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WITOLD DRABOWICZ

Gdansk

A Multiple-Scattered Method for Chemisorption Systems

The objective of this work is to discuss in detail the theoretical background of the Korringa-Kohn-
Rostocker multiple-scattered method with an application to the study of electronic structure of clean
surfaces and adsorption systems.

The method presented here can be applied to periodic systems with slab configurations. By means
of the above mentioned method the theoretical study of the electronic structure of the ordered overlayers
adsorbed on the crystal surface, the chemical bonds of adsorbate species and adsorbate-induced electron
states can be performed.

Nomenclature

SUC — surface unit cell, Y1m — spherical harmonics,

AS — atomic segment, R® — radial functions,
¥,G — wave and Green’s ASi? g, AP e, — diagonal and  off-diagonal
P fu:ctlonstresp ectively, ' structure constants,

, g — wave vectors, :

_}ii — two-dimensional lattice vector, Crm,tm, vm — Gaunt integrals,

K, — vector of the two-dimensional p — radius of atomic sphere,

reciprocal lattice, A — cross-section of SUC,

1. Introduction

The multiple-scattered, or Korringa-Kohn-Rostocker (KKR) method has proved very
useful for calculation of energy levels in solids and molecules, whenever the muffin-tin
(MT) model is appropriate. The calculational scheme presented here is a generalization
of the (KKR) formalizm to films and surfaces which are répresented by thin films.

The film or the slab is a simple model desigged for the calculation of surface proper-
ties of solids. Such a model has great flexibility enabling clean surfaces, reconstructed sur-
faces and chemisorbed atoms or molecules to be studied within it. One of the advantages
of the thin-film approach is that the chemisorption can be treated rather easily.

The multiple-scattered technique can be used for calculation of electronic structure of
adsorbed overlayers, adsorbate-induced electron states and chemical bonds of adsorbed
atoms and molecules. The method takes into account not only the local aspects of the bonds

[123]
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of adsorbed species but also long-range effects due to the extended nature of a substrate
as well as adsorbate-adsorbate interactions. :
The model of the physical system, shown in Fig. 1, is periodic in two dimensions.
It consists of M atomic layers of substrate bounded on both sides by an adsorbed ato-
mic layer which is denoted by shaded circles.

T il
racaum

o 8 Q @Q@ vacaum
—N D

5 b
Fig, 1. The crystal slab with adsorbed overlayers

In the scattered-wave formulation the film is divided into surface unit cells (SUC)
each of which extends to + oo in the z direction. The film boundaries can be described by
the relations z=z, and z=z, and the space of each SUC is divided into three regions. The
region of nonoverlapping atomic spheres surrounding each nuclear site in an atomic seg-
ment (AS) we denote as region 7. The part of the SUC which contains all the atoms we call
atomic segment. The boundaries of the AS lie in z=z, and z=z, planes. The interstitial
space between the atomic spheres in AS we denote as region IZ. Two surface strips of not
overlapping atomic spheres and for which z>z, or z<z, constitute region I7I. Excluding
the region 771, this division of space is analogous to the muffin-tin approximation used in
the band theory.

2. Green’s function and the system of integral equations

The integral equation is a convenient theoretical tool for investigating, among others,
problems concerning the electron band structure of bulk, clean and chemisorbed surfaces,
as well as low energy electron diffraction on the crystal surface and other scattering pro-
blems. The basis of the integral formulation is the Green function.

We derive now an integral equation for wave function which is a solution of the Schré-
dinger equation ;

[=V+V(P)I¥(F)=E¥(), (2:1)
which written in the form .
! (V+ID)P@E)=V () ¥(>), (2.2)

with k*=F, can be intepreted as an inhomogeneous differential equation with the term
V(r)¥(r) that can be considered as inhomogeneity. Introducing the differential operator

D=V?+k?, (2.3)
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and the inhomogeneity term - _
F(r)=V(M¥(), 24
‘we can write now (2.2) in an abbreviated form i
D¥(r)=F(r). : 2.5)
Similarly, for the Green function satisfying the inhomogeneous differential equation [1]
VG (r, )+ kGG, 7)=6G~T7). (2.6)
where d.is the three-dimensional Dirac delta function, we can write
' DG(r, ?'):5(?—;7/). 2.7

Multiplying both sides of Eq. (2.7) by F(7') and integrating over the volume ¥ with res-
pect to 7 we get

IDG(r, T)F(F)d*F = [ F(+)o(G—F)dF". (2.8)
v v

The integration on the right can be carried out by making use of the integral property of
the delta function [2]

Ifff(?’)é(?—?’)dv:f(?). (2.9)
Thus, we get
I DG(F, ¥)F(F)d*F'=F (7). (2.10)
> :

