POLSKA AKADEMIA NAUK INSTYTUT MASZYN PRZEPŁYWOWYCH

PRACE INSTYTUTU MASZYN PRZEPŁYWOWYCH

TRANSACTIONS

OF THE INSTITUTE OF FLUID-FLOW MACHINERY

89

WARSZAWA – POZNAŃ 1989

PAŃSTWOWE WYDAWNICTWO NAUKOWE

PRACE INSTYTUTU MASZYN PRZEPŁYWOWYCH

poświęcone są publikacjom naukowym z zakresu teorii i badań doświadczalnych w dziedzinie mechaniki i termodynamiki przepływów, ze szczególnym uwzględnieniem problematyki maszyn przepływowych

THE TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY

exist for the publication of theoretical and experimental investigations of all aspects of the mechanics and thermodynamics of fluid-flow with special reference to fluid-flow machinery

RADA REDAKCYJNA – EDITORIAL BOARD

TADEUSZ GERLACH HENRYK JARZYNA JERZY KRZYŻANOWSKI STEFAN PERYCZ WŁODZIMIERZ PROSNAK KAZIMIERZ STELLER ROBERT ŚZEWALSKI (PRZEWODNICZĄCY – CHAIRMAN) JÓZEF ŚMIGIELSKI

KOMITET REDAKCYJNY -- EXECUTIVE EDITORS

KAZIMIERZ STELLER – REDAKTOR – EDITOR WOJCIECH PIETRASZKIEWICZ ZENON ZAKRZEWSKI ANDRZEJ ŻABICKI

REDAKCJA — EDITORIAL OFFICE

Instytut Maszyn Przepływowych PAN ul. Gen. Józefa Fiszera 14, 80-952 Gdańsk, skr. pocztowa 621, tel. 41-12-71

> Copyright by Państwowe Wydawnictwo Naukowe Warszawa 1989

> > Printed in Poland

ISBN 83-01-07072-2 ISSN 0079-3205

PAŃSTWOWE WYDAWNICTWO NAUKOWE - ODDZIAŁ W POZNANIU

 Nakład 300+90 egz. Ark. wyd. 13,25. Ark. druk. 10,5. Papier offsetowy kl. IV, 71g.
 B-1. Oddano do składania w kwietniu 1987 r. Podpisano do druku w marcu 1989 r. Druk ukończono w grudniu 1989 r. Zam. 90/89 K-8/66
 SKŁAD WYKONANO W ZAKŁADACH GRAFICZNYCH im. KEN W BYDGOSZCZY DRUK ZAKŁAD POLIGRAFII WSP W ZIELONEJ GÓRZE

ROMUALD PUZYREWSKI, ANDRZEJ JAKUBEK

Gdańsk

Wpływ prędkości obwodowej i parametrów kształtu na współczynnik masowego natężenia przepływu przez szczeliny pierścieniowe*

Praca zawiera wyniki badań współczynnika masowego natężenia przepływu przez szczelinę pierściemowa utworzoną między obracającą się tarczą a nieruchomą obudową.

Szczeliny pierścieniowe są powszechnie występującym elementem maszyn wirnitowych. Obliczenie masowego natężenia przepływu przez takie szczeliny związane z koniecznością określenia współczynnika masowego natężenia przepływu μ padku ciśnienia w obrębie szczeliny Δp . Wówczas, mając dane pole przekroju szczeliny S i gęstość czynnika ϱ , masowe natężenie przepływu oblicza się według wzoru

$$m = \mu S \sqrt{2\varrho \Delta p}. \tag{1}$$

Spadek ciśnienia wynika na ogół z konstrukcji i warunków pracy maszyny wirnitowej. Współczynnik μ masowego natężenia przepływu jest natomiast silnie zależny od kształtu szczeliny. Literatura dotycząca tego tematu jest bardzo obszerna, ale obejmuje głównie uszczelnienia labiryntowe [1].

