
y — mass flux density (referred to droplet flow unit of the mixture.
surface unit),
o« — dimensionless critical velocity after Subscripts
eq. (6.20), A — active period,
B — critical pressure ratio, d — dissipation at the wall (“friction”),
A — finite increment, e — external forcings (friction included),
J,0" — deviation from saturation temperature ee — external forcings (friction excluded),
(for gas and liquid resp.), K — critical flow conditions of the mixture,
¢ — exergy loss coefficient after eq. (5.23), Kg — critical flow conditions of the gas phase,
k — isentropic exponent m — ordinal number of the droplet fraction,
1 — dimensionless critical velocity after eq. n — number of droplet fractions,
(6.21), R — relaxational quantities,
u — root of eq. (4.17), S — saturation (equilibrium),
p — droplet radius, 0 — leading values.

2. Introduction

Thermodynamical problems of multiphase media flows are associated with many scien-
tific and technological areas. One of their important application concerns the wet steam flow
in LP-steam turbines of both conventional and nuclear power plants.

The properties and the behaviour of wet vapour, which is a heterogeneous medium,
differ essentially from those of a homogeneous one-phase medium. Hence there arises
a necessity to examine the specific properties of thermal processes in such a medium and to -
develop appropriate calculation procedures.

The literature on this subject offers several treatments of various aspects of wet vapour
flow. However, the generally adopted methods of approach are mostly insufficient for
the exact description -and calculation of the run of thermal processes in a wet steam flow.
This is due to the occurrence of non-equilibrium effects in the medium; a considerable
relative rate of processes (e.g. rapid expansion) makes these effects particularly important.

This paper offers a brief presentation of the author’s approach based on some of his
previous works on the dynamics of thermal processes and multiphase flows ([6, 7, 8, 9, 10,
11, 12, 13)]. The two-phase medium will be considered here as a dynamic system subject to
external forcings (disturbances), the action of which causes transient states of internal non-
-equilibrium in the medium. The resulting follow-up processes will be examined with the
purpose to describe their regularities and to develop effective methods of their calculation.

The applications of these methods lead to the following tasks: predicting the time-run
of rapid thermal processes in wet vapour flows, determining the choking flow conditions
and the critical cross-sections, calculation of the additional thermal losses due to internal
non-equilibrium in the medium, dimensioning of the channels and nozzles for two-phase
flow.
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3. The Non-Equilibrium Model of a Two-Phase Flow
3.1. General Assumptions

The medium in question is wet vapour of an arbitrary substance consisting of a gaseous
phase (which is the carrier component of the medium) and drops of various dimensions
and physical parameters. Groups of drops having equal diameters and parameters, will be
called fractions of the liquid phase. Each of the sub-systems (phases or fractions) is consi-
dered as physically homogeneous and its thermal state will be described by means of mass-
average parameters.

Drops of liquid are assumed to be spherical and incompressible, their specific volume
to be neglected against the specific volume of the gaseous phase

v' <. (3.1)

The influence of capillary components on the thermal parameters will also be neglected.

A stationary one-dimensional flow of this medium through a duct of varying cross-
section area will be considered. In accordance to the one-dimensional character of the
flow, the influence of the boundary layer dissipation (“‘wall friction’) will be taken into
account as an appropriate combination of the exchange of heat and mechanical work with
fictitious outer sources.

3.2. The Method of Process Dynamics Description

The two-phase medium described above will be treated as a dynamic system subject
to external forcings working at given time-rates. As for practical reasons the forcings
are acting upon the gaseous (carrier) phase, the number of forcing functions which may work
independently of each other, is connected with the number of free parameters defining the
state of this phase.

A two-phase medium at rest may be subject to the action of two forcings acting simul-
taneously, a pertinent combination of which can bring about any physically possible
process. These two forcings may be chosen to be the pressure variation and the variation
of heat supply to the medium, thus defining two important particular cases:

— the adiabatic process (zero heat supply),

— the isobaric process (no pressure variation).

In a one-dimensional channel flow with the state of its gas phase determined by three
variables (velocity included) one more independent forcing may act. As this forcing will
be chosen the exchange of mechanical work with an external source represented by an
external mass force acting upon the gaseous phase.

Another technically important way of defining forcings consists in the choice of the varia-
tion of cross-section area of the duct as a forcing function (the other forcings being the
external heat supply and the action of the external mass force).

The forcings working at finite time rates upon the gaseous phase cause transient states
of internal non-equilibrium which consist in differences of thermal and kinematical para-
meters between the gaseous phase and the liquid droplets. This, in turn, leads to the oc-

wence of the irreversible internal mass-, energy- and momentum transfer fluxes between
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the phases acting towards equilibrium. The variations of these fluxes with time depend on
the structure of the medium (i.e. the size and concentration of the droplets) and on the
momentary values of the parameter differences between the phases. Thus the run of the
resulting follow-up process will be determined both by the course of interaction between
the phases and by the time-run of the forcings. Therefore in the description of the transient
processes in a multiphase medium the quantity of time appears as an independent variable
(unlike to the “thermostatic” processes where any instantaneous state can be fully determ-
ined by means of the leading thermal parameters only, with no relation to time).

In the particular case when none of the forcings is acting the medium undergoes a relaxa-
tion process, '‘proceeding asymptotically towards equilibrium.

If the forcings act upon the medium during a finite period of time, at the end of this
period the medium will generally be in a non-equilibrium state; then a relaxation process
will start. Hence the whole process — the result of the action of forcings on the medium —may
be divided into an active period and a relaxation period. Accordingly the resulting
changes of parameters at a given moment may be regarded as consisting of an active and
a relaxation component.

The deviation from thermal equilibrium occurring in each sub-system (phase or droplet
fraction) will be expressed by the difference between its actual temperature and the saturation
temperature respective to the actual value of pressure; to describe the kinematical deviations
velocity differences between the gas phase and the respective droplet fraction will be used

O— K~ o 0L o We—ws (3.2)
tform—1.2 = n)
Thus the state of the flowing medium, containing # fractions of liquid droplets will be
defined by the set of parameters:
@B g g 0D 0 (3.3)
In this set of (34 3n) parameters there are (I+2n) non-equilibrium parameters.

We shall assume that the values of deviations from equilibrium are small compared to
their respective basic values

i/
m

um

<k <1, <l 3.4)
w

S!

|6
L.