Due to the fact that Laplace operator V2 in (2.3) acts on functions of the 7 coordinates,
the differential operator D can be taken out from under the sign of integration. Therefore,
we obtain

D{G(r,r)F(+)d*F'=F(r). (2.11)
14

By comparison of (2.11) with (2.5) we see that the integral in (2.11) must be identified
with the wave function (7). Our final result is then ' '

Y(r)= [ G, F)FG)d3, (2.12)
J
or
Y(r)= [ GG, PV PGE)dF. - (2.13)
vV

We have found thus the solution of (2.1) for various inhomogeneity terms and for the
same boundary conditions imposed on ¥ and G functions. This solution is in the form of an
integral equation, where the Green function has appeared as a kernel,

Since the potential in region 7 is assumed to be zero the integration in Eq. (2.13) is
confined to the atomic sphere and two surface strips. Equation (2.13) can now be written
as :

Y=Y | GG, M)VE WG )T, (2.14)

Jts Visqar
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where j, s denote the number of spheres in an atomic segment and number of surface strips,
respectively, whereas ¥,y is the volume of regions 7 and /I7. Putting ¥ (+)¥(#') from (2.1)
into (2.13) and with the help of Green’s theorem [3]

% ;
J(TVZG—GVZT)du= f('l’a—G——Ga—)dS, (2.15)
on on

we get

Y=Y [ {YGE)HIVGGF ,r)+EGK , 7)1} d*F '+

“:G(r, )ai(r )—‘!I’( )aG(r r)]dS’, (2.16)

Sr+a1r

where 7 is the outer normal to the atomic spheres and to the surfaces z; and z,. We denote
by St rr the surface bounding regions I and II7. The total surface S;,;;; consists of all
the surfaces of atomic spheres and of two planes z=z, and z=z,.

On account of (2.6) and (2.9) the first term on the right side of (2 16) cancels with the
left side and one obtains

. (¢ o e T ,
J;s J‘[G(r,r) =P L ]ds (2.17)
Sr+rrx

We have obtained the system of integral equations the number of which is equal j+s.

3. Green’s function for a thin film

The thin film, which represents the surface region, is divided into SUC as is shown in
Fig. 1. The three-dimensional SUC, defined by the right parallelepiped whose cross-sec-
tion is denoted by A4 and whose z extent is in principle =+ oo, is assumed to be truncated at

=+ L. The length L is sufficiently large for the electronic charge density to be considered
negligible at z= + L. The plane boundaries of the film are of infinite extension and retain
translational symmetry parallel to the surface. There is no translational invariance along
the direction perpendicular to the surface.

Turning now to the evaluation of the Green function we multiply both sides of equation
(2.6) by

@n) *exp[—i(k' +K,)-71, (3.1)

where the vector k' is E’=(k,’c, k,, k;) and an(Knx, K.y, 0) is the vector of the two-dimen-
sional reciprocal lattice. Integrating over the volume of the SUC and taking into account
the integral property of the Dirac delta function (2.9) we get

@n)~* [ {exp[—i(k'+K,) F1[V’G(F, F)+k*G(F, 7)1} dF =
vV

=@n) *exp[—i(k' +K,)-¥]1.  (3.2)
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Denoting ¥(r)=exp [——i(l?’+I€,,)-7~] and using Green’s formula (2.15) we get

oG o
f YVGdV = f GV*yav + f(T%—G——)dS. (3.3)
14 v S

on on

The surface integral vanishes, since the flux through the surfaces perpendicular to the x
and y axes cancels out and the planes perpendicular to the z axis are removed to infinity.
Hence, we have

@m)* (GG, F)VYH)+ Y (F) G (F, 7 )1d% =(2r) Fexp[—i(k'+K,)7'].
v

(3.4)
Carrying out the surface integration in the (x, y) plane we obtain

(2m) %4 [—(ki+K,)*~(ky+K,,) k> + E]exp{—i [(k+K,)x—(k,+K,) y]} %
x [ G(r,7 Nexp(—ik,z)dz=(2n) *exp[—~i(K' +K,)'#'], (3.5)

where E=k?. Since the integration region extends to infinity along the z axis we can use
the one-dimensional Fourier transform pair [4]

F()=(n)* [ [@)exp(—ika)dz, (3.6)
and
f(Z)=(27t)_%__f f(k)exp(ikz)dk . 3.7

Hence equation (3.5) can be written as
1 5 Swlig+8) (- d)]
@nPAT K2—[E—(§ +K,)*]

G(K,7)=~— exp(—iklz’), (3.8)
where q'=(k.,, ky, 0) and u=(x, y, 0). The summation in Eq. (3.8) is over all the reciprocal
lattice vectors K,,.