Chcąc bliżej poznać wpływ oddzielnych czynników na wspotczynnik masowego teżenia przepływu dla szczelin pierścieniowych o prostych konstrukcjach zbudozno stanowisko pomiarowe pokazane na rysunku 1. Szczelina pierścieniowa utwozona była pomiędzy obracającą się tarczą a jej obudową. Wysokość szczeliny wytosiła 1 mm. Obroty tarczy regulowane były w granicach od 0 do 18 000 obr/min dla arczy o szerokości 1 mm oraz od 0 do 12 000 obr/min dla tarcz grubszych, co przy rednicy tarczy D = 150 mm odpowiadało maksymalnej prędkości obwodowej = 140 m/s. Dla charakteru zmian współczynnika μ w tarczy o szerokości 1 mm stotny jest fakt zaokrąglenia krawędzi tej tarczy.

Ciśnienie przed tarczą regulowano dławiąc napływ powietrza do wentylatora zasilającego stanowisko. Maksymalna wartość nadciśnienia wynosiła 1800 Pa (180 mm H_2O), co odpowiadało maksymalnej prędkości przy ekspansji izentropowej w == 55 m/s. Ciśnienie za tarczą było równe ciśnieniu atmosferycznemu.

3*

^{*}Praca wykonana w ramach planu C1 (prace własne placówki).

1 – wentylator, 2 – rurociąg, 3 – tarcza wirująca, 4 – silnik napędzający, 5 – zwęzka pomiarowa, 6 – manometr różnicowy, 7 – czujnik fotoelektryczny, 8 – termometr (tarcza o grubości 1 mm miała zaokrąglone krawędzie)

Program badań przewidywał zmianę długości L szczeliny pierścieniowej (grubości tarcz L=1; 7,1; 13,8; 19,4; 24,4 mm), zmianę obrotów — a zatem prędkości obwodowej u oraz zmianę ciśnienia przed tarczą, a więc prędkości ekspansji izentropowej w.

Zwężka umieszczona przed tarczą umożliwiała pomiar masowego natężenia przepływu m, zatem możliwe było wyznaczenie współczynnika masowego natężenia przepływu ze wzoru (1)

$$\mu = \frac{m}{S\sqrt{2\varrho\Delta p}}.$$
(2)

Przykładowy rozkład punktów pomiarowych dla tarczy o szerokości L=7,1 mm pokazuje rysunek 2. Na osi rzędnych przedstawiono wartości współczynnika masowego natężenia przepływu μ , na osi odciętych stosunek prędkości obwodowej u do prędkości przy ekspansji izentropowej w. Można zauważyć wyraźny spadek wartości współczynnika masowego natężenia przepływu μ w zależności od parametru u/w, a więc od prędkości obrotowej tarczy, a także różnice w wartościach współczynnika μ przy różnych nadciśnieniach przed tarczą Δp . Im nadciśnienie Δp jest wyższe, tym większa jest wartość współczynnika μ .

Rysunek 3 pokazuje wykresy zależności wartości współczynnika μ od parametru u/w oraz od grubości tarczy L, przy stałej wartości nadciśnienia przed tarczą, równej 1000 Pa (100 mm H₂O). Daje się zauważyć, zgodnie z oczekiwaniem, wyraźny spadek wartości współczynnika μ wraz ze wzrostem grubości tarczy L oraz ze wzrostem wartości parametru u/w.

Można podać następującą interpretację fizyczną zjawiska (rys. 4): na obracającej

Rys. 3. Wpływ szerokości tarczy i ilorazu prędkości obwodowej u do prędkości przy ekspansji izentropowej w na wartość współczynnika μ masowego natężenia przepływu, przy nadciśnieniu przed zwężką 100 mm H₂O (tarcza o grubości 1 mm miała krawędzie zaokrąglone, pozostałe tarcze posiadały krawędzie ostre)

się tarczy, poczynając od osi, formuje się promieniowo-obwodowy ruch elementów płynu. Zgodnie z rozwiązaniem dla osiowo-symetrycznej warstwy przyściennej na obracającej się płaszczyźnie, składowa promieniowa prędkości osiąga maksymalną wartość $u_{rmax} = 0,18 u$. Obudowa tarczy powoduje wyhamowanie ruchu promieniowego, co wiąże się ze wzrostem ciśnienia w okolicy obwodu tarczy po obu jej stronach. Spiętrzenie to, oznaczone $\Delta p'$ przeciwdziała spadkowi ciśnienia Δp na szczelinie pierścieniowej. Jest ono tym większe, im większa jest prędkość obwodowa tarczy. Ruch osiowy płynu zaburza oczywiście przepływ w okolicy szczeliny pierście-

37

niowej, ale wydaje się, że taka interpretacja fizyczna efektu zmniejszania się wartości współczynnika masowego natężenia przepływu u odpowiada stanowi rzeczywistemu.