Balance equations will be written on the basis of mass flux contents of each of the com-
ponents (phases, fractions); allowing for velocity differences between the components
these mass flux contents are not identical with the mass contents of the respective com-

ponents occupying a fixed volume of the duct.
For the mass flux contents the obvious relation is valid:

Y gnt+g=1 3

(5]
h

and the total surface area of drops belonging to the m-th fraction — per mass flux unit of the
two phase mixture—is:
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oy (3.6)
o

\ mereas the concentration of these drops i.e. the number of drops per unit volume of the

Shr e
e 3.7)
4rp,, g v e
w
.= the total area of drops of the m-th fraction per volume unit of the duct:
3g.u |
2 . (3.8)
Pm g ¥ U
el
w

3.3. Transfer Processes Between the Phases

By virtue of the assumptions (3.4), which are satisfied within a wide range of cases of
-=chnical flow processes, the possibility of spontaneous condensation may be excluded,
25 this kind of condensation practically occurs in strongly subcooled vapour only. Con-
sequently, heat- and mass transfer processes between the phases will take place on the surface
of the liquid drops. '

The heat- and mass flux densities (fluxes per unit area), directed towards the gas phase,
are

V= 0Lt IR0, =10, 1,0 9

on the basis of the author’s previous papers ([7, 8]), where also the coefficients used here
have been calculated; the density of the thermal energy flux is then:
Taking into account eq. (3.8) the internal fluxes of mass, heat and thermal energy per
unit volume of the duct (connected with droplets of the m-th fraction) may be written:
Ym=@mym7 Qm:(pm qm! Em=¢1nem (3'11)
and the total internal fluxes per unit volume:

¥y 050 E= Y B (3:12)

Similarly, the force (representing internal momentum transfer between the phases) ex-
erted by the droplets of the m-th fraction on the gas phase in a volume unit, will be ex-
pressed as a linear function of the respective velocity deviation

P g (3.13)

m

and the total internal force
PEoY P (3.14)

m
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The forms of the transfer equations given above are in accordance with the methods
used by the thermodynamics of irreversible processes in assessing the transfer fluxes as
linear functions of deviations from equilibrium. The mass- and heat transfer are coupled
phenomena, each of them being controlled by both deviations from thermal equilibrium,
while the momentum transfer is a separate process. Using appropriate values of transfer
coefficients the above equations are valid for both molecular-kinetic and contineous-
medium transport situations.

4. Two-Phase Flow Dynamics
4.1. Flow Equations

For a one-dimensional flow of wet steam subject to forcings consisting in pressure varia-
tion p(t), external heat supply Q,(¢) and external force action P(¢) working at arbitrarily
given time rates a complete set of equations governing the run of the flow process will be
written down. The conservation equations for the gas phase flow are:

d [w d (w¥\ dp ]
— =Y, — |+—=Yw +P+P,,

dx\ v dx \ v dx |
i i e “ (o
—|—(i+= ) |[=Y i+ = |+ 0+ Q. +(P+P)w,
dx| v 7 : 2

and the conservation equations for a single drop

d [4np’
it (o),
d [(4rp® i d (4np?
——w | + =) —w— | — ] =0, 4.2}
dt < 30’ >m (N)m dt < 3 >,,, (
3 d (4np’
ce e e dnpte =0,

(torom— 1 20 p)

In addition, the state equation of the gaseous phase and the Clausius-Clapeyron
equation with regard of (3.1) will be needed

PU—RT (43
vs Ty
4= dp (44

Enthalpy increases will be treated as:

di—edls di'—cdT’ (4.5)
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As the flow is stationary the relations are valid (for the gas and liquid flow respectively):

d d d d
e e (46)

S e e
de i d i
Accordingly the action of forcings may be given as functions of time or of the channel
path coordinate as well.
Using the above equations and the relations from chapter 3 a set of equations governing
the flow of the two phase medium may be written in the form:

dw 1
LR o r 4.7
a vT
s 4.8
ik . @
do v, cT.
— =160 n Tho Hlle Ihee | (4.9)
57 C[Z nt 2 Pty m+( h>p+Q}
dol Ly T
e e ke e (4.10)
dic ¢, h
du,, g Z =
W= _Us[armum‘l‘ j;l i'juj+;p—Pe:| ) (411)
dgy
In_ 30 9" ot 67 . ), (4.12)
o Do
dpm 30 dgm (4.13)

i g dr
(where m—1.2 . n).

The last equation (4.13) follows from the assumption made before, that mass transfer
takes place on the surface of existing drops only.

The formulae (4.7)-(4.13) represent a set of (3+4#n) equations, governing the variations
of as many parameters, (1+2n) of them being non-equilibrium deviations. As can be seen,
the variation of each parameter is controlled both by the existing state of non-equilibrium
represented by the deviation values) and by the current values of forcing functions. By setting
these values of forcing functions equal to zero a description of an isobaric-adiabatic relaxa-
tion process would be obtained.

As a consequence of the linearization of the expressions for the internal fluxes and of the
coupling between heat-and mass transfer processes, the variation of any thermal parameter
depends on both deviations from the equilibrium temperature whereas the change of the
kinematic parameters is controlled separately by the velocity-deviations.

Having determined the run of the flow parameters after the equations (4.7)-(4.13)
the value of the cross-section area as a function of the path-coordinate for a given quantity
of the total mass flow can be found, thus solving the problem of dimensioning the duct.
Using the values of flow parameters calculated as §hown above, the required area per unit
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mass flow of the two-phase medium at a given section will be:

Ty 00)
FO=R(= 3 g4() ((x))+ (i’)‘)

Obviously, this quantity is the reciprocal of the flow density of the two-phase (i.e.
mixture) flow.

The set of equations (4.7)-(4.13) makes also possible taking into account the influence
of energy dissipation in the boundary layer at the walls. This influence shall be modeled by
with drawing the motion energy (by means of introducing an appropriate mass force) from
the flow and supplying to the flow the same amount of heat. The values of external heat-
and force actions in eq. (4.7)-(4.13) shall be then treated as:

(4.14)

QezQee+st Pe=Pee+Pd5 (415)
where the wall dissipation (“friction”) terms satisfy the condition:
Qy=Pyw (4.16)

and the subscript ee denotes action from outside of the channel.

4.2. Dynamic Properties of Two-Phase Flows

The functions determining the run of the deviations from equilibrium values can be writ-
ten down directly as follow-up functions of the forcings if the respective differential equa-
tions are treated as equations with constant coefficients, which in the most cases is a reaso-
nable approximation. For example, the equations (4.9) and (4.10) shall be then written as a set
of (n+1) equations, governing the variation of the deviations from the thermal equilibrium:

dé v, il ]
— k n mér,n k n n 5+—— 1—-— ] e |’
P Y. Kt 13y mOm+ Kt 1+ 19 = [( I >P( )+Q:| L

m

B s g ;-
dt — MmmYm m(n+1) h
(for nr—122 1 == )
where the coefficients are:
3" (m'h+n : 30" (mh+n
kmm:_77 (‘—ﬁ> i km(n-f—l):—*, <* ) i
¢ p m ¢ p m
Skl 30/ (4.18)
v’ (g'n v
kn T e | e 2 kn n =roan
(n+1) gc<p>m (n+1) (n+1) ge ;<P>m ]
Let u; (i=1,2,...,n+1) be the roots of the characteristic equation:
(ki1 —w) 0 ky @)
0 (kaa—p) ... k, (n+1)
...................... =0 (4.19)

k(n+1)1 k(n+1)2 (k(n+1)(n+1)—ﬂ)l
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The run of each of the temperature deviations is expressed by a function of the form:

nttentid

5(1)—' Z Z Dl] j(O)exp#;t+

j=1 i=

n+1

- Z [Hufp(t)eXp( u,t)dt+J,,§Q(t)eXp( pitydt]exppt,  (4.20)

where D, H and J are coefficients.

