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MANFRED HACKESCHMIDT, HANS-DIETER HILBRICH
MATHIAS ROSSLER, NORBERT KRUGER

Dresden®)

Secondary Flows in Curved Channels of Arbitrary Cross
Section Variation**)

In order to calculate energy losses caused by secondary flows in curved channels of any sectional
change a mathematical model of a stationary, inviscid (ideal) flow field has been applied. The qualitative
correspondence between the wall streamlines in-a specially curved channel determined numerically
(FORTRAN program) and the wall streamlines displayed experimentally ina wind channel has led to the
development of a caleulation method for three-dimensional boundary layers. Fundamental results of the
behaviour of secondary flows due to different effects are given in the present paper.

1. Statement of the Problem

As it is well-known, flows along curved channels are of a typical three-dimensional
nature. and their energy loss calculation is generally based on empirical-heuristic
correlations found experimentally. It is evident from Fig. 1 that the total pressure
boundary loss coefficient of plane blade cascades — passed through without sepa-
ration — can be assessed from the empirical relationship

sinf},

(o= 143-1072£(5%)+2-10"* (B, — B>) (140.1)

Sipf, =

The main influential parameters are the inflow and outflow angles, f, and .,
according to the structure found by H. Wolf [13]***) and the displacement thickness,

*) Eriedrich List University of Transport and Communications, Department of Vehicle Engineering,
Dresden, German Democratic Republic.

**) Paper read by M. Rissler on October 25, 1984, at the Technical University of Gdansk as an
extended version of a publication to the Hydrosoft” Conference in Portoroz, Yugoslavia, September
10—14, 1984, copyright by CML Publications, Ashurst Lodge, Ashurst, Southampton SO42AA. England.

*#%) It should be noticed that the #, and f, values appearing in Fig. 1 and the above equation are
expressed in grades (grd) and not angle degrees (%). In general -
sinf, >1 ?n casc of decelerated flow,
= 1 in case of ,,equal pressure” flow,
< 1 in case of accelerated flow.

sinf3,

When a higher degree of accuracy is.required it must be taken into account that the functional dependence
on the factor sinff,/sinf, increases in a slightly progressive way.

1+ 3]
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Fig. 1. Empirical correlation of the total pressure boundary loss coefficient {, and the following quatities:
f, ~— cascade inlet angle, f#, — cascade outlet angle, 0f — displacement thickness on the channel side
wall in the cascade inlet plane (D) (measuring points fixed by H. Wolf [13] for the parameters at lower
left corner of the figure and valid for a small turbulence degree at the exit), b — channel height (perpendi-
cular to the figure plane), [ — profile chord length, k — peak-to-valley height of channel surfaces
The right ordinate scale applies to the re valuation recommendation according to [6]. The pressure losses
shown in Fig. 1 are related to the dynamic pressure in the cascade inlet plane () in case of decelerated
flow, in all the other cases to that in the cascade outlet plane Q) »

07, in the cascade inlet plane for which M. Hultsch and H. Sauer [6] recommen-
ded a re-valuation (see the scale at the right hand side of the ordinate axis in Fig. 1).
A dependence of this inlet displacement thickness on other relevant influential para-
meters is unknown.

Due to a number of further parameters being of importance, including velocity.
vorticity and turbulence degree distributions, observed in channel inlet sections.
sectional path of curved channels, longitudinal vortex in the corner, separation areas
and so on, loss calculation is possible only in a relatively rough way (evaluation) or
else an adequately large number of information must be given.

An alternative to this is to use a mathematical model allowing for the sufficiently
exact calculation of secondary flows in curved channels of any sectional change
which run in the main flow direction. By means of this model it is possible to analyse
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the three-dimensional flow field in order to develop efficient installations serving to
influence the secondary flow field. In this way a possibility is seen for designing
arbitrarily curved channels of any shape with power limiting properties.

