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Liquid and liquid-gas cooling of machine elements

Institute of Fluid-Flow Machinery PASci, ul. Fiszera 14, 80-952 Gdańsk,
Poland

Abstract
In the work presented are thermal and hydraulic problems concerned with the liquid films

formed by impinging jets. tr'ormulated has been a simple trło-dimensional model of the flow and
heat transfer in the film. The model is based on simplified equations of mass, momentum and
energy balance. Solution of such set of equations enables determination of velocity profile in the
film as well as local heat transfer coefficients.

Keywords: Liquid-gas cooling; Impinging jet; Thin fiIm

Nomenclattrre

ą - heat capacity u - kinematic viscosity
Fl, - Froude number a - surface inclination angle
q - specific volumetric flow rate ó,h - boundary layer thickness, film thickness

of liquid in the film ) - thermal conductivity
a - volumetric flow rate p - density
r,z,ó- co-ordinates o - surfacetension
T - time u,,lo,,tl - velocity components: radial,
T - tenrperature normal arrd circumferential

SubscI,ipts

c - critical § - singularpoint
s - gas tr - border betureen the developing
ź - interface surface and fuIIy developed regions
źn - initial value u) - wall
ł - droplet 0 * initialvalue
rn - mealr
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Introduction

Liquid (film) flow down the surface of the wall occurs in a variety of coo|ec
Power engineering installations, heat exchangers and many chemical engineerintr
aPPliances. Such heat exchangers are called condensers. The process of liquic,
flow in spray cooled heat exchangers is different from that in condensers. Bot}
Processes have been investigated theoretically and experimentally. The flow o.
gravity driven liquid films formed due to vapour condensation is particularly
richly represented amongst the literature. This type of flow was investigated ir
[1-3] for different pipe geometry including inclined cylindrical or elliptical pipe:
and cylindrical flnned pipes. In the case of gravity driven flow, the trajectory o1

the liquid fllm motion is determined by the steepest gradients of the gravitationa1
slope. The inertia forces are neglected then. However, in the case of impingemerrt
of a liquid jet on the surface, the inertia forces must be taken into account as
they have a great effect on the trajectory of a forming liquid filrn. The process oJ

a liquid fllm flow with a specifled velocity after impingement on a flat horizonta]
surface was investigated both theoretically and experimentally in [a-5]. Therę
is a lack of theoreticai solutions on the flow distribution on inclined surfaces,
Such solutions can serve for thc development of models of liquid distribution on
horizontal tubes or even more complex geometries, which can be found in cooled
elenrents of machinery and condensers. The analysis conducted in the paper is
aimed at investigation of the phenomenon of liquid distribution on tlre plate ar-
bitrarily oriented in the space.

Another way of cooling of heat transfer surfaces, requiring less amount o1

liquid, is spray cooling using water-gas jets,
surface wetting by mearrs of impinging twephase jet consisting of gas and

liquid droplets is used for a more intense cooling. Particularly intense is cool-
ing, when the fllm evaporates. such type of surface cooling can be applied in
heat exchangers, chemical engineering appa.r,atus, electronic equipment with high
thermal loads or computers of large poweT. The process of distribution of the
liquid laYer formed from the droplets on the wall was investigated theoretically
and experimentally not by too many authors. up till now it has yet to be fully
understood, A correct mathematical description is still missing. Works known
from literature [1-2] provide only very simplified models. The inertia forces are
rreglected, which in the case of the jet impingement cannot be disregard,ed as
the kinetic eneTgy of the jet approaching the wall decreases whereas the pressure
increases. At the point of impingement the kinetic energ"y is equai zero and the
Plessure is at its highest, In the region of impingement of the a.xisymmetric jet a
radial gas flow starts to develop, The pressure reduces and the radial gas velocity
increases. Therefore there exists the radial pTessure gradient, which influences
the liquid film motion. The atomised liquid phase contained in gas in the form
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of droplets separates on the wall due to bigger than gas inertia, which lead to
deviation with respect to gas streamlines, The droplets form a liquid film, which
flows out radially. In the vicinity of stagnation the flow is laminar. In the work
considered are thin liquid films moving with the laminar character on the wall.
The process of impinging liquid distribution on a horizontal surface was inves-
tigated both theoretically and experimentally in [a-5]. The aim of the present

work is to understand phenomena of liquid distribution in the film formed by
the impingement of a jet of gas with liquid droplets on the surface. Developed
has been mode1 of the phenomenon based on integral equations of liquid film
motion on the wall. Numerical calculations have been performed to iliustrate the
method.