From the form of this equation it can be seen that the state of non-equilibrium existing
in the medium at a given moment depends not only on the momentary values of appropriate
parameters, but also on all the values taken on by these parameters previously during
the whole past; hence any present thermal non-equilibrium state is a function of the history
Lf states of the medium. Taking into account the known initial values of the process it may
be also said that any present state of the medium depends —apart from the initial conditions
— both on the dynamic properties of the medium itself (represented here by the set of values
1) and on the history of external forcings (i.e. their time-run during the whole past).

This dependence on the past history has the character of a fading memory,
meaning that the influence of states further in the past is smaller than that of more recent
states. The said influence disappears in the limit case of infinitely remote states.

In a similar way the equation (4.11) yields a set of equations with constant coefficients
soverning the variation of deviations from kinematical equilibrium i.e. velocity differences:

e :
= ljuj—vs<£~—Pe>, (4.21)
- W

where the coefficients are:

Pt (4.22)

The analysis of the solution of this set shows that the state of kinematical non-equili-
brium also displays the property of history-dependence and of fading memory of states
existing in the past.

4.3. Relaxation Flows

After the active period of the process is finished i.e. after the forcings have ceased to act,
in the general case a relaxation process starts, proceeding asymptotically towards equili-
brium.

With the choice of forcings assumed above (pressure variation, external heat supply and
mass force) the relaxation process in question becomes an adiabatic-isobaric relaxa-
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tion. For determining the run of the deviation parameters during the relaxation period
equations (4.17) and (4.21), with the respective forcing values set equal to zero are valid.
The influence of “wall friction” is to be disregarded (as an external action upon the me-
dium).

The change of parameters of the medium effected during the whole relaxation period,
i.e. until full equilibrium is reached, may be determined by writing down the conservation
equations for the actual state of the flow (starting point of the relaxation) and for the fully
relaxed equilibrium flow. Making use of the assumption that the values of the deviation
parameters are small compared to the values of their respective basic parameters and setting
for the adiabatic-isobaric relaxation:

p=pr, T=(T)r; (4.23)

the values of the relaxation increments of the flow parameters are obtained as:
1 ’
(A9r=gr—g=--[c' 3 9,0, +cg0+3 X g un=3 (X gun)’], (4.24)
Aw=wp—w=— Y g, u, (4.25)

and the relaxation increment of the cross-section area required for a mass flow unit of the
two-phase medium (reciprocal of the flow density) calculated with the use of (4.14) is:

v. e T, el gl :
AF)p=F,—F=_° = Io5t Soheen Bl s e Lyl (4.26)

s

If, instead of the pressure variation, the variation of cross-section area has been chosen
as a forcing.function, another kind of relaxation process is to be considered: the adiabatic
constant-cross-section relaxation, producing respective values of pressure, tempera-
ture, velocity and mass contents increments.

5. Entropy Production and Exergy Losses
5.1. The Entropy Sources

In a multiphase medium flow the irreversibilities are caused both by boundary layer
dissipation and by non-equilibrium interaction between the phases, the latter cause being
specific to heterogeneous media. Basing on the principles of non-equilibrium thermodyna-
mics (e.g. [2]) the problems connected with two-phase flow irreversibilities will be treated
here after the methods suggested in ([9, 11]).

The Gibbs equations for the gas phase and each of the drop fractions (written in re-
ference to the mass flux unit of the medium) are:

d(gi)=gvdp+Td(gs)+(i—Ts)dg, }
(5.1)

d (g/i,)m = (g/l/)mdp o Tn/l d (g,s,)m S (l, = T,S,)mdg;n >

form=lt 27 0.
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With the use of the energy conservation equations for each sub-system and of the ex-
pressions for inter-phase actions given in chapter 3 the following form is obtained:

d

i (5.2)
7—;;1 E‘t (g,S’)m :fm[ym(l, = T,S/)m i em]
for m=12 =" n
The rate of entropy increase per mass flux unit of the two-phase medium is:
ds
i (g b Zv(g rs- (5.3)

Taking into account that after eq. (4.15) the heat supply consists of the wall dissipation
heat and of the heat supplied from outside of the channel, the entropy increase rate may be
expressed as:

%=w+€Tde+%UQee. (5.4)

Here the first term on the right-hand side denotes the entropy source (per mass flux
unit of the medium). i.e. the entropy production rate due to non-equilibrium interaction
netween the phases whilst the second term is caused by the dissipation in the boundary
aver (“wall friction”). These two terms are responsible for the entropy production in the
“ow thus defining its irreversibility. The third term is the entropy supplied to the flow

ong with the heat supply from outside.

The entropy source caused by the interaction between the gas phase and the droplets of
ne m-th fraction is:

1 1 l—TS i —T,s 99,
= o S et ab ey 1—,'1’, - 55

After some rearrangements and rejecting small quantities of higher orders this expres-
sion takes the form:

Wy = fr'z [e.(0n=0)=— V.06, —i0)] el B (5.6)
T T,

As the quantities e, y and P are linear functions of the deviation values, the entropy
source becomes a quadratic function of the deviations from equilibrium; the terms des-
cribing the entropy production due to the coupled mass- and heat transfer phenomena are
separated from the entropy production term caused by momentum exchange. The minus
sign before the last term is due to the assumed notation (eq. (3.13)).