2. The Mathematical Model

A clear explanation for the formation of secondary flows was given by E. Lindner
[8]. The mechanism of vortex formation is based on the existence of a side wall
boundary layer of transversal velocity distribution v,(z) in the inlet plane @ of the
curved channel as demonstrated in Fig. 2. Due to the pressure difference between the
suction side SS and the pressure side PS this boundary layer is more strongly de-
flected than the basic flow in the curved channel. Some basic relationships governing
fluid rotation are given in Table 1. Although the secondary flow is caused by a fric-
tion effect, its development in the curved channel may be considered by means of
a friction-free model, i.e. that of an ideal {luid. This model results in the Helmholtz
vortex equation (1) shown in Table 2. By simplification, the equation system (3) is
obtained if the basic flow velocity distribution v,(r) in the curved channel of constant
cross-section is approximated according to the law (2) of the free vortex (see Appendix).
Equation (3.2) describes the Helmholtz vortex theorem according to which the circu-
lation (1) (see Table 1) of a vortex filament shown in Fig. 2 remains constant with
time.

Using the relationship (2) in Table 2 it is possible to differentiate the right side of
equation (3.1), and thus the common differential equation (4) and its integral (5) are
obtained. The above integral represents a change of the peripheral component of
rotation o, in the curved channel of constant cross-section, being proportional to the
angle of curvature ¢ This law can be explained by means of another Helmholtz
vortex theorem (2) shown in Table | and stating that vortex tubes consist perma-
nently of the same fluid volume. This volume moves with the basic flow velocity v,(r),
1.e. more slowly at the pressure side PS than at the suction side SS. This means that
in the present case the rotation vector @ moves with double angular velocity in

Fig. 2. Schematic diagram of fluid rotation in the curved channel of constant cross-section
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Table 1
Basic assumptions on fluid rotation in the
curved channel of constant

. Table 2
Mathematical model of an ideal secondary flow in
a plane curved channel of constant cross-section

cross-section (Fig. 2) e
V)o = (V)
oI = wdA (h v = const 2
oV = const 2 v, 6w, o (v,
e L oo w,.~—<~<> (3.1)
oy, ot O\ F
= — (3)
0z , = const 3.2
. =0
dw,
is et @)
de
0w, = —20¢ ©, ®)

direction opposite to that of the homologous elementary fluid volume of the basic
flow (see Fig. 2).

Theoretical investigations of secondary flows based on the Helmholtz vortex
equation (1) (see Table 2) were made by H. B. Squire and K. G. Winter [12]. They
restricted their studies to bends of inyariably rectangular cross-section being very flat
in the meridional plane, i.e. of high aspect ratio Az/An. In such a case it is possible to
determine analytically the stream function of the quasi-plane secondary flow field on
the basis of the fundamental result saying that the vortex of the secondary flow in
the persistent basic flow, i.e. in the bend of constant cross-section Az - Ar, is propor-
tional to the bend angle A¢ and the axial velocity gradient of the actual basic flow
upstream of the cascade (see equation (2) in Table 3).

R. Puzyrewski [10] modified the model of the ideal secondary flow by replacing
the coefficient @ = 24¢ in Eq. (5) of Table 2 by a function of the spanwise coordinate.
He follows the vortex lines in the bend and points out that the coefficient @ repre-
sents the cotangent of the angle formed between the vortex lines and the basic flow
streamlines.

L. Bélik [2] modified the shape of the inflow velocity profile and the aspect ratio
of the bend and showed their influence on the secondary flow field.

As the aspect ratio is comparatively high, the solution may be obtained analytically.

In 1975 D. Bazant [1] applied this vortex flow theory to bends of non-flat, but
still invariable flow cross-section, and solved the Poisson equation (2) of Table 3 nu-
merically using the method of finite differences.

Now the question is, in which way the vortex flow model may be modified to
apply it to arbitrarily curved channels.

The mathematical model of ideal, i.e. inviscid secondary flows does not get much
more complicated if the simplifications stated are dispensed with from the very
beginning.

