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JACEK M. ELSZKOWSKI1

On an effective algorithm for solving non-linear equations and
their systems

_\ new algorithm for solving a single non-linear equation is proposed in this paper. The algorithm con-
stitutes a combination of three ele5nentary algorithms based on the regula lalsi method, the ha]f-interva]
method, and the method of secants, The combined algorithm is global}y convergent provided that bo-
mds of the root are known. Generalisation of the algoritłrm on a system of non-linear equations is also
proposed.

1. Introduction

Solving non-lineaf equations TepTesents vely often an auxilialy "sub problem"
appealing in more complicated algorithms. Determination of the mapping func-
tion [1] yields a good example of this kind. In particular, verification of the ob-
tained function leduces to solving of a rather na,sty non-linear equation several
hu ndred times.

Therefore, there is sti11 a need fol genelal methods of solving non-lineal equ-
ations ensuńng reliability, fast convergence) and low cost.

Consideration of the plesent papel will be conflned to algorithms for solving
the non-linea equa,tion:

1994

/(') = 0,

- the algorithms which are globally convelgent in an interva1:

(1.1)

(1.2)

(1.3)

continuous function of the real

where:

r e (a,b),

f(&)f(b) ś 0.

The symbol / in (1.1) and (1.3) denotes a
va,ria,ble r.

1Samodzielna Pracownia. Numerycznej Mechaniki Płynów, Instytut Maszyn Przepływowych
PAN, uI. Fiszera 14, 80-952 Gdańsk



Jacek M, Elszkowski

]

From the assumption of continuity and from the nonequality (1.3) there follows j

that Eq. (1.1) has at least one root r*, in the interval (1.2), i.e, 
j

/(r-) = 0. (1.4) i

Let us introduce now two definitions: l
First: any interval ł

r € |q,r2] (1.5) 
l

satisfying the condition l
f (r)f (ł2) ! a (1.6) l

will be referred to as bound,s af the rootof Eq. (1.1). t
Second: the number ld,=|ą-,rl (1.7)1

will be called magnitude of the bounds. l
We are interepted on1} in such algorithms for solving trq.(1.1), which porr"r, I

:Hffi ffi 

"-nJ,ml,"il3;,'.t?,:l,#itl"ff 

xxl"ł",,"",',:":ii*Ił;ki,iff i:;l
' "-,| x'#' ffi ::iT *H' iii/f] #]'; J,:', il:'-";;i:f xif '"T i 

" ",,, 
o, n o,, 

",, I

;:';"...-**;:"-r".sofsolving l
liled lrere. ..d t h"t, 

I

particular properties will be discussed. j

i2.t. The half inter:val method j

i+mffi 
'*::.T 

-il:H:T : .,#.;]:: 
Ithe root by halving the known bounds: 
;



On an effectivc algorithm for solving . . . 95

Fig. 1.

is also indicated in the Figure.
The method is linearly convergent, and it involves solely evaluation of the"

function /(r) during tlre investigation of the intervals (2,2). Moreover it is possible
to caleulate the number of iterations necessary for determination of the root witb
given accuracy represented by the final magnitude of the bounds.

2.2. T}ae regula /ałsi method

For given bounds lrr,rr],the regula /a/sz method determines a new approxi-
mation of the root r as the ordinate rx4 of a point of intersection of the ordinate
axis with a straight line connecting the points:

(, t, f (r t)), (r r, f (r r)). (2.3)

This operation is illustrated in Fig. 2. The sought-for ordinate can be calculated

Fig. 2
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from the formula:

trM=

After the determination of the
rva]s

J,I -

[rr, * vf,[, nr, rr] (2.5)

represents new bounds of the root.
The regula falsi method may convelge faster than the half interval method.

However, if the second derivative f '| of the function / does not change its sign
within the bounds, all approximations will stay on one side of the root r*, what
can be easily seen from Fig. 2. In other words, the sign of the difference

?)M - I* (2.6)

wi1l not change during the iterative process. Consequently, the smallest distance
of the bounds:

d^;n:| ?J* - ltzl (2,i)
maY be quite large so that it can not be accepted as a measure of accuracy of the
final approximation of the root. This is not the case as far as the former method
is concerned.