The entropy source caused by the interaction between the gaseous phase and all the
fractions of droplets is

o= @ (5.7}
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whilst the corresponding quantity of entropy source per unit volume (as used in the methods
of thermodynamics of irreversible processes) is after linearization

i
g=— ;n(() 5 58
= % G O (5.8)
With the use of eq. (5.4), the entropy increment due to irreversibilities in the two-phase
flow (interaction between the phases and “wall friction”) during a limited period of time
can be written as:
t t
s t)v(t
i J\w(t)dt-i— JMQ,,(t)dt. (5.9)
(0] 2

()

5.2. The Adiabatic-Isobaric Relaxation Entropy Increase

Principally the value of the relaxation entropy increment may be calculated by means
of determining the run of the deviation parameters during the relaxation process according
to the egs. (4.17) and (4.21), and subsequently applying the defining formula:

dsp= | w(1)dt. (5.10)
15:3

Taking into account the assumption that the relative values of the deviation parameters
are small, the relaxation entropy increment (effected during the whole relaxation period)
may be obtained directly. Defining the adiabatic-isobaric entropy increment per mass flux

saturation Line o Q@
saturation Line
i
A / RO, o
\ T' (superheated)
S
\ r,
¢ 6R )
A0 T (subcooled)
45 AS, | 45
=
As! A5, =g"AS, +g- 45, 25
et A§,=q"45;"g-AS. >

a3 =g-as' +g- s

Fig. 1. Adiabatic expansion of wet steam from an initial equilibrium state (scheme)
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unit of the medium as:
Asg=(9'5)r+(g5)r— D GmSn—95 (5.11)

and making use of eq. (4.24), the value of the relaxation entropy increment is:
- 1
ASR=2~,1T2 [0952+c’ » g;n§1,112+’1—; Y g > g;"um)z]R. (5.12)

The total entropy increment of the process consists of the increment arisen during the
active period of the process (calculated after eq. (5.9)) and of the relaxation increment

As=(45) 4+ (45)g . (5:13)

The basic relations for an elementary adiabatic expansion of wet steam from an initial
equilibrium state are depicted schematically in Fig. 1.

5.3. The Concept of the ’Predicted Entropy Increments’ for the Description of Irreversible Processes

As any thermal process is caused by the action of forcings which evokes non-equilibrium
states in the medium, the occurrence of both entropy increments —the active and the relaxa-
tional one — should also be considered as a result of the action of the forcings. The relaxation
‘ncrement remains “‘latent” at the time when the action of the forcings stops and its value
is defined by the then existing values of deviations from equilibrium. In fact, to any non-
equilibrium state of the medium, an appropriate value of relaxation entropy increment
may be attached (calculated after eq. (5.12)) which will become real if the forcings stop

> act at that very moment.

In the author’s previous papers ([9, 11]) there has been introduced a concept of a pre-
dicted entropy increment representing the total entropy increase which consists of the
‘active” increment actually occurring within the considered time interval and the associated
change of the relaxation increment A5, which is also caused by the action of forcings over
the said time interval but which will become physically effective afterwards. Hence an infi-
nitesimal change of predicted entropy will be expressed as:

d
dE*:wdt+E(A§R)dt : O 145

Consequently, it can be assumed that there exists a source of “predicted entropy’” which
is acting in the medium:

d
w*=co7|—E(A§R). (5.15)

In the above equations only irreversibilities caused by interphase transfer have been taken
into account, disregarding the “‘wall friction” influence. As both influences may be regarded
1o be additive, this simplification is not essential for further developments.

For the relaxation process there is, evidently:

Wil / (5.16)
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Fig. 2. Variation of entropy increments during the process (schematic diagram); a) relaxation process,
b) active part of the process (general case)

If the active period of a process lasts from #=0 to ¢z, the following relation is valid:
L =
[o*()dt= | w(t)dt. (5.17)
0 0

The above considered relations are pictured in Fig. 2.

On the basis of the defining eq. (5.15), making use of (5.6) and (5.12) and of the equations
governing the transfer processes and the run of deviation parameters derived in chapters
3 and 4, the source of predicted entropy can be expressed —after making the necessary
transformations —as a sum of products of the deviations from equilibrium times the res-
pective steering functions:

CHOESJORIOEIR MO ORI M ORHOF (5.18)

where the steering functions of the forcings associated with the respective deviations from
equilibrium are:

win—2 4 A
()—'?s[ |:< —“h—>P(t)+Qe(t):|’
o 19
) W, gap(l), (5.19)
o
¥, ()= —g?vsg,’n [—p(t)—Pe(t)]
L w

‘With the help of the relations from chapter 4 it may be easily proved that the runs of
both active entropy source w and of the predicted entropy source w* are functionals of
the run of the forcings and of the dynamic properties of the medium. Thus both kinds
of entropy sources depend on the history of states or respective on the history of forcings:
this dependence has the character of a fading memory.

Using the concept of predicted entropy increments the total losses arising in the medium
may be analyzed on the basis of the time-run of the forcings. The total entropy increment
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g (5.13)) may be presented as:

t
As=As 4+ Asz= [ 0*()dt. (5.20)
0

5.4. Exergy Losses

The losses of exergy occurring in the medium due to irreversible interaction between
we phases may be written down as:

Ab=T.As . (5.21)
umd respectively:
Ab,=T,As;, Abgx=T,Asg, (5.22)
waere 7 is the surroundings temperature.
For calculations of adiabatic expansion-or compression processes starting from an
souilibrium state, exergy loss coefficients defined as the ratio of exergy loss to the isentropic

sothalpy drop of an ideal reference process (measured in the direction of the process-run)
nzll be introduced:

A=Lb_f1, o A (5.23)
Ai, Ai,
(=C4+Ck- (5.24)

5.5. Results of Exergy Loss Calculations

A series of calculations of a non-equilibrium adiabatic expansion of wet steam (starting
“om an initial equilibrium state) have been carried out; the forcing has been assumed

o a linear variation of pressure. A typical run of temperature deviations and entropy
zlues in such a -case is shown in Fig. 3.

The initial state of the medium (H,O) at rest has been assumed as:

p(0)=0.1 bar, ¢'(0)=0.1

s the expansion of this medium in a guide vane of the channel length of 200 mm has
nesn calculated assuming for each of the computational series subsequently a different
== of droplets of which the liquid phase is composed and repeating the calculations for
emous values of the expansion rate.
The results are shown in Fig. 4, where the exergy loss coefficient (showing the total
s caused by internal irreversibilities of the two-phase medium) has been plotted as a func-
= of the expansion rates and of the droplet radii; it may be seen that these two parameters
neve a substantial influence on the value of the loss. The non-equilibrium exergy loss
“eculated here is additive to other losses occurring in the flow.

Prace IMP z. 70 - 72
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The growth of the exergy loss — here expressed by means of a local loss coefficient {(f)—
during the flow of the medium through the duct for two selected values of the expansion
rate is shown in Figs. 5 and 6. On these diagrams the approximate period of time required
for the flow to reach the outlet of the guide vane is marked as 4¢.

Other series of calculations have also been made for wet steam expansion of a definite
magnitude of the pressure drop. For these calculations, two selected values of Ap and two
values of the droplet radius have been chosen and a broad range of variation of expansion
rates have been considered. The content of the relaxation loss in the total loss of exergy
is shown on Fig. 7. In the limit case of an extremely slow expansion the value of this con-
tent is zero whereas in the limit case of extremely rapid expansion (step function of the
forcing) the total loss consists of relaxation losses only.