2 Motion of liquid film resulting from liquid and gas-
liquid jet

Z.L Motion of liquid film produced by the liquid jet

A flat surface, inclined by the angle o, is presented together with the co-
ordinate system in Fig. 1. A cylindrical system of co-ordinates has been assumed.
The axia1 co-ordinate is perpendicular to the inclined surface. A two-dimensional
flow is considered described by the co-ordinates r and /, Both co-ordinates are
in the plane of considered surface, where the jet with the volumetric rate Q
impinges.

It has been assumed in the analysis that

23

"*,

0} b)

Figure 1. Impingement of a liquid jet on an flat inclined surface: a) physical situation, b) system
of coordinates.

o The flow of the liquid film is steady, laminar and governed solely by the
action of the gravity and inertia forces;
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o Tlre surrounding medium is at rest and there is no shear stress at the
interfacial surfaces;

o Liquid-wall and liquid-vapour interfacial surfaces are snrooth;
r physical properties of the liquid are constant;
r The liquid film t}rickness is small, which just.ifics simplifications in the nrass

ancl momentum conservation equations;
o Velocity across the fllnr is constant and equal to the aveTage velocity in the

film, The average velocity is a function of the co-orclinates r ancl /;
o The circurnferential and vertical (normal) components of velocity vanislr

(u : w : 0). That means that the radial component of the velocity arrd
the film thickness are functions of r, $.

In accordance with outiincd above assumptions a full set of conservation
equations of mass and nronrentum written in cylindrical coorrlinates, after im-
plementation of the above simplifications yields:

o continuity equation
1 O(ru) , 0(r) * nr 0r * ,, :u'

o momenttrm equation in radiai direction

0u 0u t 0n tr 02uuu+rŃ:*,-,ń*,,rr
e momentum equation in the normal direction

l0n
-nń ł 9" :0,

l mornentum equation in the circumferential equation

0(ru6) _ n
0r

(1)

21.t 0u
pP ałł 9ó :0,

The cornponents of the gravitational force as results from the schematic in Fig. 1

are having a form
9r:/sinacosy',,
9ó : 9 sin a sin /, (2)

9z - !COSa,
The mass balance in the limits of liquid film thickness is obtained by integration
of the flrst equation in (1) in the limits of the liqrrid layer

(3)
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Integrating and comparing against the volurrretric flow rate of impinging jet u'e
obtain

Q:2nru6. (4)

On the other hand, by integration in the z direction we get the plessure distri
bution

p: pg6 cosa +p0, (5)

where, after differentiation we get

0p 06
6r: P9 *COSO",

F}om the momentum equation in the circumferential equation we get

0' : _g{' ,2 sirt a cos /,aó - Zpr'

Differentiating (7) we obtain

(6)

(7)

(B)
^9o,u
0ó2 - ffr2 

sinasinQ.

Substituting (6) arrd (B) into the radial equation of motion integrated in the z
direction and incorporating (2) we obtain after sorrre re-arrarrgements

0 (o' " 1 1 _1 . ___ l I 10ur,
u\z * 9d cos 

") - żg 
sin o cos ó - ńr\ń)_. (9)

Introducing the shear stress into (9) we obtain

_0 ruz . \ 1 .....__ l i

a| z * gdcos 
") 

: 
;gsinacos ó - Ńr.

The shear stress at the wa1l can be expressed as

u
vr : UlP;,

(10)

(1 1)

Then, knowing a relevant friction coefficient we can use Eq. (10) both irr laminar
and turbulent flows.

The relation (10) together with the mass balance Eq. (4) forms a ciosed
set of equations enabling determination of velocity field as well as local film
thickness. According which quantity we want to determine, i.e. either velocity or
frlm thickness, we carr formulate adequate boundary conditions to the problem.
Both, velocity and film thickness at the initial radius rin ate assumed as known
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and equal to ó;, and 1);n. Let's introduce the film thickness fron the mass balance

trq. (ą) and the relation (11) to the momentunr balance trq. (l0). In effect, after

some transformations we get

(12)

where C; - is a friction coefEcient which can be determined from the Blasius
relation in the case of turbulent boundary layer as

(13)

where r;n - is the inlet radius of the iiquid layer.
Integration of trq. (12) gives a relationship for the velocity as a function

of the radius r or expressing the velocity in terms of the film thickness from
Eq. (4), u relationship between the fllm thickness and the fiim radius carr bc
found. The direction of the integra1 curve is determined either by the value of

the velocity derivative or the film thickness derivative with respect to the radius.

