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JACEK M. ELSZKOWSKI!

On an effective algorithm for solving non-linear equations and
their systems

A new algorithm for solving a single non-linear equation is proposed in this paper. The algorithm con-
stitutes a combination of three elementary algorithms based on the regula falsi method, the half-interval
method, and the method of secants. The combined algorithm is globally convergent provided that bo-
unds of the root are known. Generalisation of the algorithm on a system of non-linear equations is also
proposed.

1. Introduction

Solving non-linear equations represents very often an auxiliary ”sub problem”
appearing in more complicated algorithms. Determination of the mapping func-
tion [1] yields a good example of this kind. In particular, verification of the ob-
tained function reduces to solving of a rather nasty non-linear equation several
hundred times.

Therefore, there is still a need for general methods of solving non-linear equ-
ations ensuring reliability, fast convergence, and low cost.

Consideration of the present paper will be confined to algorithms for solving
the non-linear equation:

f(2) =0, (1.1)

— the algorithms which are globally convergent in an interval:
z € (a,b), (1.2)

where:
fla)f(b) 0. (1.3)

The symbol f in (1.1) and (1.3) denotes a continuous function of the real
variable z.

!Samodzielna Pracownia Numerycznej Mechaniki Plynéw, Instytut Maszyn Przeptywowych
PAN, ul. Fiszera 14, 80-952 Gdansk
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From the assumption of continuity and from the nonequality (1.3) there follows
that Eq. (1.1) has at least one root z., in the interval (1.2), i.e.

f(z.) = 0. (1.4)

Let us introduce now two definitions:
First: any interval
z € [21, 22] (1.5)

satisfying the condition
flz1)f(z9) <0 (1.6)

will be referred to as bounds of the root of Eq. (1.1).
Second: the number :
d:| LIy [ (17)

will be called magnitude of the bounds.

We are interested only in such algorithms for solving Eq.(1.1), which possess
two properties. First of all, they should yield sequences of bounds (1.5) of decre-
asing magnitude. Moreover, they should be not expensive, i.e. they should involve
computation of the function f(z) only, but not of its derivatives.

It can be easily seen that for example the Newton method does not possess
any of these two properties.

2. Three elementary methods of solving

Three elementary methods for solving Eq. (1.1) will be recalled here, and their
particular properties will be discussed.

2.1. The half interval method

Let us-assume that some bounds [z, 23] of the root of the equation (1.1) are
lenowin, = = :

The half-interval method consists in computation of a new approximation of
the root by halving the known bounds:

1 s
e — §($1 + z3), (2.1)

and in investigation which one of the intervals:
(21, 2], [En, 22] (2.2)

represents new bounds of the root.
This method is illustrated in Fig. 1. The half-interval

q:‘Q‘
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is also indicated in the Figure.

The method is linearly convergent, and it involves solely evaluation of the
function f(z) during the investigation of the intervals (2.2). Moreover it is possible
to calculate the number of iterations necessary for determination of the root with
given accuracy represented by the final magnitude of the bounds.

2.2. The regula falst method

For given bounds [z1, 23], the regula falsi method determines a new approxi-
mation of the root z as the ordinate zs of a point of intersection of the ordinate
axis with a straight line connecting the points:

($1,f($1)),(332,f($2)). (23)
This operation is illustrated in Fig. 2. The sought-for ordinate can be calculated

L

Fig>2.
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from the formula:
T1 — T2

s ——-—_f($1) = f(1'2)f(x1) (2.4)

After the determination of the value zps it is investigated which one of the inte-
rvals

ITM = T1

[z1, em]; [T, 22] (2.5)

represents new bounds of the root.

The regula falsi method may converge faster than the half interval method.
However, if the second derivative f” of the function f does not change its sign
within the bounds, all approximations will stay on one side of the root z,, what
can be easily seen from Fig. 2. In other words, the sign of the difference

TM — Tx (2.6)

will not change during the iterative process. Consequently, the smallest distance
of the bounds:
Boies :| Ty — T2 l (27'

may be quite large so that it can not be accepted as a measure of accuracy of the
final approximation of the root. This is not the case as far as the former method
is concerned.