6. Flow Choking and Critical Flow Conditions
6.1. Basic Equations

The appearance of the so called critical conditions (“flow choking”) is one of the most
characteristic features of compressible media flows. The theoretical interpretation of critical
flows in homogeneous one-phase media (perfect gases in particular) is generally known
and their critical parameters are used as characteristic values in the description of simple gas
dynamics. One of the most significant among them is the critical velocity which in gas
flows is in a well known way directly related to the velocity of sound in the medium.

In multiphase flows,. however, the physical nature of both choking conditions arising
and sound waves propagation are much more complex because of the heterogeneous
structure of the medium and of the internal non-equilibrium interaction between the phases.
As these internal processes influence flow choking and sound propagation in different
ways, there is (in the general case) no direct relationship between these two phenomena.

The problems of two-phase critical flows have been studied mostly from the viewpoint
of evaporating liquid-vapour mixture flows through short nozzles and orifices [4, 14, 16].
In this chapter the author’s approach considering the general case of a wet steam flow
will be presented, basing on [13].

For the flow of the gaseous phase subject to influences caused by both external forcings
and internal fluxes from the liquid phase, the continuity equation is:

dw dg dv dF \
aieide 0 (6.1)

Wes e el
where the increase of the gaseous mass flux content is:

dg vY :
—=—dx. (6.2)

g W
Writing the gas state equation (4.3) in the differential form and making use of the gas
phase conservation equations (4.1) yield —after eliminating the derivatives (d7]/dx) and
(dp/dx) —the expression for the specific volume increase. With the use of (6.1) and (6.2)
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the following equation governing the flow conditions variation is obtained:

<1—T>»d~w— o [Y+-—»(Q+QE)J——(P Pe) )

a. ) w T az
where

a,=~/xpv (6.4)

s the sound velocity in the gaseous phase considered approximately as a perfect gas; it
may also be regarded as the propagation velocity of sound waves of infinitely high fre-
quency in the two-phase medium (owing to the freezing-up of interphase exchange processes
2t high time rates of pressure forcings i.e., at high frequencies).

6.2. Critical Conditions

The critical conditions of the two-phase flow (with the assumptions already made)
I be defined as a situation at which the mass flow density of the two-phase medium
‘akes on an extremal value whilst the derivative of the gas phase velocity is not equal to
Zero i.e.
o) o (ﬂﬂ> £0. (6.5)
dax Jx :
The cross-section of the duct where the critical conditions occur will be called the critical
-ross-section and the values of the flow parameters existing at this cross-section — the critical
alues of the respective parameters.
Besides the definition (6.5) another characteristic situation of the flow where the mass
“ow density of the gaseous component only reaches its extremal value may be of
aterest. Thus the definition of the gas phase critical conditions is:

F F(xg,) dw
(;)Kg o ex‘tr. : <E;>Kg¢ 0. (6.6)

According to these definitions the locations of both critical cross-sections of the duct,
“e respective critical values of the flow parameters, and of the critical flow-rate of the me-
~um are to be determined.

It may be easily shown (cp. [13]) that the equation (6.3) can be written in the form:

(1__> e (6.7)
we ) w i
using the quantity wy defined as:
P+ Pe
l——w
wi=a? £ . (6.8)
s
P
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As can be seen from eq. (6.7), the criterion (6.5) of the critical state is satisfied when
w=wy; thus wy is the critical velocity with respect to the two-phase flow choking conditions.

In a similar way, the critical velocity after the criterion (6.6) —(choking of the gaseous
component flow) can be obtained. For this purpose the eq. (6.3) has to be slightly rear-
ranged making use of (6.2) and then written down in the form:

2
w \dw dg dF
<1_T>=_9_F (6.9)
WKg L g
with the critical velocity respective to the criterion (6.6) defined by:
2 Pe
= - w
5 2 p
Wig=a, . (6.10
T Gy
P
g
g(x)

Wig(x)

Fig. 8. Determination of critical condi-
X’ tions and the position of critical cross-
sections (scheme)

Kg K

Taking into account that at the critical cross-section
W=wg respective w=wg, (6.11)

the expressions for the respective critical velocities may be written down as:
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e —a,(P+P)+Nai(P+P) +4p[p—(x—1)(Q+Q,)—al Y] (6.12)
. 20 —(=D(Q+0) - a5Y] ’
Wiy _ —au(P+P) £V aLP+P) +4p[p—(x—1D(Q+0)] (6.13)
. 2fp—(k—~1HO+0,)]

For flows in the positive direction of the co-ordinate axis the “plus” sign is valid.

As the quantities ¥, Q and P are linear functions of the deviations from equilibrium,
‘he critical velocities may be expressed as depending on the values of the deviation parameters
znd on the run of the forcing functions:

WK=WK(5’5r,nﬂum9pa QeaPe)’ (614)
Wngng(5: 51’115 Up s 1-79 Qe: Pe)'

The relations defining the critical flow conditions and the computational method of
“nding the location of the critical cross-section are shown schematically in Fig. 8. Using
suitable step-by-step procedures the run of the flow parameters is calculated and from
their values the quantities wy and wy, are determined for each step; the position of the critical
“ross-section is distinguished by satisfying the condition (6.11). In adiabatic expansions of
swo-phase media the critical conditions of the gaseous phase flow (defined by eq. (6.6))
sccur always before the critical cross-section of the two-phase medium flow (eq. (6.5)).

It should be noted that according to the relations (6.14) and to previous considerations
“he values of the critical velocity and critical parameters as well as the location of the critical
“ross-sections also depend on the history of the flow displaying the property of “fading
memory’’ of past states.

6.3. Limit Cases and Relations to Sound Velocity

There exist two important limit cases of two-phase medium expausion:

a. In the case of an extremely rapid expansion all the interactions between the phases
are “frozen” and, consequently, the expansion process obeys exactly the laws of pure
=as expansion with its critical velocity equal to the sound velocity in the gas (provided that
the influences of heat supply and wall friction have been excluded).

We=We—a; for p=1 ). (6.15)

b. In the-case of extremely slow expansion the medium remains in the state of internal
=quilibrium during the whole process and the interphase fluxes have to be derived after
the appropriate ‘‘thermostatic” relations.

The results of these derivations carried out in [10, 12, 13] show that in this case the
critical velocity is equal to the velocity of sound waves of extremely small frequency
n the two-phase medium:

wg=a, for p-0, ot (6:16)
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where

—gh

as=\/ h Ts g’ :
2————|c+—¢
Rl h g

is the “zero-frequency” sound velocity in a saturated wet steam.

(6.17)
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Fig. 9. Critical expansion of the gaseous phase of a two-phase medium from an initial
equilibrium state (scheme)

However in the general case, as it has been derived in the author’s previous paper [12].
the sound velocity in a two-phase medium depends on the frequency of the sound (dispersion
of sound velocity). Although both the sound velocity and the critical velocity are influenced
by the irreversible interphase processes, there is no direct relation between these two
velocities. Therefore for the general case:

A SWgSy, Ay <KW, <d,, (6.18)
and
a;<a<a, (6.19)

whilst for the limit cases, eq. (6.15) and (6.16) are valid.