Now we insert (3.8) using (3.7) and obtain

- =,

1 e e
G(r,r)=—mZexp[z’(q’+K")-(u——u')]l, (3.9

where

szg%i?] dk..
ko—[E+(g + K]

- @

(3.10)

This integral we analyze by means of contour integration in the complex k.-plane [5].
The singularities in the integral are at k= +[E—(q’+K,)*]* for E—(§’'+K,)?>0 and
at k= +i[(q'+K,)?— EJ* for E—(3'+K,)?<0.

On account of :

ki=Rek,+iImk., (3.11)
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.and : :
exp[ik.(z—z")]=exp[i(z—z") Rek.] exp[—(z—z") Imk.], 3.12)

"We.can write

dk’; : 3.13
kP<TE-(*+K)y1 - * S

L § exp[ik.(z—z2)] ;
'where C is the contour which for z—z'>0 is closed by a large semicircle C, in the upper half

plane and for z—2z' <0 the contour is closed by semicircle C; in the lower half plane as is
shown in Fig. 2.

Re l<lz

Fig. 2. The complex k.-plane

In the limit as the radius of the semicircles becomes infinite, the contribution there-

from to the integrals becomes zero. The integrals are then equal to their values along the
real axis C, .

For z—2z'>0 the contour integral along C.+C, is equal to the residue at the pole
[E—(@G + K,
‘Thus
I=(2ni){Res[E—(§' +K,)*1*}, (3.14)
and

[y SPULE— @+ KY T —2)) i

[E-(¢'+K)’T

Similarly for z—z' <0 the contour integral along C, + C; is equal to the residue at the
pole —[E—(q’ +K)2
Hence

I=(~2ni){Res[~[E—(§'+K,)*]*]}, (3.16)
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and
o 21, - N2q% el ;
I=ni exp{l [E (q-):*-‘K—:r);] 1("’ Z)}. (3.17)
tE—~(g'+K)|*
Inserting (3.17) into (3.9) we get finally :
Gl L L RAH R KR
G(r, r/)=hzexp[l(q +—’ )—)(uz ,u )]
245 i[E—(§+K)T

exp{i[E—(4'+K,)’ T} (z,~2)} (3.18)
where z, and z, denote the smaller and the greater of the quantities z and z', respectively.
In the case of E— (Z}'-l—K,,)2 <0 and z—2'>0 or z—z’ <0 we obtain the following result

iy __;IH expli(§'+K,) (ii— )]
G(r,r')= 2 ; [(§+K)—E]*

exp{~[(§'+K,)’~El}(z,—z)}. (3.19)

4. Representation of the wave function and Green’s function

_ Our further considerations are based on the system of integral equations (2.17) by means
of which we can derive the final secular equation of atomic system being investigated. For
that purpose, however, we need the representations of the wave function and Green’s
function in regions I and 177, respectively, because of the spherical symmetry of the poten-
tial. ; :

Inside each atomic sphere of the first region, say the one centered at the atom located
at (_:’,- as shown in Fig. 3, we can expand the wave function in terms of products of radial
functions and spherical harmonics '

o 1 { : '
YOG, p)=Y ¥ CORO(r) Yu(3is 91), (4.1)
I=om==1 ‘

where 9;, ¢, are the polar angles of 7, =7 — éi and Y, are normalized spherical harmonics.
R are radial functions which satisfy the radial differential equation

[ i (rz [%)+ B0 V“’(r)—E] RP(r)=0, 42)

r2 dr r?

with the boundary conditions requiring the functions R{" of the coordinate system to be
finite at the origin and R (p)=1 » Where p, is the radius of the atomic sphere about the
ith atom in AS. These functions should be calculated for each kind of atoms in SUC.

To make use of the spherical symmetry, we-also need an expansion of G (¥, #)in spheri-

cal harmonics. Introducing =7+ C, and #'=7¥,+ C}, where 7, and. 7} are the position
vectors of the ith and jth nucleus in the AS, as illustrated in Fig. 3, we can expand Green’s
function in spherical harmonics with angular coordinates 7,7/, ¥,=7—C, and rj=7'-C;
as their arguments [6, 7]. :

Thus, we have

G(ii)( ;:i s ;{) = ; I,Z Al(rril‘;)l’m’jt(’cri)jl’(xr;')+ KOy Oy nt(’cr;)jl(’cri) Y, (8, ¢i)Yl=r: (%, o)),
L 4.3)

9 Prace IMP, z, %6
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\
’Fig. 3. The position vectors ¥ and 7’ relative to
some chosen origin
and
SN - - £ Y a i
G(”)( Ty, 7’]’) T Z ZAl(nllJ)l’m .]l(xri)]l’(xr_;') Ylm(’gi > (0;) Ylm (‘9; s ‘:0}’), s L B (44)

where x=E?* for E>0 and x = +i(— E)? for E<O0.