2.3. The method of secants

The method of secants, called also the false position method [2], is closely
related to the regula falsi method and a new approximation zp of the root z,, is
computed from the following formula:

ay —Iy
zp=21— ————f(z
P Ty )
formally identical with Eq. (2.4). However, the points

(x1, f(z1)); (@3, f(23)) (2.9

do not have to represents bounds as the condition (1.6) is not a requirement and
it can be as well

(2.8)

f(z1)f(z3) > 0 (2.10).

Such situation is shown in Fig. 3. Other symbols appearing in this Figure will be
explained in the next Chapter.

3. Combination of elementary methods

Two combinations of the elementary methods will be presented. The first one
consists of the regula falsi method and the half-interval method. The second one
involves all three elementary methods recalled in the former Chapter.
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3.1. The classical algorithm

Considering the regula falsi method and the half interval method one can see
that their effectiveness depends on the form of the line, representing the function

y = f(z) (3.1)

in the vicinity of the root (1.4). Usually this form is not known. Hence, an obvious
idea occured to the author of the present paper to apply boths methods alter-
natively. By virtue of such combination at least one of the methods will work
effectively in any extremal case.

An algorithm based on this combination is published in [3]. Because of its
numerous and diverse applications it will be referred to as the classical one.

In order to demonstrate how it works, the algorithm will be applied to solve
of the following simple equation:

z—In(—z) = 0. (3.2)

Bounds corresponding to consecutive iterations are collected in Table 1.
It seems that for two consecutive iterations the magnitude of the bounds remains
the same. In fact, the magnitude decreases monotonously. However, the decrease
corresponding to uneven iterations is very small and it is invisible in Table 1 due
to rounding-off.
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Table 1

Iteration

[z 7y

0

0.01

0.0071

0.0036

0.0036

0.0018

0.0018

0.00089

0.00089

0.00045
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Table 2

Iteration

|I1—$2

0

0.01

0.0071

0.0036

0.0036

0.0018

0.0018

0.00089

0.00089

SO | O U W= W bO| =

0.00045

o]

0.00045

o,
e

0.00022

(V]
=

6.9-107°

w
]
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It is clear that the half-interval method
works effectively in the example under consi-
deration, the improvements due to the regula
falsi method being rather negligible.

Another feature visable from Table 1 sho-
uld be explained, viz. a rapid decrease in the
magnitude of the bounds at the iteration No
9. It means that the regula falsi method yiel-
ded an approximation "on the other side” of
the sought-for root. It could have happened
only as a result of numerical inaccuracies in
evaluation of (2.8).

In order to make sure that this hypothe-
sis is true the calculation was repeated with
increased accuracy. More exactly, the type
extended was applied instead of the type do-
uble in the respective procedure written in
Turbo Pascal. The results collected in Table
2 are identical to those in Table 1 as far as
the iterations numbered 0 to 8 are concerned.
However no ”jump” in the magnitude of the
bounds appears in Table 2, and the regular
pattern is sustained up to the iteration No
30 when the iterative process was terminated.
Comparing the bounds corresponding to the
final iterations in both Tables one can say that
paradoxically, in the case under consideration.
larger round-off errors resulted in fewer itera-

tions necessary for determination of the root with the accuracy of 10=14.

3.2. The improved algorithm

Considering results contained in Tables 1, and 2 one must arrive at the conclu-
sion that the classical algorithm is, in a sense, wasteful as far as its application te
solve Eq. (3.2) is concerned. Especially, incorporation of the regula falsi method
into the algorithm seems to be unnecessary. These conclusions stem from just one
example, nevertheless, some improvements in the classical algorithm seem to be

advisable.