The derivatives tend to infinity if the denominator in Eq. (12) approaches zero.

This siluation is characteristic for the so-called turning point. Physically it refers

to the critical flow conditions. Let us find the criticality conditions equating the

denominator in Eq. (12) to zero. Then we have

gQcosa, gsinocos@ C1usnr
d,u -r;F;- 2 - a
d,r- ,_g?"oy '

2nru'

1gQcosa1llsa.:\ 27rr" ) '
(14)

or in the dimensionless form

(1 5)

The relation (15) for the flat horizontal surface was obtained in [5]. It follows

from (15) that the paranreters ofthe critical flow are local and depend neither on

the integration path nol on the friction coefficient. Therefore, tlrey are the same

also in the case of inviscid flow without friction.
In the case when both the numerator and denominator in (12) are simultane,

ously equal to zero, then the derivative, which locally determines the clirection of

the integration path is indefinite and we obtain a singular point. That situation
also refers to the critical conditions given by Eq. (1ł).

'r4 -_ ą : FT2^: cos (ł.
SQ 96. c

0.664

u(r - rin)p



Liquid and liquid-gas cooling. ..

Equating the nunrerator and denominator ot (l2) to zero, one can obtain the
dimensionless co-ordinates of the singular point as follows

2Q2 cos2 a r 1/5

),r":(
12g(Ct cos0 - si,nacos(:)3

/gQcosa11l3
ą, 

- 
| 

- 

l" \ .)*, ]' 2lll s ,

(16)

(17)

have a lbl-

(18)

(19)

The co-ordinates of the singular point in the dirnensionless form
lowing form

Fr" : \^os 0,

()

h|

,1.00

-.,L^-^ D_ U"6"0
rYllęlc Llag 

- --p-.

It results from (16) that a singular point can appeaT only in ihe gravity driven
flow, even in the case of an ideal liquic1 flow without friction. The dependence
between the F}oude number and the dimensionless radius of the film, as a function
of the inclination angle, are given in Fig. 2a and lłig. 2b. The relation betrveen
the Fboude number and the dimensionless film radius is presented in Fig. 2c.
The behaviour of the integral curves in the vicinity of the singular point can be

Rj r l cos2/3 a

0} F'§

1.00

0.s

0.9ó

b) *l
1.5

1.0

05

0
0ł *

ligure 2. Distribution of critical parameters: a) F}oude number, b) non-dimensional film thick-
ness, c) Froude number in function of radius.

0.9ę

0.98ł

q97ó

0.9óĄ

09ó 0
0z
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investigated by linearisatiorr of the left hand side of trq. (27), In order to calculate

the siope of the integral curve in the singular point (#) 
": 

r7 let's unveil the

function into the Taylor series, both the nominator V and the denominator Ę,
(12) and then apply the de l'Hospital theorern

dV dV du+
(dr+\ dr|+Ń drĘ1l - \ał )" ;E-:dRffi'

ń:r - ,lr+ ,trł
The above relation is iclentical with the characteristic equation

dIł . l dR dV,, dV
duĄ T" l (.l.., - dŃ )ą - dr+ 

: IJ,

(20)

(21)

According to values of the roots of (21) we get clifferent types of singuia.r-
points. These are: the saddle point, nodal point and spirai point. An example of
the nodal point has been shown in Fig. 3c.

Figure 3. Integlal clłves; a) supercriticai flow, b) subcritical flow, c) nodal point.

As can be seen, three possible types of solutions can be distinguished, which
have been sketched in Fig. 3. The flow is supercritical and reaches the critical
parameters, or just before it reaches the critical parameters there appears a hy-
draulic junp and the transition to subcritical flow takes place (Fig. 3a). The
hydraulic jump, possible under such conditions, causes the increase in the film
thickness and a corresponding decrease in the rłoude number, u,hich leads to the
subcritical flow, Such a condition, however, cannot be drawn from the analysed
equations and should be derived in a similar manner as in the case of a shock
wave in gasdynamics. The flow is supercritical and reaches the critical parame-
ters at a singular point. Depending on the nature of the singularity the flow can

pt
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turn into a subcritical one (Fig. 3c). The flow is subcritical and never reaclres
tłre critical paranreters, (Fig. 3b).