Drugim elementem wpływającym na wartość współczynnika μ jest droga, jaką musi przebyć element płynu aby przedostać się na drugą stronę tarczy. Im większa grubość tarczy, tym dłuższa droga, którą element płynu musi przebyć, a z tym wiąże się wzrost oporów przepływu, także przeciwdziałających nadciśnieniu Δp , które wywołuje przepływ.

Próbując stworzyć model matematyczny zjawiska, przeprowadzono następujące rozumowanie: przepływ wywołany jest przez nadciśnienie przed tarczą Δp pomniejszone o wartość $\Delta p'$ związaną ze składową promieniową prędkości elementu płynu oraz o wartość $\Delta p''$ związaną z oporami przepływu. Natężenie przepływu można zatem obliczyć z zależności

$$m = \mu_0 S \sqrt{2\varrho (\Delta p - \Delta p' - \Delta p'')}, \tag{3}$$

gdzie μ_0 — wartość współczynnika masowego natężenia przepływu dla $\Delta p' = \Delta p'' = 0$, S — pole powierzchni szczeliny pierścieniowej.

Zależność (3) można przedstawić w postaci

$$m = S \sqrt{2\varrho \Delta p} \,\mu_0 \sqrt{1 - \frac{\Delta p'}{\Delta p}} - \frac{\Delta p''}{\Delta p}.$$
(4)

Wartość współczynnik'a wypływu µ określa część zależności (4)

$$\mu = \mu_0 \sqrt{1 - \frac{\Delta p'}{\Delta p} - \frac{\Delta p''}{\Delta p}}.$$
(5)

Zgodnie z przedstawioną wyżej interpretacją, poszczególne spadki ciśnienia można określić jako

$$\Delta p = \frac{\varrho w^2}{2}, \qquad \Delta p' = a^2 \frac{\varrho u^2}{2}, \qquad \Delta p'' = b \frac{L \varrho w^2}{\delta}, \tag{6}$$

gdzie Δp oznacza nadciśnienie przed tarczą w stosunku do ciśnienia atmosferycznego, $\Delta p'$ — część ciśnienia związaną ze składową promieniową prędkości elementu płynu, przy czym *a* jest współczynnikiem określającym, jaka część prędkości obwodowej powoduje powstawanie ciśnienia $\Delta p'$ przeciwstawiającego się przepływowi. Wartość $\Delta p''$ określono w sposób podobny do sposobu obliczania oporów przepływu w rurociągu. Współczynnik b jest odpowiednikiem współczynnika tarcia λ , L — gruboscią tarczy wirującej, $\delta = 1 \text{ mm}$ — wysokością szczeliny pierścieniowej. Podstawiając zależności (6) do (5) otrzymujemy

$$\mu = \mu_0 \sqrt{1 - a^2 \left(\frac{u}{w}\right)^2 - b\frac{L}{\delta}}.$$
(7)

Przedstawiony model nie dawał zadowalającego przybliżenia zjawiska. Po analizie okazało się, że wartość $\Delta p''$ zależy nie tylko od grubości tarczy, ale i od jej prędkości obwodowej. Wzrost prędkości obwodowej tarczy powoduje wydłużenie drogi elementu płynu w szczelinie (rys. 5). Ostatecznie otrzymano następującą strukturę wzoru na współczynnik wypływu μ

$$u = \mu_0 \sqrt{1 - a^2 \left(\frac{u}{w}\right)^2 - b \frac{L}{\delta} \left(1 + c \frac{u}{w}\right)}.$$
(8)

Jest to prosty model zachodzących w okolicy szczeliny zjawisk. Współczynnik c określa wydłużenie drogi elementu płynu wraz ze wzrostem prędkości obwodowej.