M. Hackeschmidt [3] put forward a theory serving to calculate ideal statio-
nary secondary flows in curved channels of any sectional change. His mathematical
model is based on the idea of dividing the curved channel into a multitude of bends
(partial knees, Fig. 3). Such bends are formed by adjacent equipotential surfaces
(which R. Puzyrewski calls Bernoulli surfaces) of the basic flow, i.e. the flow which



Fig. 3. The patterns of equipotential lines
(@) and streamlines (¥) of the basic flow
n the plane channel existing in the inlet
range (i.e. without diffuser in the cascade Ver
channel outlet range); ¢ — cascade pitch
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Table 3
Mathematical model of an ideal secondary flow in a plane curved channel
of arbitrarily variable cross-section
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is not influenced by the secondary one. This assumption of such a basic flow —
expressed by the iteration index (0) in equations (3) and (4) in Table 3 — means that
the velocity curl of the secondary flow marked by an apostrophe () may at first
be left neglected in the Helmholtz equation (1) (see left condition (3) in Table 3 and
Appendix). Thus equation (1) is simplified to the common differential equation (3)
in Table 3 describing the secondary flow rotation »"” = »'” depending on the local
velocity of the basic flow v, & ¢ which is not influenced by the secondary flow, the
radius of curvature r of the streamlines ¥ and the curvilinear coordinates s and n
{see Fig. 3). By applying a series expansion of the basic flow velocity v, and the
vorticity 2o’ along the streamwise coordinate s and approximating the dependence
in spanwise direction v(n) by means of the law vy = const (after equation (2) in
Table 2) the differential equation (3) in Table 3 can be integrated. In this way equation
(4) is obtained with As denoting the partial bend thickness. The parameter W repre-
sents the ratio of the velocity in the inlet area v(0) to that in the outlet area v(As)
of each partial bend at the respective streamline ¥ while f is a function of this
velocity ratio W.

For the whole channel, W is equal to sinfi,/sinf}; in the case of a wake-free
cascade channel outflow, 1.e. W equals the parameter in the empirical formula for (..

The remaining term R in Eq. (4) of Table 3 covers higher order terms of series
expansion. In order to obtain the differential quotient of the basic flow velocity v,
versus the altitude coordinate z given in equations (3) or (4), a boundary layer cal-
culation along the basic streamlines formed on the channel side wall is required.
In this case it is a so-called collateral boundary layer, as described, for instance, by
W. Kiimmel [7]. The term ,,collateral” means that the boundary layer along the ¥
streamline is computed without regard to the influence of the secondary flow.

As the radius of curvature r of basic streamlines ¥ in a channel having stagnation
points St (Fig. 3) can become very small, M. Hackeschmidt [4] has introduced the
secondary flow stream function ¥’ (see equations (6) in Table 3) being a generaliza-
tion of the Stokes flow function. : =

It satisfies the lincar partial differential equation (7) of the second order, the local
secondary flow velocity being contained in its right side, i.e. in its inhomogeneous
term (7.1). Expression (7.1) is valid for the area of the side wall vorticity boundary
layer that is a wall area in which according to (4) the vorticity differs from zero. The
thickness d,,, of this vorticity boundary layer equals or is greater than the friction
boundary layer thickness o, (see equation (8)) in which vorticity is generated accor-
ding to the second term of the right side in equation (4). Beyond the vorticity boun-
dary layer (7.2) there is no secondary flow vorticity but the secondary flow field does
exist. Therefore the partial differential equation (7) gets homogeneous. '

3. Numerical Tests of the Mathematical Model

As an investigation object a special cascade channel was used (Fig. 3). Deflection
was observed in its inlet area where the flow was mainly accelerated, whereas in the
outlet area, in the present case downstream from the potential surface ¢ = 80, a nearly
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g 5 Leflt: Numerically determined wall streamline pattern of ideal total flow (continuous lines) and
potential basic flow (dashed lines). Right: Wall streamline pattern made visible by experimental means
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v Jodwh (1)
z 1
? y:areranzﬁ(é’)

¥s

Fig. 6. Total velocity on the channel side

wall obtained from the velocity v, of the
frictionless basic flow existing on the edge n

of the collateral boundary layer 0 and the

velocity v, of a frictionless (ideal) secon- V
dary flow on the wall W. The dotted lines

mark the boundary layers of the real flow

which at the beginning was not the subject

of investigation

rectilinear deceleration was seen. The whole channel was divided into about. 50 bends
(partial knees) and 20 diffuser sections of different cross-sections.