In Fig. 9 the expansion of the gaseous phase of the two-phase medium (starting from
an equilibrium state and proceeding, generally, into the subcooled vapour area) has been
shown on a temperature-entropy diagram.
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6.4. Calculations of the Critical Parameters

The values of the critical parameters—the critical velocity and the critical pressure
ratio—for various cases of adiabatic expansion of wet steam have been calculated. The
parameters of the initial equilibrium state of the medium at rest (zero initial velocity)
have been chosen as in the flow calculations of the preceding chapter 5 and the variation
of pressure has been assumed to be a linear function of time. Three separate series of cal-
culations have been carried out, each one based on the assumption of a different value
of the liquid drop radius. The purpose of the calculations has been to investigate the influ-
ence of the expansion rate and of the heterogeneous structure of the medium (represented
by the values of the drop radii) on the values of the critical parameters.

For the presentation of the results two dimensionless quantities have been introduced.
One of them is the ratio of the critical velocity to the velocity of sound waves of extremely
high frequency in the medium (or to the sound velocity of the gas phase only) at the actual
thermal state in the critical cross-section

Yk o Mxe (6.20)

M=y g, s
aoo

o0

where a,, is defined by eq. (6.4).
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Fig. 10. Diménsionless critical velocities (related to the maximal sound velocity in the
critical cross-section) for wet steam expansion



410 A. Konorski

_ Wy 1000 e i
A= —05 / /\ |
W | ; |
"3 a, | ‘
0980|— | - s
~ - . ~ o= 70A7m
060 / e =
/ / T
7 7
0940 / 7 7 | s
/
/ L / 1
0.924 / / S [ g 4
0.920 v //
/ 5 /
e e R _._..//
0.900
Gl e S e s 0

. b
= o)
Fig. 11. Dimensionless critical velocities (related to the sound velocity in a ““frozen”
gas flow) for wet steam expansion

5 By
L 0.600
_Pxg ' | -5
Ps po o=10"m
S e S 1078
\ \ \ ~7
By \\ \ 10
\
05785 =950 \\ 5 \
\
0.570 \\ S
0.560 N ‘ ! N
0.550 N
0.5426 \ \f\
0.540 = 2 % = 7 8

0 1 0 0

10
= e

Fig. 12. Critical pressure ratio for non-equilibrium wet steam expansion

The other dimensionless quantity is the ratio of the critical velocity to the sound velo-
city in the critical cross-section of the “frozen” gas flow (the extremal non-equilibrium
process):

Wk Yk

doal Gl

g 2
af ite} af

(6.21)
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where
2K
af=\/4~ RT(0). (6.22)
K41

On the basis of the obtained values the critical pressure ratio has been calculated as:

Pk Pkg
p=——, B,= : (6.23)
pl0) - " p(0)

The results have been presented in Figs. 10, 11 and 12 as functions of the expansion
rate and of the assumed droplet radius. In these diagrams the functions referring to the
critical conditions of the two-phase flow (definition 6.5) are shown by full lines whilst the
broken lines depict critical conditions for the gaseous content of the flow.

7. The Direct Method of Flow Calculation

There are, generally speaking, two kinds of problems in flow calculation:

a. The problem of dimensioning the duct, i.e., defining the sequence of cross-section
areas for a given variation of pressure and of other forcings along the path co-ordinate.

b. The reverse problem consisting in the calculation of the run of all the flow parameters
along a duct of given dimensions, i.e., of a given variation of cross-section areas.

The way of solving the first problem (the “straight” one) follows immediately from the
equations derived in chapter 4. With the known parameters of the flow entering the channel
(including an assumption on the structure of the liquid phase, i.e., the drop radii) the set
of equations (4.7) - (4.13) describes the run of the flow parameters along the duct and eq.,
(4.14) yields the associated variation of cross-section areas per mass flow unit of the me-
dium. For computation a simple step-by-step method may be employed. The exergy loss
for each step is most conveniently to be calculated after the “predicted entropy’’ increments
(so that for the whole duct only a simple summation of the values from each step is necessary
without adding a relaxation value at the outlet).

In the case of the reverse problem the given variation F(x) has to be treated as one of
the forcings, replacing the variation of pressure; the other forcings remain the same as in
the preceding case. The set of equations (4.7) - (4.13) then has to be rearranged by substi-
tuting:
= Ry de+ Rg do RI & dg, gRI dw gRE dF

po B (7.1
Bwedt o Bwodt By & dto Fwe dt By di

with the help of the relations (3.5) and (4.6).

The course of the computation of the flow parameters and of the exergy losses follows
the pattern of the preceding case (the appropriate procedure has been described in de-
tails in [10]).

It should be noted that for more precise calculations the values of the coefficients appe-
aring in the equations have to be treated as dependent on the thermal state of the medium;
consequently an adjusting procedure has to be built in into the computation of each step.
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8. The Indirect Method of Flow Calculation
8.1. Description of the Method

In the author’s previous paper [10] an indirect calculation procedure which is more
convenient particularly in cases when similar calculations have to be repeated for various
assumptions has been developed. The method consists in splitting up the whole procedure
into two stages, the first of them being the calculation of an equilibrium process whilst
the second one takes account of the non-equilibrium effects and their influence.

With the forcings given as the pressure variation, external heat supply and mass force
action (the ‘‘straight” problem), the first stage of the procedure consists in calculating
the run of parameters for a full-equilibrium saturated wet steam flow including the influence
of energy dissipation in the boundary layer (“‘wall friction’’) which has been treated as an
external forcing upon the medium. The appropriate set of equations for a step-by-step
calculation is:

dg, -1 g, g T S e
e e les_g :)NQJ, (8.1)
dx 5 9i P hw b9k
i=1p;
dT . T
f=f g, 8.2
dx  hw ’ S
a6 (i l‘,_pe>, ‘ (83)
dx w \w

The resulting courses of these parameters along the path coordinate are to be used
in the second stage of the procedure as “leading values” (with the subscript “zero”),
after which the coefficients in the dynamic equations and the physical constants will be
determined; they will also serve as a first approximation of their respective values:

! po(x);  To(%),  Gmo(x), Wo(x). (8.4)
In the second stage the run of the deviations from equilibrium: :
o). 0 ()i ) (8.5)

is calculated on the basis of the previously determined functions of the leading values
(8.4). The calculation of the deviation parameters is carried out by means of the sets of
equations (4.17) and (4.21), using them in such a manner as if the pressure variation py(x)
were the only forcing acting upon the medium; the influence of the remaining external
forcings has already been accounted for indirectly through their effect on the leading
values determined in the first stage of the procedure.