The supercritical flow can reach critical parameters at a turning poirrt. Irr
this case, in order to integratc Eq. (12) withirr the whole range of supercritical
arrd subcritical flow it is necessary to reverse the status of the dependent and
independent variable. Then the turning point beconres the extremum. The curve
referring to the critical parameters is also shown in the figure. The curve divides
the plane of solutions into regions of supercriLical and subcritical flow, Starting
from the parameters corresponcling to the supercritical conditions, it is possible
to reach the critical pararneters. It lbllows from the figrrre that the integral curve
has a maximum for a certain value of the filnr radius r, which from the physical
point of view means that the flrrw can be supercritical up to a maximum value
of radius (the critical radius). Tire hydraulic jump can occur in response to a
variety of disturbances before tlre flow reaches the critical con<litions and the flow
will convert to a subcritical flow, described by thc part of solution towards ]eft
from the extremum. Thc subcritical part of the curve has the physical meanirlg
only when the transition from supercritical to subcritical flow takes place drre to
the }rydraulic jump as a decrease in the fllm radius otherwise is not physically
possible.

A formulated simple nrodel of liquid jet impingment on an inclined surface
consisting of conservation eqtlations of mass ancl nromentum with closing equa-
tions nray serve, with sonre nrodifications, in the deveiopment of the liquicl jet
distribution on the cylindrical surface and subsequently in caiculatiorrs of heat
transfer on such surfaces. As mentioned earlier that is concerned with calcula-
tions of performarrce of spray cooled heat exchangers and ot}rer installations.

The modcl has been tested for the cxistence of possible solutions in the case of
suPercritical and subcritical flows. It has been shown that the nrodel is capable of
describing the flow, which rcaches the criticai conditions. The critical film radius
is a result of integration of governing equations and is determined by the closure
equation (friction coefficient), wlrereas the critical parameters are the local ones
and dePend on the F}oude number oniy. The critical parameters are deternrined,
by the model and should be considered as an integral part of the model. The
mnsistency between the model and the experimental values of the criticai pa_
rameters is, undoubtedly, a measure of the correctness of the model. In the case
ńth a singular point, the model allows for the transition from supercritical to
zubcritical flow without the hydraulic jump.

2.2 The shape of the liquid film distribution
The distribution of the liquid layer on the solid surface has its speciflcs. That

rill be presented below. The momentum of the jet impinging on the surface is



J. Mikielewicz

Tecoveled by the friction forces, and finally balanced by the surface tension forces.

In such way the wetted surface area is limited.
Let's assume that the liquid flows into the sector tangentially, picks up the

liquid flowing in the sector and leaves the sector tangentially, as shown in Fig. 4.

i+dT

Figure 4. A schematic of the liquid distribution in the elementary segment dy',; a) velocity dis-
tribution at the jet border, b) sulface tensiorr acting on the element of the jet border,
c) balance of surface tensions acting on the Iiquid film

Let's consider the momentum baJance on the elenrentary distance of the liquid
borcler (Fig. a)

u6pA,órd(l : d(l- cos O)ds. (22)

On the left hand side there exists the momentum flux, whereas on the right hand
side there are surface tension forces of liquid and gas as we11 as of the solid, as
shown in Fig. 4, The balance of forces in the direction normal to the jet border
gives an equation

qpu cosllrd$ : o(I _ cos d) sin ry'ds,

where q : Q f Znr is a speciflc volumetric flru< of liquid in the fllm.
The length of the element of the border ds can be expressed as:

(23)

ffiy (ż4)
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and

ctgq: L,
rdó'

Introducing the length of the arc (24) and ctgl|.;(25) into (23) we get

,FW
l dr 1,2

'\rart)

pq

ćr(1 - cos 0) 
:

(25)

(26)

(2B)

(29)

(30)

Solving Eq. (26) with respect to dr
F@ we get

r
(27)

Assuming that the liquid layer thickness does not vary a lot and can be
regarcled as constant as well as that the entire liquid flows into the sector with
the central angle / and then flows tangentiatly to the border, then the continuity
equation in the following form holds

dr
d

Q :Zrrinq;n: $ru6 ż óraq.
Introducing the continuity equation into (27) we get

aui:

The boundary condition for that equation is a value of the radius 16

for ó : r/2, ++r':Ti.
Due to the symmetry of impinging jet a value of the limiting radius can be
determined frorn the integration untii the specified velocity is reached

Użn

That velocity results from the balance between the momentum and surface ten-
sion forces.