The mathematical model described (Table 3) was coded in FORTRAN by
H. D Hilbrich [51im 19380

For the cascade channel shown in Fig. 3, 15 streamlines ¥ and 11 planes in the
half-space parallel to the side wall were chosen. The distances between these planes
were kept small within the side wall boundary layer and larger in the centre of the
channel.

For the numerical determination of the secondary flow ficld in the individual
bends according to differential equation (1) in Table 3 a finite difference method was
used. By means of the code mentioned above it is possible to compute the local
secondary flow vorticity, the secondary flow stream function (Fig. 4), various charac-
teristic parameters of the secondary flow field, as for instance the circulation and the
vorticity centre coordinates, and the wall streamline field of the total flow resulting
from the basic and secondary flows, Fig. 5 left. As the ideal secondary flow velocities
are calculated in a sufficient number of equipotential surfaces by taking @ = const
(sce Fig. 3) and A® = 2%) — the value and the direction of the total velocity can be
determined following the superposition rule (see Fig. 6). An isoclinal field is obtained
permitting to plot the streamlines shown in the left side of Fig. 5. The special features
of the channel shown in Fig. 3 are the following:

for @ < 0, there are no fixed boundary walls.

for @ = [0, 40], there is only one fixed boundary wall in flow direction, i.e. part
of the blade profile surface and in case of

*) In the diffuser area A® = 1 was chosen,
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@ > 40, there are two fixed boundary walls, i.e. the remaining parts of the
pressure side PS and the suction side SS of the blade profile surface.

In case of unstable or open channel flow boundaries being kept constant, the set
of 15 streamlines covered 4 or 3 channels, i.e. several adjacent channels had to be
taken under consideration (see Fig. 3). Hence a relatively low supporting point
density resulted in the weak secondary flow area and a relatively high supporting
point density in the intense secondary flow area.

For the development of the electronic data processing program it proved to be
advisable from the methodological point of view to determine simultaneously the
secondary flow field by means of an electroanalogy model. This refers mainly to the
supporting point arrangement selected and to FORTRAN program tests for which
a reasonably accurate solution of equation (7) in Table 3, iec. the electroanalogue
solution, has been available.

4. Verification of the Theory

The same cascade channel (Fig. 3) was used by M. Rossler [11] to show
experimentally the streamlines formed on the end and side walls by applying the
soot/oil/petroleum method. Theoretical flow conditions in the channel inlet cross-
-section were in agreement with those observed experimentally.

In result of comparing the streamline patterns on the wall determined by means
of the two methods demonstrated in Figs 5 left and right, the relatively simple
mathematical model of the ideal secondary flow proved to be applicable. The com-
parison has been only a qualitative one as Fig. 5 left demonstrates the wall stream-
line field of a frictionless, i.e. modelled, flow while in Fig. 5 right the real flow field is
shown. Boundary layers as indicated in Fig. 6 are not considered here although the
collateral boundary layer has been used as secondary vorticity generator in equation
(3) and (4) shown in Table 3. In the inlet area @ = const (see Fig. 3) of the respective
bend this collateral boundary layer generates the quasi-vortex tube o, shown in
Fig. 2, which is, however, latent in the interior of the bend when lack of viscosity in
the fluid is assumed.