The method of secants will be applied for this purpose, hence, we return te
Fig. 3. Some additional assumptions will be introduced:

(23 — z.)(2pm — i) > 0; (3.3

(21— .)(z3 — 24) > 0, (34
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where ap; denotes again the approximation of the root obtained by the regula
falsi method, and the points 1, 2o determine actual bounds of the root:

S [.’El,l‘z]. (3.5)

The approximation ap of the root according to Eq. (2.8) may fall beyond to
the bounds (3.5). This approximation is ”better” than the one yielded by the
half-interval method only if it belongs to the interval:

T1+ 2 ]
ep € [m_lg—z] . (3.6)
Therefore, the new approximation zg will be determined alternavitely:
T+ T
T when zp € | 21, s ]
g = - (3.7)
Ty + T Ty + Tg .
———= when zp ¢ |2, 5

Acceleration of the iterative process by means of Eq. (3.7) has two reasons.
First: the half-interval method is replaced by the faster one. Second: if f” does not
change the sign within the bounds (3.5) the root , is always contained between
zs and zpy.

The flow chart of the improved algorithm is presented in Fig. 4.

A main idea consists in alternative application of the regufa falsi method and
the method of secants.

Boxes 1, 6, 7 serve the purpose of determination of the new bounds of the
root (3.5). Moreover, the three points:

T1,T2,T3 (3.8)
are determined within these Boxes, basing on the three points:

T1,%2, ENEW, (3.9)

where
['Tl ’ .732]

denotes the preliminary bounds of the root, and 2y gw — the new approximation.
Generally speaking, one of the three points in (3.9), which does not appear in the
new bounds is accepted as the point 3. For example, in Fig. 2 the points 257 and
2o determine the new bounds. Therefore, the point 21 would be renamed as 3.
The point 27 denoting now the lower bound would be renamed as z;. The point
2o would again denote the upper bound, hence, no renaming would be necessary.

In Boxes 2 and 8 the criterion of convergence is checked: according to this
criterion the magnitude of the bounds (1.7) has to be smaller than a given number
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prec.
In Box 9 the condition
fnew f3 <0 (3.10)
is investigated where :
Inew = f(zn),

if calculations go through Box 6 and

l

f(xS)v

INEw

if calculations go through Box 7.

If the condition (3.10) is satisfied, calculations return to Box 1, and the new
approximation is computed by means of the regula falsi method.

If the condition (3.10) is not satisfied, calculations go to Box 6, and the new
approximation is computed by means of the half interval method.

The final approximation of the root is computed in Box 10 from Eq. (2.1).

Procedure Root 2 listed in the Annex represents a computer realisation of
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Table 3 the algorithm just described.
One of the two tasks of the program Equations,

Mergmon L%ll_ Al also listed in the Annex, is solving Eq. (3.2) by me-
1 00071 ans of the procedure Root 2.
3 L0 Results corresponding to successive iterations are
3 1.8-107° collected in Table 3. Just four iterations suffice for
4 11-107° determination of the root with the accuracy of 10713,
The comparison of Table 3 with Table 1 and 2 does
Table 4 :
not require any comment.
[T W — As a further example of application of the im-
0 i proved algorithm the following equation
it 0.73
2 0.36 zexp(—2z)=0 (3.11)
3 0. 16
4 0.04 was solved. Results collected in Table 4 indicate that
2 8‘88?)2 9 iterations are only needed to reduce the magnitude
. 9:1 _“1'0_6 of the bounds from 10° to 1072 in this case.
8 250"
9 71107
4. Application of the above to systems of non-linear equations

Let us consider a system of non-linear equations

?Ethﬂm---,fUNg = 0
20T1,%2,. .3 TN = 0
: (4.1)
fN("'Lllaa)?""va) = 07

where fi, fa,.../n denote continuous functions of their arguments.

In the present Chapter the ideas presented in Section 3.2 will be extended
on systems of non-linear equations. In other words, an algorithm based on these
ideas will be developed.

It should be emphasized that it is not an easy task. Nevertheless, such an
algorithm, globally convergent if some conditions are satisfied, will be presented
here. However, the computation cost of this algorithm will be high (comp. [3]).