A simple model of the shape of the jet includes the influence of principal pa-
rameters influencing the liquid distribution, for example surface tension of solid
arrd liquid, and liquid and gas or the surface tension of liquid and gas and t}re
wetting angie. As mentioned ea,r,lier this is connected with calculations of spray
cooled heat exchangers. In the case of supercritical film flow the u,etted surface
is often determined by the hydraufic jump, as seen from experiments.

/ pq 12
l 

-l

\o(1 - cos0))

( 2lrpqnujn \
\o/(1 - cos0))

I Io(7 - cos0)



J. Mikielewicz

2.3 Two-phase liquid-gas jets

A two-phase jet impinging normally a flat surface, together with the co-

ordinate system is schematically shown in Fig. 5. A cylindrical co-ordinate
system has been assumed. The a co-ordinate is perpendicular to the sulface.
Considered is a two-dimensional a-xially symnretricai flow of gas and liquid flowing
out from tlnencrzzlre with the rate Q, described by the co-ordinates r and z.
Irr the analvsis it has been assumed that:

Wall

Figure 5. Schematic of a two-phase jet wetting tłre sutface

Liquid film motion is laminar and fully developed, and caused by tlre motion
of the gas phase;

Gas phase flowing axially symmetric out flom the nozzle causes the shear
stress at the iiquid film surface and feeds that film with liquid at the rate g;

Phase interfaces, liquid-wall and liquid-vapoul are smooth;

Physical properties of liquid are constant;

The liquid film thickness is small, which enables assumptiorr of a linear
velocity profile in the z direction and the assumptions of the boundary
iayer in the equation of motion;
Gravitational force is neglected;

a

a

a

N q*';*},liquB filń :-:-:j
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o The circumferential component of velocity is equal zero due to symmetry
(u : 0). That means, that the radial component and the film thickness are

firnctions of the radius r.

In accordance with assunptions a full set of conservation equations in cylin-
drical co-ordinates, after simplifications can be cast in the form

I7(ru) , a@)
^ 

l n -V1roroz
Ou 0u 7 0p p,02u

U-=- -r .l'-;- : --;- -tr -;;--6',clr oz p or p oz,
(31)

-0.

Boundary conditiorrs for the problem aTe as follows

Z :0,
z:6,,

(32)

tr}om the latter Eq. (31) it results, that pressure acToss the 1iquid fllm is
constant, just as in the boundary layer, and depends only on the r co-ordinate.
The pressure gradient and shear stresses at the interface surface, in the case

of fllm, can be determined from the radial flow of the gas strcam under the
assumption that the fllm is thin and its tlrickness can be neglected in tlre gas flow.
Analytical solution for the axially-symmetric gas flow has been given by White
(1974) and Schlichting (1980), [6]. Here we consider the flow in the boundary
layer with the pressrrre gradient. Pressure distribution in the flow is described by
the relation (Schlichting)

_I_ap
pOz

,lI :'u :0,
,l):,t)i; *:fr

?g : po - lrno' {r' + f (z)). (33)

Velocity components of gas are described by the relations (Martin, 7977), [61

ug : arFl(rl), ug : -2az

,* (?)(r.oł - o.osłfr), fl:2ntr
YFn

(34)

Martin stated, that in the case of axially-symmetric nozzLe a value of the
coeflicient a can be expressed by tlre geometric pararneters as from the Fig. 5.
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Shear stress at the border between gas and liquid have been calculated based
on the gas flow. These are

rl : ps*|o : ntzrfoYn 1,,nr, (35)

as: F//(0) : 1.312.

In order to fincl an approximate solrrtion to the problern, an integral form of
balance equations was decided to be developed [7].

The mass balance in the limits of the liquid {ilm thickness can be obtained
by integration of the first equation from (31) in the limits of the liquid layer.
Differentiating the integral according to the rules of the integral differentiation
with the parameter and utilising the boundary conditions ne get

6ar a6
* J (ru)dz + *r :0. (36)

0

Assuming
a6
* : -ł: const. (37)

Introducing (37) into (36) we obtain the mass balance equation in tłre form

6
0 l- [ ^,r-'ńr ł 

udz] - Qr :0. (3B)

Integrating (38) in the limits from 0 to r and multiplying by 2zr we obtain a fornr
of mass ba]ance equation provided in [1]

ór^
2lrr Iudz:nTr'Q.