The quantities j;, 1y, A,,,, o and A(”) e denote the spherlcal Bessel, . the spherical
Neumann functions, the diagonal and the oﬁ' diagonal structure constants. These constants
_ are given by :

'y @ (r sy s ; -
A§Z3l’m’=47;l( )Z i DI(,II:} CLM, Im,Um’" > (4-5)
LM
and : ;
o (=1 e - : ,
A;rlnj,)l’m' = 41”'( )Z i DSJIW) CLM, m, I'm’' > {4'6)'
LM :

where the coefficients D{3; for i =j and i#j are defined as follows:
B oa )+ D (2)+6.6 6;; Do - 4.7)

- A practical scheme for evaluating these coeflicients is based on Ewald’s"method i8].
The explicit expressions for the terms in (4.7) can be written in the form [9]

expli(3+K) (Gi=C))]
(4+K,)’~E

DU A Z exp{[— (G+K,)>+E]fn} %

XI6+K ILYL?\J(‘Sns ?n)) (48)

L+1
D2 )——( Vo LZ exp(iq: Rm)IR,,, C, +CJ|LY(9,”, gom)x
x :expl:—(l’{'m—é,-—i—éj)zé i ]521“615 (4.9)
n/2)2 ; <
2 o En)’ e ;
D00(3)=_71 (E/n) (4.10)

Trso V1)

where £ is the volume of the AS, whereas 3,, ¢, and .., 0., are the polar angles of vectors
qg+K,and R,,—C,+C; * respectively.
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The summation in (4.9) is carried out over all two-dimensional lattice vectors and the’
prime indicates that the term with Rm—O is to be omltted for isj. The parameter # in
(4.8),(4.9) and (4.10) is chosen arbitrarily in order to op*tmuze the convergence of the sum-
mations. o

The quantities Crys, 1, e are the Gaunt integrals of the form

2z n

Crat, o, v = I dg f sindd9Y,u(3, ¢) Yin (3, ) Yy (9, ). (4.11)

The coefficient Conm,tm, v =0 if M #m—m’, whereas the sum over L runs only the values
]l If<L<(l+l) and (/+/'+L) is an even integer. The C’s vanish for other L’s.
We turn now to the region 711 in which the wave function has the representation [10]

w(M)=Y CPexpli(+K,) i]u®(2), (4.12)
n

where k=1, correvspond to z; = —b and z, =b, respectively, and C* are the coefficients.
The functlon ' (2) satisfies the Schrodinger equation

J’——+V(4) [E—(q+K,) J} u,(2)=0, (4.13)

with the boundary condltlons P (+00)=0 and uP(b)=1. An analogous equation is
satisfied by the function M (2). e
The representatlon of the Green function for this region is given by expression (3.18).

5. Secular equation

Having determined the répresentations of the wave function and Green’s function we.
can derive the secular equation for our system. For that purpose we will need the standard
expansions of plane waves into spherical harmonics and spherical Bessel functions [11]

exp(ik-7)=4n Y ilji(kr) V(97 » 07) Y (3¢, 07) (5.1)

Im

and ‘ 3
exp(—lk r)=4n IZ (~1)Jz(kr) Ylm(‘gr » 00 Yl o), el
where 9;, g7 and 9z, pi are the polar angles of r and k in a fixed coordinate system.

Substituting (3.18), (4.3), (4.4) and (4.12) into (2.17), using (5.1), multiplying (2.17)
by. Y, (8, ¢r), using orthonormal properties of spherical harmonics carrying out inte-
gration over atomic surfaces S; with respect to » and over the entire surface Sy, ;;; with
respect to 7' we obtain the set of equations [12]

pl]l{ Z P [Kéll 6mm (nl L(O—nl )+Al(ri:)l m' (.]l L(l)_] )] Cl(1n)1

Um’,i=j

+ Y pilA . G LP=j)ICH+ Y ATAGU(~LP+il,) CP +
n

rm' it

+ A48 DA+, CE =0, (5.3)

g
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; d d
\"t"—— Einv(m'i) Lo Jjr= d—Jl (xr;) Tk