General considerations concerning the sought-for algorithm start with the
assumption that an effective, globally convergent algorithm for solving of just
one equation is known. By means of this known algorithm an equation

fN(lU],fITQ,...,CE]V) =10 (42)

can be solved with respect to one unknown, e.g. z, provided that the remaining
ones, i.e.
L1yLQy ey TN—1
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are fixed. Because of the global convergence of the known algorithm the solution
of (4.2) always exists; it will be denoted as &p. Therefore, it can be said that a
function

iiN :9N(1'17$27---753N—1) (43)

is determined. This function can be applied to eliminate of zx from the initial
N — 1 equations of the system (4.1):

f1($17$27"'7xN—17‘?N) = 07
f2($17$2"~:7xN—17$N) — 07 (44)
Jv-1(21,22, < IN-1,&n) = 0.

The process of elimination can be applied now to the system (4.4). For example,
the unknown zx_; can be eliminated by means of the equation:

fN——l(xlaw%"';xN—lai‘N):O, (45)

and, as a result of this operation, the following system can be obtained:

fl(ajlvaa"'7‘7:N—255:BN—17:§N) == 07
f2(x173327"-7m]'\7—2; EplpEn) ety (4.6)
f]V—-Z(:vlvxZ,"‘7371\7—275:]\7—17‘%]\7) — 50

By continuation of the this process one arrives finally at the following single
equation:
hie, 8y, 88) =1, (4.7)

which can be solved with respect to z; by means of the already mentioned, known
algorithm.

In order to express the described sequence of consecutive eliminations in a
computer language, one can apply recurrence procedures. Let us consider, for
example, a hypothetical procedure RootN(j,s) with the following parameters:
J — index;

X — vector of unknowns z1,z,, ..., 2.
The task of this procedure consists in solving of the equation:

Gl oo e A =1 (4.8)

with respect to z;.
If
J=0
then the procedure RootN works identically as the procedure Root2. However
if,
e V.



On an effective algorithm for solving ... 103

then the procedure RootN has to call itself with the value of the index
e

after every modification of the unknown z;. It can be done in a following manner:
procedure RootN(j:integer; var z:array of double);
var

begin

.r'e'peat

<[] =

if j < N then RootN(j + 1,z);
Fllr=

until...

endRootN;

This general structure of the procedure must include further elements to en-
sure global convergence.

Like in Chapter 1, a definition of the bounds of the root in the case of a
N-dimensional space will be formulated.

A set € of points

Xm0 el

of the N-dimensional space will be referred to as the bounds of the root of the
system of equations (4.1) if:

Q={XeRN: a1 <21<b,a3 <23 < by, uan < oy < byl (4.9)

f]‘(iEl,Qfg,...,xj_l,aj,$j+1,...mN)f]'(.’L‘l,l'Q,...,J)?j_l,bj,zj_*_l, Z'N) 2, =012

(4.10)

As continuity of the functions f has been assumed, it means, that the root of

the system of equations (4.1) belongs to 2. Moreover, the condition (4.10) ensures
that for an arbitrary

Xen
the interval
[a;, 6]
represents the bounds of the equation (4.8) with the unknown z;.

Finally, it can be said that the modified procedure RootN2 will be globally
convergent in the domain § provided that the values

i, by Tl OnlA V]

N
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™

£=0
S

Fig. 5.

satisfying the conditions (4.9) and (4. 10) are known.
Interpretation of the conditions (4.9), (4. 10) in the 3-dimensinal space (N =

3) is shown in Fig. 5. Determination of the domain Q is, in general, a difficult
problem. In some cases transformation of independent variables:
XAV

may be helpful, ¥ denoting vector of new variables in this transformation and A
— a suitable matrix. For example, if the gradients of the functions f; are known
in a point, representing an approximation of the root of the system (4.1), then
the matrix A can be chosen in such a manner that the direction of the vector Vi
would coincide with the direction of the axis ;.