After determining the deviation values at a cross-section, the values of the remaining
flow parameters (previously expressed by their leading values calculated on the assumption
of a saturated wet steam flow) have to be adjusted to the non-equilibrium situation. In or-
der to do so, it is considered that the non-equilibrium flow parameters actually prevailing
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at a cross-section are related to the respective leading values of the equilibrium flow by
satisfying the appropriate conservation equations; this is the same relationship which
exists between the actual values of the flow parameters and their values in an associated
relaxed flow. Consequently, with the use of eq. (4.24) and (4.25) the remaining values
of flow parameters are:

w=wo—Awg, g=9go—A49r, }

8.6
P=Do, TszT.'sO' ( )

If further approximations are needed this part of the procedure may be repeated using
the obtained values in turn as the new leading values for the next approximation.
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Fig. 13. Scheme of the procedure of the indirect calculation method for the reverse prob-
lem of flow calculation
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Finally, at each step the required cross-section area per unit mass flux is determined
after (4.14) as well as the increment of the exergy loss (calculated on the basis of the predic-
ted entropy change to avoid the addition of a separate relaxation loss at the outlet); the
exergy loss increments are subsequently summed up over the whole length of the duct.

If instead of the pressure variation the variation of the cross=section area is prescribed
(the reverse problem), the first stage consists in determining the run of the leading parame-
ters (8.4) under given conditions. In the second stage of the procedure po(x) is treated as
the only forcing and the calculations are carried out as in the “straight” problem with the
only one difference being that instead of (8.6) the adjustment of flow parameters has to
employ relaxation increments derived on the basis of adiabatic constant-cross-section
relaxation (with p #p,). The method of calculation of the reverse problem has been descri-
bed in detail in [10]. The course of the calculations is shown schematically in Fig. 13.

The indirect method of flow calculation has the advantage of a procedure simplification
without a decrease in exactness (which may be additionally improved by further approxi-
mations if necessary). It is particularly convenient when the same duct has to be calculated
for various assumptions concerning the structure of the medium, the droplet radii, the
transfer coefficients etc.

8.2. Calculation of Flow Around a Guide Vane Profile

A series of computations have been carried out for a non-equilibrium flow of wet
steam around a profile of a LP-turbine guide vane type with the outline length on the
convex and concave side of 290 mm and 250 mm respectively. The parameters of the wet
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Fig. 14. Distribution of the gas flow temperature (T,), leading temperature (7,) and actual saturation
temperature (7) for a non-equilibrium wet steam flow around-the profile
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s fow entering the guide vane (assumed to be in equilibrium) are:
p(0)=0.146 bar, ¢(0)=0.976, w(0)=63.6m/s.

profile in question the distribution of the static pressure of a gas flow around
resulting either from an aerodynamic experiment or from known calculation
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methods has been given. The flow along each of the sides has been treated as a one-dimen-
sional flow; the effects of boundary layer phenomena on the main stream flow have been
neglected.

The medium has been assumed to contain one fraction of droplets; for each of the three
calculation series a different value of the droplet radius in the entering flow has been used.
For the calculations the described above indirect method has been employed.

The resulting distributions of gas flow temperature, leading temperature values and
saturation temperature in the actual non-equilibrium flow have been shown in Fig. 14.
As it can be seen, the small differences between the values of 7, and 7, account for the
good approximation obtained by the employed method.

The distribution of the values of the deviations from the equilibrium temperature
have been shown in Figs. 15 and 16, for the deviations in the gaseous and liquid phase
respectively. From the diagrams the strong influence of the droplet size and of the local
pressure gradient is recognizable.

9. Final Remarks

From the derivations contained in this paper the specific properties of non-equilibrium
multiphase flows may be recognized. In the case of a wet steam expansion all the results
are most substantially influenced by two main factors: the time-rate of the expansion (as
the forcing exerted upon the medium) and the structure of the medium itself, i.e., the size
and the concentration of droplets, accounting for the (thermal and mechanical) inertia
and, consequently, for the dynamic properties of the medium.

The exactness of the calculation results depends mainly on the correct assessment of the
transfer processes between the phases. The study of these processes — both theoretical
and experimental — is the focus point of a further development of the multiphase media
theory.
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Termodynamiczne problemy nieréwnowagowej ekspansji czynnikéw dwufazowych
(par wilgotnych)

Streszczenie

Artykut zawiera wyniki szeregu prac badawczych z dziedziny termodynamiki nierOwnowagowych
przeplywOw pary wilgotnej, wykonanych przez autora. Wspolnym celem tych prac bylo opracowanie
metod opisu dynamiki proceséw cieplnych w czynnikach dwufazowych i opracowanie metod oblicze-
miowych, uwzgledniajacych zjawiska braku rownowagi wewnetrznej w czynniku. Jedno z istotnych zasto-
sowan tego rodzaju metod dotyczy zagadnienia przeplywow pary mokrej w turbinach parowych.

Zjawiska braku rownowagi wewngtrznej (termodynamicznej i mechanicznej) w czynniku wielofa-
zowym pojawiaja sie w wyniku wymuszen zewnetrznych, dziatajacych ze skonczona szybkoscia (np.
szvbka ekspansja). Uwzglednienie wplywu tych zjawisk przy obliczeniu przebiegu proceséw prowadzi
20 powaznych r6znic w stosunku do stosowanych dotychczas tzw. quasi-statycznych metod obliczenio-

wch.

Zawarte w pracy rozwazania, oparte na metodach zblizonych do metod stosowanych w termody-
mamice procesow nieodwracalnych, prowadza do opracowania nowego sposobu opisu dynamiki proce-

w cieplnych w czynnikach wielofazowych; ten opis jest oparty na zaproponowanym modelu dynamiki
srzemian w czynniku. Do istotnych wlasnosci tego modelu nalezy wystepowanie zaleznosci od historii
tznow wzglednie od historii wymuszen. Ta zalezno$¢ ma charakter ,,zanikajacej pamieci’’ stanow, istnie-
sacych w przesztosci.

Zastosowania wyprowadzonych metod obejmuja:

— wyznaczanie przebiegu parametréw cieplnych i kinematycznych czynnika poddanego szybko

mafajagcym wymuszeniom (np. szybkiej ekspansji), ;

— wyznaczanie krytycznych warunkow przepltywu, krytycznych przekrojow i parametrow, z uw-

“s'ednieniem stanow braku rownowagi,
— obliczanie dodatkowych ,,dynamicznych” strat energetycznych, wywotanych brakiem réwnowa-

Prace IMP z, 70 -72
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— wymiarowanie i ewentualnie optymalizacja kanatéw przeptywowych w uktadzie lopatkowym.

W celu obliczenia dodatkowych strat ,,dynamicznych” wprowadzono pojecie ,,przygotowanych
przyrostow entropii’’, oparte na rozwazeniu tzw. aktywnej oraz relaksacyjnej czesci procesu cieplnego.