2.3. The method of secants

The method of secants, called also the false position method [2], is closel;,
related to the regula falsi method and a new approximation rp of the root r*, is
computed from the foliowing formula:

Ł7-
I2

^ IlĄ).'L 
f(rt) -

value rn4 it
f (rz)

(2.4)

is investigated which one of the inte-

(2.B)
11-J3 .txP:11- 

f{ąl_Ję,llłll
formally identical with trq. (2.4). However, the points

(rt f(*l))l (rs,f@3)) (,2.9, 
i

do not have to represents bounds as the condition (1.6) is not a requirement and
it can be as well

/(z1)/(z3) > 0 (2.10).

Such situation is shown in Fig. 3. Other symbols appearing in this Figure wi]] be
explained in the next Chapter.

3. Combination of elementary methods

Two combinations of the elementary methods u,iii be presented. The first one
consists of the regula fal.si, method and the half-interval method, The second one
involves all three elementary methods recalled in the former Chapter,
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Fi6.3.

3.1. The classical algorithm

Considering Łhe regula /o/si method and the haif interva1 method one can see

that their effectiveness depeiids on the form of the line, representing the function

y = f (r') ( 3.1)

in the vicinity of the root (1.4). Usually this form is not known. Hence, an obvious
idea occured to the author of the present papel to apply boths methods alter-
natively. By virtue of such combination at least one of the methods wi11 work
effectively in any extremal case.

An algorithm based on this combination is published in [3]. Because of its
numelous and diverse applications it wil1 be referred to as the classical one.

In order to demonstrate how it works, the algorithm wi1l be applied to solve
of the following simple equation;

r-ln(-t):0. (3.2)

Bounds corresponding to consecutive iterations are collected in Table 1.

It seems that for two consecutive iterations the magnitude of the bounds remains
ihe same. In fact, the magnitude decreases monotonously. However, the decrease
corresponding to uneven iterations is very small and it is invisible in Table 1 due

to rounding-off.

97
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1ter a,tion lrt-xz
0 0.0l

U.UU r

0.0036
J U. UUJb
4 0,001B
5 0.001B
ti 0.00 089
7 U, tjUU89
8 0.00045
9 1.1.10-

10 5.8 . 10-

Table 1 It is clear that the half-interval method
works effectively in the example under consi-
deration, the improvements due to the regula
falsi method being rather negligible.

Another feature visable from Table 1 sho-
uld be explained, viz. a rapid decrease in the
magnitude of the bounds at the iteration No
9. It means that the regula /c/si method yiel-
ded an approximation "on the other sicle" of
the sorrght-for root. It could have happened
only as a resu]t of numerical inaccuracies in
evaluation of (2,8).

In order to make sure tha,t this hypothe-
sis is true t}re caiculation was repeated, with
increased acculacy. N{ore exactly. the type
ertended was applied instead of the type do-
uble in the respective procedure written in
Turbo Pascal. The results collected in Table
2 are identical to those in Table 1 as far as
the iterations numbered 0 to 8 are concerned.
However no "jump" jn the magnitude o[ tlre
bounds appeals in Table 2, and the regular
pattern is sustained up to the iteration No
30 when the iterative plocess was termina,ted.
Comparing the bounds corresponding to the
final iterations in both Tables one can say that
paradoxically, in the case under consideration.
larger round-off eTIoIs resultecl in fewer itera-

Table 2

tions necessa,ry for determination of the root with the accuracv of 10-1a,

3.2. TIre irnproved algorithm

Consiclering results contained in Tables 1, and 2 one must arrive at the conclu_
sion that the classical algorithm is, in a sense, wasteful as far as its application to
solve Ec1. (3.2) is concerned. Especially, incorporation of the regula /o/si metlrod
into the algorithm seems to be unnecessaly. These conclusions stem from jrrst one
exa,mple, nevertheless, some improvements in the c]assical algorithm seem to be
a r1 v isabie.

The method of secants will be applied for this pulpose, hence, we return tc
Fig. 3. Some additional assumptions wil1 be introduced:

lteratron Jr - ru 
I

0 0.0 i
] 0.007 ]

2 U. UUJlr
3 0.0036
4 0.001B
5 0.00 1 8
6 U. UUUó9

7 0.000B9
8 0.0 0045
9 i].00045

10 U.UUU l l
20 6.9.10-
30 2.7 10-

(rs-r*)(rłr-r*))0;

(rl-r-)(rs-r*))0,

(3.3

(3.4



0n an effective algorithm for solving . ..

rvlrere ry denotes again the approximation of the root obtained by the regu,Ia

/a/st'methocl, and the points rl,r2 cletermine actuai bounds of the root:

n € |al,n2]. (3.5 )

Tlre approximatiorr up of tlre root according to Eq. (2.8) may fall beyondto
the bounds (3.5). This approximation is "better" than the one yielded by tlre
lralf-interval methoel only if it belongs to the interval:

r 
", l rr'l . (3,6)rr€|rr,. 2 )

Therefore, the new approximation r5 wiil be determined alternavitely:

99

(3.7)

Acce]eration of the iterative pTocess by means of Ec1. (3.7) has two reasons.