Example The second task of the program Equations listed in the Annex consists
in solving of the following system of equations:

ei+zi+a2i-1 = 0
o= 21‘2 = O, (411)
T3 = 0,

representing a section of a sphere with two planes. In order to satisfy the condi-
tions (4.9), (4. 10) the following bounds of the root will be accepted:

a1 = O,bl = 0.5,&2 = O,(L3 — —0.02,()3 = —0.02

Postulating the accuracy
prec = 1.0-1077

one obtains the following solution:

T1 =8.944-107 2, = 4.472- 10" 125 = 3.814-10~8
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The computational cost is proportional to the number of callings of the functio-
nal procedure evaluating left — hand — sides of equations in the system (4.11).
In the example presented this number turned out to be rather high, namely 75 11.
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it
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O efektywnym algorytmie do rozwigzywania réwnan nieliniowych i
ich uktadéw

Streszczenie

Niniejsza praca jest poswiecona metodzie rozwiazywania réwnania nieliniowego, otrzymanej w wy-
niku polaczenia metod bisekcji, reguty falsi i metody siecznych — globalnie zbieznej przy pewnych zalo-

zeniach. Opisany jest takze sposéb uogdlnienia tej metody na przypadek ukladu réwnari nieliniowych.

Annex

Annex contains Listings of the program Equations, and of the unit rq_no_12
which consists of the procedures Root2, RootN2 and fun_j. The program con-
tains two further procedures: the procedure f, and the proedure fn, computing
left-hand-sides of Eqs. (1.1) and (4.11), respectively. The program and all proce-
dures are written in Turbo Pascal.

A user of program is guided by instructions appearing on the computer screen.

The first input parameter data allows him to decide whether Eq. (3.2) or the
system of equations (4.11) will to be solved by the program. In the second case
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number 1 should be typed, otherwise any other number can be introduced.

The second input parameter is a value of the variable prec, which refers to
accuracy of determination of the root. More exactly, it determines the largest
acceptable magnitude of the bounds (2.7), so the iterative process will terminate
if the following criterion is satisfied:

| 21 — 29 |< prec

in the case of single equation. An analogous criterion applies in the case of the
system of equations.

The final input data consist of pairs of numbers determining the bounds of
the root. In the case of single equation just one pair has to be written-in; three
such pairs are necessary in the case of the system of equations.

When the computations are terminated the program displays the solution on
the screen.

Listing of the unit

HHite T . nozl2;

interface

const

Km=10;

type

vec =array[1..Km] of double;

frame =array[1..2] of vec;

f_type =function(x:double):double;

functions =function(var x:vec;j:integer):double;

procedure Root2(x1,x2,f1,f2,prec:double;f:f_type;var s:double) ;

function fun_j(var x:vec;j,N:integer;f:functions;var ab:frame;
var prec:double):double;

procedure RootN2(var xk:vec;j,N:integer;f:functions;
var ab:frame;var prec:double);

implementation

procedure Root2(x1,x2,f1,f2,prec:double;f:f_type;var s:double) ;
var

X3y :array[1..3] of double;

XX,¥Y»X8,%xb :double;
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opos

:boolean;

k_p,k_m,k,fsb,fsbz,it :integer;

begin

x[1]:=x1; y[1]
x[2] :=x2; y[2]
if y[1]>0 then

=f1;
:=f2;
k_p:=1 else k_p:=2;

k_m:=3-k_p;
fsbz:=2; opos:=true; k:=1; it:=0;
repeat
it:=it+l;
if opos then fsb:=1 else fsb:=3;
if fabz=1 ‘then fab:=2; i
fsbz:=fsb;
if fsb<>1 then begin
xb i =(x[11+x20)/2;
if abs(y[k])<abs(y[3]) then

xs:=x[k] -y [k]*(x[k]-x[3])/(y[k]l-y[3])

else xs:=xb;

if abs(x[k]-xs)>abs(x[k]-xb) then xs:=xb;

end{fsb<>1};

if fsb=1 then xx:=x[1]-y[11*(x[11-x[21)/(y[1]-y[21);;

if fsb=2 then xx:=xs;

if fsb=3 then xx:=xb;

yy:=f(xx);

opos:=(y [k] *yy<0);

if yy>0 then k:=k_p else k:=k_m;
x[3]:=x[k]l; y[3]:=y[k];

x[k] :=xx; y k] :=yy;
until abs(x[1] x[2])<—prec,
s:=(x[11+x[2]1)/2;

end{Roots2};

function fun_j(var x:vec;j,N:integer;f:functions;var ab:

var prec:double):double;

begin

if j<N then RootN2(x,j+1,N,f,ab,prec);

funai=tx,9)5
end;

procedure RootN2(var xk:vec;j,N:integer;f:functions;
var ab:frame;var prec:double);

var
X, 7 rarray[1.
XX,yy,Xs;:xb :double;

opos :boolean;