Due to the relatively good correspondence between numerical and experimental
results concerning the streamline pattern on the channel side wall formed in the inlet
area of the curved channel (see Fig. 5), the wall streamline pattern was determined in
the same way in the adjacent diffuser. As it is nearly rectilinear, the vorticity gene-
ration term at the right side of the differential equation (3) or the second term at the
right side of equation (4) in Table 3 are not applicable. Consequently, the secondary
flow field in the diffuser is only changed by the velocity ratio W (see: the left equation
(5) in Table 3). The result of this investigation is shown in Fig. 7. In the centre, the
streamline patterns formed on the channel side wall can be seen. In our case the
main flow through the diffuser is frictionless and can be represented by means of
equipotential surfaces. The diffuser begins at the equipotential surface @ = 80 and
ends at @ = 100. In Fig. 7 the abscissa in the upper graphs represents the left (PS)
edge of the diffuser channel (in flow direction) shown in the centre of the figure and
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Fig. 7. Left: Wall streamline patterns determined numerically and describing the ideal vorticity-dependent flow in a diffuser with frictionless main flow (dashed
Iines: potential basic flow). Right: Respective wall streamline patterns made visible in an experimental way. Top: Pressure side PS of cascade channel. Centre:
Channel side wall. Bottom: Suction side SS of cascade channel
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the abscissa in the lower graphs — its right (SS) edge. While the pressure side PS of
the cascade profile is folded counter-clockwise, the suction side SS is folded clock-
wise into the table plane. The assumed axis of rotation is in the direction of the main
flow in the table plane, i.e. in the figure it shows from left to right.

Although our mathematical model of the secondary flow is rather simple, as has
been already mentioned earlier, the qualitative comparison between numerical and
experimental solutions can be considered satisfactory.

5. Main results

There are local deviations between the wall streamlines of the ideal fluid and
those of the real one in both directions; but positive and negative deviations are
distributed over the whole channel system. Let us now raise the question how to
explain the relatively good correspondence between the wall streamline patterns of
the ideal secondary flow model and the real flow.

Ideal and real secondary flows can be distinguished from one another by means
of two phenomena showing opposite effects: on the one hand side the ideal secon-
dary flow rotates faster than the real one because of its freedom from friction, but
on the other hand side, in the case of a collateral boundary layer, less vorticity is
generated than in the case of a bilateral boundary layer, induced by primary and
secondary flows. As W. Kiimmel [7] demonstrated, the three-dimensional side wall
boundary layer gets thicker in the suction side region. lndependently of these facts
the following two findings may be regarded as essential ones.

5.1. Figure 4 shows that in the equipotential surface @ = 0 there are only nega-
tive values of the secondary flow stream function while in the equipotential surface
¢ = 20 and 40 there are only positive values and in the potential surface @ = 10
both negative and positive values occur.

Hence the change of streamline pattern in the cascade channel inlet area (see Fig. 3)
does not reduce, as a rule, the intensity of a secondary flow developing upstream,
but there is a new secondary flow forming in the opposite direction. This means that
in one and the same equipotential surface, secondary flow fields rotate both to the
left and to the right exist side by side. The new secondary flow displaces the “older”
secondary flow forcing it out of the (collateral) boundary layer area into the area of
the low-loss main flow. This is demonstrated in Fig. 8. It can be noticed that in those
channel areas in which only one secondary vortex exists the distance from the vorti-
city centre z,, to the channel side wall is smaller than — as a rule half of — the
homologous thickness o of the (collateral) boundary layer. However in the area in
which two vortices exist side by side, the curves of the distance between vorticity
centres z,, and the (collateral) boundary layer thickness o intersect.

~

5.2. Before the main flow reaches the stagnation point St in Fig. 3 it separates
from the channel side wall. As can be seen in Fig. 5 right, a line forms in front of the
stagnation point parallel to the pressure side limiting a three-dimensional stagnation
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S

zone. In the mathematical model this zone has been regarded up to now as black-box.
Consequently it was not possible in mathematical modeling to consider the longitu-
dinal vortices in the corner developing downstream from such a three-dimensional
stagnation zone. But indeed they have a marked influence on the whole flow field
and must be taken into account in mathematical modeling.

6. Prospect

The good qualitative conformity of wall streamline patterns found by experiment
with those of ideal (i.e. frictionless) secondary flow have led to the development of
a theory which is used to calculate three- dlmenslonal (bilateral) boundary layers
according to the integral method.

At present their programming and verification serve the purpose of calculating
the pressure losses caused by secondary flows in the channel.