First: the half-interval method is replaced by the faster one. Second: if /// does not
clrange tlre sign within the bounds (3.5) the toot r* is always contained between
rs and -rM.

The flow chart of the improved algorithm is presented in Fig. 4.

A main idea consists in alternative appiication of the reguła falsź method and
the method of secants.

Boxes 1,6,7 serve the puTpose of determination of the new bounds of the
root (3.5). Moreover, the three points:

X1, t2, t3

are cletermined within these Boxes, basing on the three points:

(3.8 )

T1 , !t2, TNEW l (3.9)

rvhere

lrt, rz)

denotes the preliminary bounds of the root, and rNEw, the new approximation.
Generaily speakirrg, one of the three points in (3.9), which does not appeal in the

new bouncls is accópted as the point 13. For example, in Fig. 2 the points ry and
u 2 determine the new bounds. Tlrerefore, the point 11 would be renamed as f,3.

The point r,y denoting now the lower bound would be renamed żs 11. The point
u 2 would again denote the upper bound, hence, no renaming would be necessary.

In Boxei 2 and 8 the criterion of convelgence is checked: according to this
cliterion the magnitude of the bounds (1,7) has to be smaller than a given number

(

| ,r, when xp €
rS= 1 rt*:xz

I T, when Ip ę
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Fig.4.

prec.
In Box 9 the condition

fuawfg < 0

is investigated where

ftvaw = f (rN),
if calculations go through Box 6 and

(3.10)

fNgw = f (rs),

if calculations go through Box 7.
If the conditioą (3.10) is, satisfied, ca]culations return to Box 1. and the new

app_r^oximation is computed by means of the regulala/simethod.
If the condition (3.10) is not satisfied, .at.olation, go to Box 6, and the new

approximation is computed by means of the half intervi,l method.
The final approximation of the root is computed in Box 10 from trq. (z.1).
Procedure Root 2 listed in the Annex represents a computer realisation of
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teration x1, - n2
0.t]1
0.0071

2 i 10-
D 1.B . l0-
4 1 10-

Table 3

Table 4

n 11, - x!

1 U.iJ
0.3t

J 0.16
4 U. U4

U. UUóó
6 0.002B
7 9.1.10-
B 2.5 . l0
9 7 1 10-

can be solved with respect to one
ones, i.e.

the aigorithm just described.
One of the two tasks of the program Equations,

also listed in the Annex, is solving trq. (3.2) by me-
ans of the procedure Root 2.
Results corresponding to successive iterations are
collected in Table 3. Just forrr iterations suffice for
determination of the root with the accuracy of 10-13.
The comparison of Table 3 with Table 1 and 2 does
not require any comment.

As a further example of application of the im-
proved algorithm the following equation

r erp(-ł) = Q (3.11)

was solved. R.esults collected in Table 4 indicate that
9 iterations are only neecled to recluce the magnitrrde
of the bounds lrom 100 to 10-13 in this case.

unknown, e.8, rtr, provided that the remaining

t7, I2r..., c.ny'-1

4. Application of the above to systems of non-linear equations

Let us consider a system of non-linear equations

h(rt,rz,.,.,:łN) = 0;

fz(rt,rz,.,,,rN) : 0;

.fu,r(rr ,ł2l , .., cl,,) = 0,

(4,1)

rvhere fl", fz,...fi7 denote continuous functions of their arguments.
In the present Chapter the irleas presented, in Section 3.2 will be extended

olt systems of non-iinear ecluations. In other words. an algorithrn based on these
ideas will be developed.

It shoulcl be emphasized that it is not an easy task. Nevertheless, suclr an
algorithm, globally convergent if some conditions are satisf,ed, will be presented
]rere. However, tlre computation cost of this aigorithm wil1 be high (comp. [3]).