.3] of double;

frame;
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k_p,k_m,k,fsb,fsbz,it :integer;

begin
x[1] reabll 9] ;
xk[j]:=x[1];

y[i]:=fun_j(xk,j,N,f,ab,prec);
x[2] :=ab[2,j];

xk[j]:=x[2];

y[2]:=fun_j(xk,j,N,f,ab,prec);

k:=1;

while y[1]1*y[2]>0 do begin
k:=k+1;

if odd(k) then x[1]:=x[1]+(ab[1,jl-ab[2,3]1)
else x[2]:=x[2]+(ab[2,j]-ab[1,3]);

xk[j]:=x[1];
y[1]:=fun_j(xk,j,N,f,ab,prec);
xk[j1:=x[2];
yi2]scdun 3=k, j N, ¥ ,2b,prec);
end;

if y[11>0 then k_p:=1 else k_p:=2;

k_m:=3-k_p;

fsbz:=2; opos:=true; k:=1; it:=0;

repeat

it:=it+1;

if opos then fsb:=1 else fsb:=3;
if fsbz=1 then fsb:=2;
fsbz:=fsb;
if fsb<>1 then begin
xb:=(x[1]+x[2])/2;
if abs(y[k])<abs(y[3]) then
xs:=x[k]-y[k]*(x[k]-x[3])/(y[k]-y[3])
else xs:=xb;
if abs(x[k]-xs)>abs(x[k]-xb) then xs:=xb;
end{fsb<>1};
if f£sb=1 then xx:=x[1]-y[1]1*(x[1]~x[2])/(y[1]1-y[2]);
if fsb=2 then xx:=xs;
if fsb=3 then xx:=xb;
xk[j]:=xx;
yy:=fun_j(xk,j,N,f,ab,prec);
opos :=(y[k]*yy<0);
if yy>0 then k:=k_p else k:=k_m;
x[3]:=x[k]; y[3]:=y[k];
x[k] :=xx; y[&] :=yy;
until abs(x[1] x[2])<-prec,
xk[j]:=(x[1]1+x[2])/2;
end{RootsN2};
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end.{unit}

Listing of the program

program Equations;
uses RQ_No_12;

var

el 1, :integer;
x1,x2,s,prec :double;
ab :frame;

X 1vec;.
sys :boolean;

function f(x:double):double; far;
begin

f:=x-1n(-x);

end;

function fn(var x:vec;j:integer):double; far;

begin
iter:=iter+i;
case j of

1: thne=sqr(xll])fsqrx[2]+sqrx81)-1;
2: fn:=x[1]-2*x[2];

3 fna=x 3]

else fn:=0;

end{case};

end{fn};

function chos(var prec:double):boolean;

var

i:integer;

begin

writeln(’Write-in 1 if you wish to solve the system of equations,’);
write(’ otherwise write-in any other integer:’);

readln(i);

if i=1 then chos:=true else chos:=false;

write(’Precision :prec=’);readln(prec);

end;

begin
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if not chos(prec) then begin
writeln(’Write-in first approximationof the bounds of the solution’)
writeln(’x1<0, x2<07?);

write(’x1=’); readln(x1);

write(’x2=’); readln(x2);

ropt2(xl . x2,f(x1) ,£(x2) ,prec,f,s8);
writeln(’Solution:?);

writeln(’x=’,s8);

end else begin

writeln(’Write-in first approximation of the bounds of the solution’)
for i:=1 to 2 do

for j:=1 to 3 do begin

if i=1 then write(’a’) else write(’b’);
write(’[?,5,°1="); readln(ab[i,jl);
end; -
rootN2(x,1,3,fn,ab,prec);
writeln(’Solution:?’);

for iisd to 3 do
wribeln (e Bt A =2 s 1D

end;

end.{Equations}