0

An integral momentum equation is obtained by integration of particular terms of
the second equation from the set of Eq. (31) and then

a ó ó

*tu'a,-uiq+łI*o,:T-;#, (40)

00
In order to solve the above problem let's assume the simpiest, linear velocity

profile in the form
u : C(r)z. (41)

(39)
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The coefficient C(r) and the film thickness can be determined frorn the inte-
gral balance equations,

C(r) : g_. 
@2)6(r)z'

and next the wa1l shear stress can be determined in the form

,-: r#:c@)1.1: ff,
Let's assume initially, that the inertia forces are snall and can be neglected (left
hand side of (a0)). Then the following relation can be obtained

(43)

(44)

(45)

(46)

(47)

Q: I.372
a3 Pg_Fg 62 * 

a2 Pn 5z,p, Ll

, poo'6" qp\
- p - p)'

arralogicai to the one obtained in [6]. The difference is that in the second term of
the right hand side in [6] there appeaTs the coefficient equal to 2l3.
FYom the full momentum Eq. (40) we get

d6

-:rLr

3/
-- 

l

ssr \
1.372

Introducing the non-dimensional variables

fr
7l:-,

T3

where To - a characteristic radius.
The relations (aa) and (a5) have a following form

^L ó

d':-,
l"6

In order to solve (48), we need to know the film thickness for the zero radius
or the film thickness after the stabilisation distance, where the inertia forces can
be neglected, As shown from the experiments the film thickness at the centre of
the jet is not equal zero. The filrn thickness after stabilisation is determined by
the relation (47).

The shear stress at the wall can be generally expressed as

q : 1.3l2r3r@_ u*z * 
a2 Ęg ro5+s,

Y l-t" l"l,

d,6+ 3 ( 1 .UZ1[# pnlrnrga2 pna2r2o6 |3 qp \
dr+:-Fł\ p - p -T)'

",2r- : CrPt

(48)

a3 pgłlg52

(49)



J. N{ikiele-wicz

Then, knowing the friction coefi.cient we can use (40) both in the laminar
and turbulent flow.

Reiation (40) together with the mass balance Eq, (38) is a closed set of
equations enabling determination of local Iilm thickness.

Integrating (a8) we can obtain the dependence of liquid layer thickness on
the radius.

Performed have been calculations for the parameters close to those, at which
conducted have been experimental investigations in [6], i,e. a jet of water droplets
atomised by the nozzle in air, which approximately, based on relation (36), can
be characterised by the parameter 0:1500 s-1. Assumed in calculations has
been the air pressure ofps :240 kPa and the characteristic radius equal to 16 :
ż,Ł0-4 m. For the assumed data the stabilised liquid fllrn thickness ó" has beert
determined from (47) in dependence from the rvetting rate q. The results arc
presented in Fig. 6.

0.3

rł
0

02

air - water

Pn = 240 kPa
a = 1500 s-1 i

"łl
t

]
!

l
Ij

-0 ? 4 6 8 10 12

o 1mlsl

Figure 6. Dependence of the non-dimensional film thickness on the unit volumctric wetting rate.

Knowing the wetting rate, we are able to determine tlre stabilised thick-
ness of liquid film. Assuming a unit volumetric flow rate of water equal to q
_1 l 1, n],--' iił: 3ł0?, we obtain the {ilm thickness ó" : 200.10-6 tn. In the case of
that volumetric flow rate calculated frorn (aB) has bcen the film thickness prior
to stabilisation. Calculations have been perforned by means of the Runge-I(utta
method of the fourth order. The results of calcuiations are presented in Fig. 7.



Liquid and liquid-gx cooling. .. Jl
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l
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lł
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Figure 7. Change of non-dimensional liquid film t}rickness in function of dimensionless co-
ordi,rrate.