Rys. 5. Szkic drogi cząsteczki na skutek wzrostu prędkości obwodowej tarczy

Metoda najmniejszych kwadratów określono wartości współczynników μ_0 , *a*, *b*, c. Ostatecznie wzór określający wartość współczynnika masowego natężenia przebywu przyjął postać

$$\mu = 0,829 \sqrt{1 - 0,132^2 \left(\frac{u}{w}\right)^2 - 0,011 \frac{L}{\delta} \left(1 + 0,242 \frac{u}{w}\right)}$$
(9)

dla nadciśnienia przed tarczą $\Delta p = 1000$ Pa (rys. 3). Uzyskano stosunkowo mały rozrzut punktów eksperymentalnych wokół krzywych wyznaczonych wzorem (9). Sytuacje pokazano na rysunku 3.

Warto zwrócić uwagę na wartości współczynników a, b oraz c. Wartość a = 0,132jest tego rzędu co obliczona teoretycznie dla osiowo-symetrycznej warstwy przyciennej na obracającej się płaszczyźnie [2]. Określała ona maksymalną wartość promieniowej składowej prędkości elementu płynu jako

$$u_{\rm rmax} = 0,18 \ u.$$

Wartość współczynnika b = 0,011 jest rzędu wartości współczynnika tarcia λ przy przepływach w rurociągach.

Wartość współczynnika c = 0,242 mówi, o ile wzrasta droga elementu płynu przy wzroście prędkości obwodowej tarczy. Brak jest na razie prostej interpretacji dotyczącej wartości liczbowej tego współczynnika.

Nie analizowano wpływu nadciśnienia na wartość współczynnika μ_0 . Wpływ ten uwidacznia rysunek 2. Zgodnie z sugestią [3] może on być określony przez zależność μ_0 od liczby $Re = \frac{w\delta}{v}$. Ze względu na brak możliwości technicznych wpływ ten nie był badany w dostatecznie szerokich granicach zmienności Δp .

Praca wpłynęła do Redakcji w grudniu 1984 r.

Literatura

- [1] K. Trutnowsky, Berührungsfreie Dichtungen. VDI-Verlag, Düsseldorf 1964.
- [2] L. G. Lojcianskij, Laminarnyj pogranicznyj sloj. Moskwa 1962.
- [3] Z. Kazimierski, M. Krysztof, Z. Makowski, Strumień masy gazu w przepływie przez szczelinę z niesymetrycznym ostrokrawędziowym wlotem. Archiwum Budowy Maszyn, t. XXXI, z. 1-2, 1984.

Влияние окружной скорости н параметров формы на коэффициент массового расхода при течении через кольцевые щели

Резюме

Для щелей, образованных вращающимся диском в корпусе, исследовались значения коэффициента массового расхода течения в зависимости от окружной скорости и длины щели. Обнаружено истинное влияние обоих этих факторов на значение этого коэффициента. Дана простая физическая интерпретация полученных результатов и предложена функционная зависимость (9)

$$\mu = f\left(\frac{\mu_0 u}{w}, \frac{L}{\delta}\right),$$

где и — окружная скорость, w — скорость изэнтропного перепада давления в щели, L — длина щели, δ — высота щели. Численные коэффициенты в вышепредставленной функции определены на основе полученных результатов измерений.

The Influence of Peripheral Speed and Shape Parameters on the Mass Flow Rate Coefficient Characterizing the Flow Through Annular Gaps

Summary

The coefficient of mass flow rate for gaps formed between a rotating disk and its housing has been investigated as a function of the disk peripheral speed and the gap length. Essential influence of these two factors on the coefficient value has been ascertained. A simple physical interpretation of the results has been given. A functional relation

$$\mu = f\left(\mu_0, \frac{u}{w}, \frac{L}{\delta}\right)$$

has been proposed, where u is the peripheral speed, w is the rate of isentropic pressure drop across the gap. Lis the gap length and δ is its height. Numerical coefficients in the function have been determined based on the results of measurements.