Received by the Editor, November 1986
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Appendix

Determination of the secondary flow vorticity in the zeroth approximation in curved

plane channel without taking side wall boundary layers into account

(according to M. Hackeschmidt, 1981)

The Helmholtz equation (1) in Table 2 reads in cylindrical co-ordinates (r, &, z) with z-axis directed

parallel to the basic flow as:

é 1@ b4, W0 g e
€ =6, +U e =| =+ +v)——+1v,— |—.
rce 0z r ar roe oz/ r

The terms with d/de in Eq. (1) result from the fraction:
w, 0 B+, G+v. Dcr) <E+L';>ZE

Now Eq. (1) reads as follows:

I+ N 8 o, 0 d\v+v. o @
= Oyt 0. — = |k
r ce l'+l or oz r or

The O-th approximation can be made assuming

vh=vl =0, =0,
whence the following is true:
1¢ére 10rd
@, = 25, = 08 —
¥z ror

Equation (3) is simplified to read as follows:

A (P 2 > SR\
-0 @ et s o]
e s ]
] 0 or Lok

2|

)

@

3

)

(6)

This is the differential equatlon for the main component of secondary flow vorticity in the zeroth ap-

proximation.

We choose the integration interval A¢ in the direction of the basic flow so small that the confinement
to linear changes of the basic flow velocity # and the boundary layers vorticities @, is sufficient, whence

80 = 2@ = 2, BH—0lD)

™

= = oG
a(e) = (D) +—e, —
O¢ d¢ Ae

Spanwise to the basic flow direction the rotation theorem can be applied which implies

-
B(r) & B(F)-
-

with 7 being the curvature radius of the basic flow mean streamlidfe.

The basic flow velocity in the z direction can be assumed to change stepwise which means

00 0(Az)—(P) v
0z z 0z|4e Az
T

2 — Prace IMP z. 92

0d (D(Ae)—cbﬁ).)

(7.1)

(7.2)

(8

9
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It follows from Eq. (8) that

8
bl (10)
3

Thus the integral of the differential equation (6) is equivalent to equation (4) in Table 3.

Przeplywy wtorne w kanalach zakrzywionych o dowolnej
zmiennoSci przekroju

Streszczenie

Celem wyznaczenia strat energetycznych wywolanych przeptywami wtérnymi w zakrzywionych kana-
fach o dowolnej zmienno$ci przekroju zastosowano model matematyczny stacjonarnego, nielepkiego
(idealnego) pola przeptywu. Jakosciowa zgodnos¢ miedzy wyznaczonymi numerycznie liniami pradu na
sciankach specjalnie zakrzywionego kanatu (program w jezyku FORTRAN) a liniami pradu wyznaczo-
nymi doswiadczalnie doprowadzila do opracowania metody obliczania tréjwymiarowych warstw przy-
$ciennych. Przedstawiono podstawowe wyniki dotyczace zachowania sie przeplywéw wtornych w roz-
nych warunkach,

Bropuusbie TeyeHus: B HCKPUBJICHHBIX KaHATaX
NPOH3BOJILHO TIepeMEHHOTO Cevens

Peswme

Ji1s ompejieIeHHs SHEPreTHYeCKHX TOTEPh BBI3BAHHBIX BTOPHUHBLIMU TCUEHHSIMH B UCKPHBIEHHBIX
KaHA1aX MPOU3BO.IbHO NEPEMEHHOIO CEUCHUS MPUMCHACTCS MATEMAaTHYCCKAs MOJCIb CTAIMOHAPHOLO.
HEBS3KOIrO (MACATBHOTO) NoJs TeueHus. KauecTBeHHOE corjlacue M1y HOMEPHUCCKU ONPEIC/IEHHBIMU
JIMHASMH TOKa Ha CTGHKAX CHNENHAIbHO MCKPUBJIEHHOTO KaHasla (nporpamma Ha sssike GOPTPAH)
¥ JMHHSMH TOKa JKCNEPUMEHTATbHO OMPEACIEHHBIMHU MPUBETIO K pa3paboTke MeToAa pacuéra TpExpa-
3MEPHBIX OrPAHNYHBIX c10eB. [IpeacTaBieHbl OCHOBHBIC PE3y/ILTAThI KACAIOLIMECS TOBCACHHA BTOPUY-
HBIX TCUEHUH B PA3TMYHBIX YCIIOBHSX.