3 Modelling of heat transfer in liquid film

Let's consider a single phase liquid jet impinging on a flat surface, whic}r
produces a thin liquid filnr distributed on the solid surface. In such film three
zones can be discerned: a vicinity of the stagnation point, non-developed film,
where the boundary layer grows and has yet to reach the thickness of the devel-
oped film and the fully developed fllm, where the boundary layer has reached the
thickness of the fully developed film. In the present work two latter cases will
be considered. In the case of the frrst zone there is an exact solution presented
by Schlichting [5]. The model presented below provides analytical solutions ap-
proximated to the case where the fllm flow is larninar. An approximate solution
has been obtained on the basis of so called tlrin layer approximatiorr. In such
theory neglected is velocity in the transverse direction of tlre moving liquid layer.
IIydrodynamic aspects of impinging single phase jets have been considered by
the author in [10-11, 13],

3.1 Heat transfer in impinging single phase jets

Bquations describing the behaviorrr of non-compressible two-dimensional liq-
uid fllms flowing on the solid body, written in the cylindrical co-ordinates with
the assumptions relevant to the boundary layer can be written as

o Continuity equation

3r

O(ru) , O(rw)
-;-t---;-:U,OT Oz

(50)
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o Momentum equatlon
O,u
Oz,

(5 1)

o Energy equation

^ 
a2T0@:r) a:r----;- t W-- :(tr CJz pco 0z2'

(52)

In the further analysis it has been assumed that u) : 0, which colr-esponds to
the simplifled "thin layer" theory. Let's consider fi,rst the flow and heat transfer
in the film in the zone with the developing flow and then in tlre zone, where the
ł,elocity profile is fully developed.

3.2 Analysis of the developing film

Let's assume the flrst approximation of the velocity proflle in the linear forrr

u:

The above profile obeys the condition of zero velocity at the wai1 and takes a

value of undisturbed velocity at the boundary layer border u6. Substibuting th,:

above velocity proflle to the left hand sicle of momentum equation (51), using ,
: 0, and then integrating using the boundary conditions of u : 0 at ź : a

z : 6, 'U :'Uol 0u
0, -0,

we obtain a subsequent approximation of the velocity proflIe in the form

0u 0u
U ^ łw ̂o,r oz

(53
UoZ

ó

,:-*#rr-ó,,) +T,

(5{

/=:
\r_

where ó is the boundary layer thickness. Using the sccond condition at the borc
of the boundary layer we obtain a following clifferential equation

1"uOd6 1

4 u dr ó'
(;,

This equation can be solved by means of scparation of variables and .:

boundary condition that for f : 0 * ó : 0. This enables to determine .l
distribution of the boundary layer thickness in liquid with respect to the rac .

r, rvhich reads
ur
Ug

6 :2.8
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Defining the volumetric flow rate for the entire fiim in the form

ó

Q :2lrrlI ,Or+ (h - ó)uo],

0

(58)

we can determine the developing liquid layer thickness, which in t}re non-dimensional
form reads

where ,* : $6 ancl óo

assumed as 16.

The limiting radius of the boundary layer, where it reaches the liquid film
thickness can be determined from the relation

,l

łrł :o.Ęłr+ + Łr,|'
which leads to the relation rł: l,ą.It results further that h{,: 1.187, or h7, :
3.35-+.

ł Reo
Let's define the mean film temperature in the form:

Trr: (61)

h-1
h+:ł:g.4g1/7+t - 

(59)-Óo- 'rł'
:2.8_Ł: -Ł. The nozzle diameter has been

luoro 1/ lte6

U,

(60)

h

! uTdz
0

h

t udz
0

ll

:'# 
|uraz.

h

Znr lud,z:Q,
J
0

The denominator in (61) can be determined from the continuity equation in the
form

(62)

where Q is bhe volumetric flow rate. F}om integratiorr of (62) in the limits from 0

to h, using the deflnition of mean temperature (61) and the boundary conditions
we get

(63)

w}rere g., is the heat flux at the wa1l and q; is the heat flux at the phase sepa-

ration surface. Integrating (63), assuming that for r: To,Trr: ?9 we obtain a
distribution of the mean temperature along the radius

0 rT-x 2rr /

ń|;):ffi(ł--ł,),

,*:'##(-*)(r2-1) +?b. (64)
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In order to ctetermine the temperature distribution across t}re filn we use Eq. (52)
and a definition of the mean temperatule (61). l}om (61) it results that

Let's use also the approximation
):

a(u:r) _O(uT),, Q 0 lT,,:-a, =T:ńu|ń) (66)

Expressing the left hand side of the enelgy equation by (O6) we obtain a differ-
entiai equalion

(uT),.: *,

N(r+z - l)+ PB(rl)r+ 1 1/,7+'

(65)

(tj8o)

(6Bd)

a2T _ %p 0(uT),, 
_

0z2 - .\ 0r : A(r),

A(r): ffiręr*1,

iż Tgn : uo%Pń'

Qr,:(|:-
T* - Trr'

(67)

where

__ Integrating (67) at the condition, that we have at the wall T : T- and

# : -T .u obtain a temperature distribution across the film. Ftom that we
determine the temperature difference T,, - T-, which enables deternrination of
the heat transfer coefficient a as well as the Nusselt number

(69)

where N : l$P F - H and p : 1,.4łfu.