General considerations concelning the sought-for algorithm start with the
assumption that an effective, globally convergent algorithm for solving of just
otre equation is known. By means of this known algorithm an equation

.f Nk1,I2,...,rlr) = 0 (4.2)
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are fixed. Because of the global convergence of the known aigorithm the solution
ot (a.2) always exists; it will be denoted as ź1,,. Therefore, it can be said that a
function

rtp = gly(rll t2l ...lrr,I_1) (4.3)

is determined. This function can be applied to eliminate of r,n, from the initial
ir - 1 equations of the system (4.1):

(4.4)

The process of elimination ian be applied now to the system (a.4). For example,
the unknown rN_r can be eliminated ,by means of the equation:

( f,(r l lT2....,rru-r. żlv ) = 0:

) h(rr. ł2. ,,.. rlr_ l. ili ) = 0;

),
[ /r_, (.rl.rz,...,rnr_r.ilu,) = 0.

and, as a result

By continuation
equation:

h(rl,rt2,...,ź,nr) : 0,

whiclr can be solved with respect to 11 by means of the already mentioned,

th.en the procedure RootN
if,

oft

{

of

f N_r(rl,tzl ..,lltN_1,1źlr) : 0,

his operation, the following system can be obtained:

fl,(*1,r2l ...llrN_zlil,r*l, ź.nr) : 0;

fz(*1r!t2l ...llłN_zlź,nr_r, ź,nr) : 0;

f N_z(*1rt2r..,r'X)N_2lźru_r, ź,nl) = 0,

the this plocess one arrives finally at the following

(4.5)

(4.6)

single

(4.7)

known
algorithm.

In order to express the described sequence of consecutive eliminations in a
comPuter language, one can apply recurlence plocedures. Let us consider, for
example, a hypothetical procedure RootN(j,s) with the following parameters:
7 - index;
X - vector of unknownł tlrł2r...rlrN.
The task of this procedure consists in solving of the equation:

f i@t,T2l -,.lri,rtiat,..,, źru) : 0

wi th respecL Lo r 1.
]f

(4.B)

; 
- 

AI
J - J\ l

works identically as the procedure Root2.

j<N
However
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then the procedure RootIY has to call itself with the value of the index

j +t

after every modiflcation of the unknown r1 . It can be done in a following mannel:
procedure RootN(7:integer; val r:alTay of double);
v&I

begin

..p"ut ,..
--l:1 .-;(LJ].-
if 1< 1[ then RootN(i +t,r1;
Ilj],=...

"rr' 
ir...

endRootl{;
This general structure of the procedure must include further elements to en-

sure global convelgence.
Like in Chapter 1, a definition of the bounds of the root in the case of a

N-dimensional space will be formulated.
A set Q of points

X = Lrt,rz,...rrv)
of the N-dimensional space wil1 be referred to as the bounds of the root of the
system of equations (a.1) if:

O : {X € RN : a1 ś 11 ś bl,a2 ś 12 ś b2,,..,ary ( rry < ólr}, (4.9)

Ji@r,x}2l ...lri-tlajlri4l,...rN)f i(*r,t2l ...lri-t,bi,rilt,...rxł) { 0, j :.1,2,,...,N
(4.10)

As continuity of the functions / has been assumed, it means, that the root of
the system of equations (a.1) belongs to §). Moreover, the condition (4.10) ensules
that for an arbitrary

Xef)
the interval 

bi,bi)
represents the bounds of the equation (a.B) with the unknown r1.

Finally, it can be said that the modifled procedure RootN2 will be globally
convergent in the domain f) provided that the values

ai,bi i= 1,2,...rN

103
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b'n
,xl

Fig. 5.

satisfying the conditions (a.9) and (4. 10) are known.
Interpretation of the conditions (4.9), (4. 10) in the 3-dimensinal space (iy' :

3) is shown in Fig. 5, Determination of the domain f) is, in general, a difhcult
problem. In some cases transformation of independent variables:

X:AY,
maY be helpful, Y denoting yector of new variables in this transformation and A
- a suitable matrix. For example, if the gradients of the functions fi are known
in a point, representing an approximation of the root of the systeń (4.1), then
the matrix A can be chosen in such a manner that the direction of the vector Vfi
would coincide with the direction of the axis 13.
Example. The second task of the program Equations listed in the Annex consists
in solving of the following system of equations:

r!+r|*r2r-1 :
11-2ft2 =

+^&11

(4.11)

rePresenting a section of a sphere with two planes. In order to satisfy the condi-
tions (4.9), (4. 10) the foilowing bounds of the root will be accepted:

aĄ = 0rór = 0.5, a2 = araz: _0..02, bs = _0.02

Postulating the accuracy
prec-1.0.10-7

one obtains the following solution:

"1

l

0;

0;
0,

I
l

rt : B.944. 70-112 : 4.472. 10-113 = 3.B14 . 10-8
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The computational cost is proportional to the number of callings of the functio-
nal procedure evaluating left - hand - sides of equations in the system (4.11).
In the example presented this number turned out to be rather high, namely 75 11.
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O efektywnym algorytmie d,o rozwiązywania równań nieliniowych i
ich układów

streszczenie

Niniejsza praca jest poświęcona metodzie rozwiązywania równania nieliniowego, otrzymanej w wy-

niku połączenia metod bisekcji, reguły Jalsi i metody siecznych - globalnie zbieżnej przy pewnych zało-

żeniach. Opisany jest także sposób uogólrrienia tej metody na przypadek układu równań nieliniowych.

Annex

Annex contains Listings o{ the proglam Equations, and of the unit rq_no-I2
which consists of the procedures Root2, RootN2 and fun-j. The program con-
tains two further procedures: the procedure f, and the proedule fn, computing
left-hand-sides of trqs, (1.1) and (4.11), respectively. The program and a11 proce-
dures are written in Turbo pascal.

A user of program is guided by instructions appearing on the computer scTeen.
Tlre first input parameter data allows him to decide whether Eq. (3.2) or the

system of equations (a.11) wili to be solved by the proglam. In the second case
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number 1 should be typed, otherwise any other number can be introduced.
The second input parameter is a value of the variable prec, which refers to

accuTacy of determination of the root. More exactly, it determines tlre largest
acceptable magnitude of the bounds (2.7),so the iterative plocess will terminate
if the fo]]owing criterion is satisfied:

I r, - 12 |1 prec

in the case of single equation. An analogous criterion applies in the case of the
system of equations.

The final input data consist of pairs of numbers determining the bounds of
the root. In the case of single equation just one pair has to be written-in; three
suclr pairs ale necessary in the case of the system of equations.

When the computations are terminated the program displays the solution on i

]
the screen.

Listing of the unit

unit rq_no.J2;

interface

const
Km=10;

type
vec =ąrray [r . .Xrn] of double;
frame =arrayll..2) of vec;
f_type =function(x:double):double i
functions =function(var x:vec;j : integer) :double; 

.

procedure Root2(xl,x2,f7,f2,prec:double;f :f_type;var s:double) ; i
:

i

function fun-j(var x:vec;j,N:integer;f:functions;var ab:frame; i

var prec: double) : double;

procedure RootN2 (var xk : vec; j , N: integer; f : functions ;

var ab :frame ;var prec : double) ;

implementation

procedure Root2 (x!,x2,f 7,f2,prec : double ; f : f _type ; var s : double) ;
var
X,Y
xx, yy, xs , xb

:array[1..3] of double;
: double;
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opos :boolean;
k_p,k_m,k,fsb,fsbz,it :integer;
begin
x[1]:=x1; I[t]:=f1;
x [2] : =x2i !|2] :=f2;
if y hJ )0 then k_p: =1 else k_p: =2;
k_rr: =3-k-p i
fsbz:=2; opos:=true; k:=1; it:=0;
repeat
it:=it+1;
if opos then fsb:=1 else fsb:=3;
if fsbz=1 then fsb:=2;
fsbz: =f,sb;
if fsb<>1 then begin

xb: = (x [t] +x l2)) /2;.
if abs(ytk] )<abs(y[S] ) trren
xs : =x [kJ -y [k] * (x [x] -x [3] ) / (y tł] -y t3] )
else xs:=xb;
if ąbs(x[k]-xs))abs(x[k]-xb) then xs:=xb;
end{fsb<> 1} ;

if fsb=1 then xx: =x [1] -y tl] * (x [1] -x|27 ) / (y tt] -yl27) ; ;

if fsb=2 then xx:=xs;
if fsb=3 then xx:=xb;
yy:=f(xx);
opos : = (y [k] ł,yy<O) i
if yy>O then k:=k_p else k:=k_m;
x[3] :=x[k] ; y[3],=y[kJ ;

x [k] : =xx; y [kJ : =yy;
until abs(x[1] -x [2J ) <=prec ;

s : = (x [1] +x l2]) /2;
end{Roots2};

function fun_j (var x:vec;j ,N: integer;f:functions;var ab:frame;
var prec :double) :double ;

begin
if j<N then RootN2(x,j+l,N,f ,ablprec);
fun_j:=f(x,j);
end;

procedure RootN2(var xk :vec; j,N: integer;f :functions ;

var ab :frame;var prec:double) ;

var
x,y :array[1.,3] of double;
xx,yy,xslxb ;double;
opos :boolean;