Omoéwiono dwa rodzaje definicji warunkow krytycznych w przeptywie nierownowagowym i podano
wystepujace m. in. zaleznosci. Podano sposéb obliczania krytycznych warto$ci parametrow przepltywu
oraz krytycznych przekrojow.

Zaproponowano dwie metody (,,bezposrednia” i ,,posrednia’) przeprowadzenia kompletnych
obliczenh proceséw przeptywu pary mokrej w kanatach kierowniczych i lopatkowych oraz wystepujacych
strat dodatkowych. Przedstawiono rowniez sposob zastosowania tych metod do obliczania rozktadu
parametrow przeplywu nierownowagowego po obu stronach profilu topatki kierowniczej.

TepMoanHamMu4eckHe NpodJieMbl HePABHOBECHOTO PACHIMPEHHS IBYX(}a3HbIX cpen
(B12)KHBIX NIAPOB)

Pesrome

B crarbe mpencTaBiIeHBl Pe3ybTAThI Psfid MCCIENOBATENLCKUX PaboT U3 0061acTH TEPMOIUHAMUKE
HEPABHOBECHBIX TEUEHMI BJIAJKHOIO Mapa, BBHIIOJHEHHBIX aBTOpoM. OO0mell nebio 3THX paboT sBIISAIACE
pa3paboTka METONOB ONMCAHWS OUHAMMKHM TEIUIOBBIX IPOIECCOB B ABYX()A3HBIX CPElax W PacYeTHBLX
METOJIOB, YYUTHIBAIOIIMX SIBIIEHMSI BHYTPEHHETO HEPaBHOBECHs B cpere. OOHO M3 BAXKHBIX IPUMEHECHMH
METOZOB TAKOTO POJA OTHOCHTCS K MpOoOJieMe TeUeHWs BJIIAKHOTO Mapa B MapOBBIX TypOWHAX.

SIBrieHMsI BHYTPEHHETO HEPABHOBECHS (TEPMOAMHAMHYECKOTO ¥ MEXAHWYECKOTO) B MHOTO(]a3HO
cpeie MOSBIAIOTCS B PE3yJIbTATE BHOIMHWX BBHIHY)XICHHM, HEHCTBYFOIIMX C KOHEYHOM CKOPOCTBIO (HAmP.
6picTpoe pacummpenne). Eciu ydecTs BIMsAHHE STWX SBJICHUM B pacdéTax X0Ia MPOLECCOB, TOTAA IOJLy-
YAFOTCS 3HAYMTENBHBIE PA3HOCTH IO OTHOIIEHUIO K NPUMEHSIEMBIM A0 CHX IOP T. Ha3. KBA3HCTATHYECKHAM
DACUYETHBIM METOHIAM.

ITpencraBiieHHble B paboTe pacCykICHHs, OCHOBAHHBIC HA METOAAX MPHOIMKEHHBIX K METOJaM,
MPAMEHAEMBIM B TEPMOIHHAMIKE HEOTBPATHMBIX IIPOLECCOB, BEAYT K Pa3paboTKe HOBOTO CIOCO0Oa OmE-
CaHWs OJWHAMUKH TEIIOBHIX IPOLECCOB B MHOTO(A3HBIX CPElaX; 3TO OMUCAHUE OCHOBAHO HA MPEIJIOXKEE-
HOI MOZENM JUHAMUKH IIPEBpamIeHuit B cpene. K BakHEMIIIMM CBOMCTBAM STOM MOAEIH MOXKHO 3a4NCIIATES
ITOSIBJIEHUE 3aBUCHMOCTH OT MCTOPHM COCTOSIHHMM MJIM OT MCTOPHH BBIHYXKICHMM. DTa 3aBUCHMOCTh UMEET
XapakTep ,,JOTyXaroliel NaMsaTH™® COCTOSIHWM CYIIECTBOBABIIMX B IPOIIIOM.

ITpuMeHeHnsl BBIBEJEHHBIX METONOB OXBATHIBAIOT:

— ONIPEIEICHUE PACOPENENICHUST TEMJIOBBIX M KMHEMATHYECKHX NApaMETPOB Cpenbl, NOABEPrHYTOM
OBICTPOIEHCTBYIOIINM BBIHYXKICHUAM (HAmp. GBICTPOMY DACITUPEHMIO);

— OIpeeNcHue KPUTUYECKUX YCIOBHI TEYEHHMs, KPHUTHYECKHX CECYEHMH M TAPaMETPOE, C y4eTOM
COCTOSIHHM OTCYTICTBHUSI PABHOBECHS;

— pacyeTsl NOOABOYHBIX ,, TAHAMMYECKHMX ’ BHEPTETUYECKHUX IIOTEPD, BHI3BAHHBIX OTCYTCTBUEM PaBHO-
BECHSI;

— ONpEenesCHrE PasMEPOB U BO3MOXKHAS ONTUMHU3ANHNS IIPOTOYHBIX KaHAJIOB B JIONATOYHON CHCTEME.

C 1enbio BBIIOJHEHUSI PACYETOB NOOABOYHBIX ,,IMHAMHYECKHX  MOTEPh BBEHECHO MOHATHUE ,,IIPHIC-
TOBJIEHHBIX IPHPOCTOB SHTPONMHN’’, OCHOBAHHOE HA PACCYXXKICHWM T. Ha3. aKTUBHOM M pEJAKCAIMOHHOR
YacTeM TEIJIOBOTO MIpOLEcca.,

OG6cyxmarTcs OBA POOA ONPEACIEHMs KPUTHYECKMX YCIIOBWiL B HEPABHOBECHOM TCUCHUM U HEPE-
YHCIIAIOTCS 3aBUCHMOCTH, BBICTyNMArOIue Mexay HuMu. Onpenensercs cnocobd pacyeTra KpUTHYECKm:
3HAYEHUH MapaMeTpPOB TEYCHUSI M KPHUTHYECKHX CEYCHHMA.

ITpennararorcst nBa MeTomna. (,,HENOCPEACTBEHHBIN | ,,-IOCPENCTBEHHBIA’") BEIOIHEHNS KOMIIEK THER
PacCYeToOB IPOIECCOB TEYEHMS BIIAXKHOTO MApa B HANPABISIIOMMX M PAOOYMX MEXIJIONATOYHBIX KaHATEN
¥ BBICTYIAIOIINX J00ABOYHBIX MOTeph. IIpENCTaBiIcH Takke Cnoco0 NPUMEHEHWS 3THX METOJOB K pacse-
TaM pachpeeNeHuil NapaMeTpPOB HEPABHOBECHOTO TEYEHH 110 06EUM CTOPOHAM IPOGHIIs HANPABIISIOMER
JIOIATKH.