(70)
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3.3 Analysis of a fully developed film
An approximate value of heat transfer coelTicient can be calculatecl using thc

thin layer theory neglecting the influence of transverse velocity. The continuity
Eq. (58) is fulfilled by the following ł,elocity distribrrtion

,: Ł!. (71)" Zrhr'
Substituting the above velocity proflle into the nronrentum Eq. (51), and

then integrating it using the boundaryconditions that for z:0 } u:0 ancl for

z : h + H: 0 we obtain a following velocity clistribution

Q2 ł/ lz2 \u: ffif (r)(; - hr), (72)

where Ł is the film tlrickness and f (r): +#(#)
Based on the relation (5B), in the case of a constant film flow in the Iilm we obtain

(73)

which integlated at the boundary condition

T:Ttr h:hb, (74)

gives us the distribution of 1ilnr thickness with respect to the radius (from thc
beginning of the fully developed film)

*: ,s(,*, - #l + +, (75)

,
where S : ń#^, superscripts { denote non-dimensional quantities, trnergy Eq.
(67) can now be considered, which requires consideration of the relation (6a) and
the assumption (66). Incorporatirrg (6a) and (66) as r,vell as (75) into tłre enelgy
equation we get

dhh^r
dr+i:DlTua1

a'T :%pO(uT),- _ 
^t^\aF- 

^ 
0, -^\l)l

A(r):ffiu{rn),

(76)

(77a)

3Sr+2
(,Sr+s -,9 + t;z'

(77b)
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(77c)

Integrating (76) with account of the boundary condition, that at the wa1l

we have T : Tr, we obtain the temperature distribution. subsequently we get
the temperature difference Ę, - Ą, which enables determination of a local heat
transfer coefficient and the Nusse]t number

,
hI: K(l _ !L\:Ł.\ q-l rodo

aht 1

^ 
9^{Brł\hłz 1 56+6T-a'

(78)

4 Results

In order to illustrate the performance of the mode1 conducted have been
caiculations for different values of 1( and qłlqru.The parameter K was set values
of 10 anrl 50 respectively, whereas the parameter qif q- : 0.5 and 1.0 respectively.
Additionaliy assume<l r,vere Pr : 7, Reo : 1000. Plrysical propelties of water
corresponded to 20"C. Calculations have been performed on a commercial version
of MATI-ICAD200O. Results of the influence of K on the Nusselt number and the
non-dimensional film thickness are presented in Fig. 8 and 9.

3.000

2.00 4.00 6.00 B.00 10.00
nondimensionąl radius r+

Figure 8. Distribution of Nusselt number for various values of K and q6f q- : 0.5: DF' - devel-
oping {ilm zone, FD - fully developed filrn.
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ligure 9. Distribution of Nusselt number for various values of K and qif q-: 1.0: DF - devel-
oping film zone, FD - fully developed fiIm.

Increase of K from 10 to 50 (reduction of q, or increase of temperature) causes
"hc lrlusselt nulnbeT to increase in the ca§e of developing flow (DF) formulation.
\o visible changes are perceptible in the case of fully developed calculatiorrs (FD).
lrcreasing the ratio of interface to wall heat flux, qtlq-, we obtain rnuch better
-grcement between the formulations, i.e, a smoother transition.

o conclusions

In the work presented has been an approximate solution of the flow and
:eat transfer ploblem in the case of a film formecl by the jet irnpingement on a
surface. Fbrmulated has been a simple two-dimensional nodel of the flow anrl
::eat transfer in t}te fllm. The model is based on simplifled conservation equations
],f mass, morrrentrrm and energy. solution of that system of equations at adequate
roundary conditions enables detcrmination of the velocity profile in tlre filn and
ocal values of heat transfer coeflicient and Nusselt numbers. The moclel enables
analysis of the influence of heat trarrsfer at the free surface on heat transfer from
the wetted wall.

Received 26 F'ebruary 2002
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