La7
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k_p,k_m,k,fsb,fsbz,it :integer;
begin
x[1]:=ab[l,j];
xktj];=x[1];
y[1] :=fun_j (xk, j,N,f ,ablprec);
x[2]:=ab[2,j];
xktj]:=x[2];
yl2] :=fun_j (xk, j,N,f , ab lprec) ;

k: =1;
while y[1]*y[2]>0 do begin

k: =k+1;
if odd(k) then x[1] :=x[1]+(ab[l,j]-ab[z,j])
else x[2] :=x[2]+(ab[Z,3J -aU[l,jJ ) ;

xktj]:=x[1];
y[1] :=fun_j (xk, j,N,f ,ab,prec);
xktj]:=x[2];
yl2f :=fun_j (xk, j,N,f ,ab,prec) ;

end;
if y hJ >0 then k_p : =1 else k_p: =2;
k_m: =3-k-p i
fsbz:=2; opos:=true; k:=1; it:=0;
rePeat
it : =it+1 ;

if opos then fsb:=1 else fsb:=3;
if fsbz=1 then fsb:=2;
fsbz: =fsb ;

if fsb<>1 then begin
xb: = (x [t] +x l2]) /2;
if abs(ytk] )<abs(y[3] ) tnen
xs : =x tk] -y [k] {,(x [k] -x [3] ) / (y tt] -y t3J )
else xs:=xb;
if abs(x[k]-xs))abs(x[k]-xb) then xs :=xb;
end{fsb<> 1} ;

if f sb=1 then xx: =x [1] -y tl] * (x [1] .x [2] ) / $11]-yl2]) ;if fsb=2 then xx:=xs;
if fsb=3 then xx:=xb;
xk[j]:=xx;
yy:=fun_j (xk, j,N,f ,ab,prec);
opos:=(y[k]*yy<O);
if yy>O then k,=k_p else k:=k_m;
x[3] :=x[k] ; y[3] :=y[kJ ;

x[k]:=xx; y[k]:=yy;
unti1 abs (x[r] -x[2] )<=prec;
xktj] :=(xh] +xl2f) /2;
end{RootsN2};
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end. {unit}

Listing of the program

proglam Equations;
uses RQ_NI-I2;

var
iter, i,j : integer;
x7,x2,s,prec :double;
ab :frame;
x : vec;,
sys :boolean;

function f (x :double) :double ; far;
begin
f:=x-ln(-x) ;

end;

function fn(var x:vec; j :integer) :double; far;
begin
iter: =iter+1 ;

case j of
1 : fn : =sqr (x [1] ) +sqr (x [2] ) +sqr (x t3] ) - 1 ;

2: fn: =x [1] -2*xl2f ;

3: fn: =x [3] ;

else fn:=0;
end{case};
end{fn};

function chos (var prec :double) :boolean;
1ląr
i : integer;
begin
rriteln('Write-in 1 if you wish to solve the system of equations,');
Erite(' otherwise write-in any other integer:') ;

readln(i) ;

if i=1 then chos:=true e]_se chos:=fa]-se;
rłrite('Precision :prec=' ) ;readln(prec) ;

end;

begin
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if not chos(prec) then begin
writeln('hirite-in first approximationof the bounds of the solution')l
writeln(,x1(0, x2(0,) ;

write('x1=' ) ; readln(x1) ;

write(' x2=' ) ; readln(x2) ;

root2 (x7,x2,f (x1),f (x2),prec,f , s) ;

rłriteln('Solution: ' ) ;

writeln('x=' ,s);
end else begin
writeln('Write-in first approximation of the bound,s of the solution'Jfor i:=1 to 2 do
for j:=1 to 3 do begin
if i=1 then write(lą') else write(,b,);
write( ' |' ,j , '] =') ; readln(ab [i,jJ ) ;

end; .ł

rootN2(x, 1,3,fn, ab,prec) ;

r.lriteln('Solution: ' ) ;

for i:=1 to 3 do
writeln(,x[, ,i,,1=, ,x[iJ ) i
end;
end. {Equations}