* where ¢

"dRY(r)
e ——;,(—-) =[ m(,l)] , (54)
RPN,
dul du®
mal B JEH || O
Up ™ dz=-p dz J.— up dop | 42 de=s
The corresponding structure constants A,(,';,’,Z,,z and A,(,i,;,l,,? are
A 2mant OO 2 g g0, 3
and
s min IRV 1 o o3, (56
where
PP=(q+ Ky, 0,7 Ky, —12), - - (5.7)
and ‘ .
PP =(g:+Kyas 45+ Ky, L) | (5.8)
The normal components of the vectors f’,(}) and P? are :
r=[E-(§+K)*1* if  E>(3+K,)> (5.9)
I 4iltg+EV—EF if "E<(@+K)> (5.10)

and the polar angles of these vectors are denoted by IV oD and 9P, pP, respectively.
For E<(q+K,)? the vectors P and P? have imaginary components. The spherical har-
monics, in this case, have complex arguments and are defined by [7]

¥ (8059, D) [(21+1)(l-—|m|)

il5,
x4 m])! ](+ )lmlplml[ E]e"p(""‘”“ ), G

where P}™ (x) is Hobson’s associated Legendre function.

Now choosing * to lie above the plane surface z,, putting (3.18), (4.1) and (5.2) into
(2.17), multiplying it by exp [—1i (@’ +K,)-u], integrating 7 over the atomic segment boundary
of area A on the plane z,=>» and 7’ over the surface Sy, ;;; we get

AL} T AGR G =) Cht A4 VP +L) OO+

J, V'm’

+AAS (LD -iL)CP]1=0, (5.12)
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where the structure constants are
exp(iﬁf,z)- c ;) exp(ibl,)
2ir, A

il B e
i1 S, e " 2il, 4

A =dm (1)

Yk 92, 0, (5.13)

42D (5.14), (5.15)

Proceeding similarly as before and taking 7 below the surface z, we obtain
ALp; ¥ ADER e I —ji) Clh + AAL (EP —i L) O+
Jyt'm’
+AA1(;1' 2)( = L(HZ) a5 1[;1) C1(12)] =0. (5'16)
The structure constants are :

exp(iP{"- C;) exp(ibT,)

,(’11”!)' = 475( )l 2%l A Yl’m((‘gr(ll)9 ¢ul)) (517)
exp(2il,b) ' 1 :
e (5.18), (5:19)

n n

The basic equations (5.3), (5.11) and (5.15) represent a set of linear equations for the
coefficients C), CV, C(?, The solution of these equations will be nontrivial if the deter-
minant of the coefficients vanishes. The secular equation obtained in such a way contains
the required stationary connection between the energy E and the two-dimensional wave
vector q. The order of this equation equals the number of atoms in the AS times the num-
ber of coefficients C{? in (4.1) plus the double number of reciprocal lattice, needed to
describe the wave function (4.12) in each surface strip.

Received by the Editor, February 1982.
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Wielorozproszeniowa metoda do analizy chemisorpcji
Streszczenie

Praca dotyczy szczegolow metody teoretycznej wielokrotnego rozproszenia stosowanej do analizy
powierzchniowych wlasnosci krysztalow czystych graniczacych z préznig oraz powierzchni pokrytych:
cienka warstwa os$rodka adsorbowanego. Metode te stosuje sie do uporzadkowanych uk lfadoéw perio-
dycznych w ramach modelu cienkiej ptytki. Pozwala ona na wyznaczenie wiazan chemiczny ch adsorbo-
wanego o$rodka, jak réwniez struktury elektronowej podloza oraz zmian tej struktury w wyniku oddzia~
lywania tego osrodka. : i

Meroq MHOCOKPATHONO paccestHust JUIsE CHCTEM ¢ XeMocopOuuei

< ’

Pesrome

B macrosimei padore PacCMaTPUBAIOTCS feopem%cme OCHOBBIL Meroila MHOT'OKPATHOTO PaCCesHAsz
Koppurrn, Kona, PocTokepa, CIyXKamlero il MCCIEIOBAHNAS SIEKTPOHHON CTPYKTYPhI YHACTHIX IOBEPX-
HOCTel, a TakxKe aJICOpPOIMOHHBIX MOBEPXHOCTHBIX CBOMCTB.

OT0T METOA NPAMEHACTCH, B PAMKAX MOJEIN TOHKOHM IUTACTHHKH, VIt HCCIICIOBAHMIT 3JIEKTPOHHOM
CTPYKTYPhl TEPUOIHYECKUX YIOPSINOYCHHBIX CHCTEM, ancopGHpOBaHm;;x Ha IIOBEPXHOCTH KPHUCTAIa,
BJ'IeKTpommx/ COCTOSHMM, a TakXke XHMHUYECCKUX CBA3CH aacop§am. ! : ;



