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Liquid and liquid-gas cooling of machine elements
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Poland

Abstract

In the work presented are thermal and hydraulic problems concerned with the liquid films
formed by impinging jets. Formulated has been a simple two-dimensional model of the flow and
heat transfer in the film. The model is based on simplified equations of mass, momentum and
energy balance. Solution of such set of equations enables determination of velocity profile in the
film as well as local heat transfer coefficients.

Keywords: Liquid-gas cooling; Impinging jet; Thin film

Nomenclature
cp — heat capacity v — kinematic viscosity
Fr - Froude number e - surface inclination angle
— specific volumetric flow rate 4,k — boundary layer thickness, film thickness
of liquid in the film A — thermal conductivity
Q — volumetric flow rate p — density
r,z,¢ — co-ordinates o — surface tension
{5 = ptime v,w,u — velocity components: radial,
T — temperature normal and circumferential
Subscripts

¢ — critical s — singular point

- gas tr — border between the developing
i — interface surface and fully developed regions
in — initial value w - wall
k - droplet 0 - initial value
m — mean

*E-mail address: jarekm@imp.gda.pl
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1 Introduction

Liquid (film) flow down the surface of the wall occurs in a variety of coolec
power engineering installations, heat exchangers and many chemical engineering
appliances. Such heat exchangers are called condensers. The process of liquic
flow in spray cooled heat exchangers is different from that in condensers. Botl
processes have been investigated theoretically and experimentally. The flow o
gravity driven liquid films formed due to vapour condensation is particularly
richly represented amongst the literature. This type of flow was investigated ir
[1-3] for different pipe geometry including inclined cylindrical or elliptical pipe
and cylindrical finned pipes. In the case of gravity driven flow, the trajectory o
the liquid film motion is determined by the steepest gradients of the gravitational
slope. The inertia forces are neglected then. However, in the case of impingemen
of a liquid jet on the surface, the inertia forces must be taken into account a
they have a great effect on the trajectory of a forming liquid film. The process o
a liquid film flow with a specified velocity after impingement on a flat horizonta
surface was investigated both theoretically and experimentally in [4-5]. There
is a lack of theoretical solutions on the flow distribution on inclined surfaces.
Such solutions can serve for the development of models of liquid distribution on
horizontal tubes or even more complex geometries, which can be found in cooled
elements of machinery and condensers. The analysis conducted in the paper is
aimed at investigation of the phenomenon of liquid distribution on the plate ar-
bitrarily oriented in the space.

Another way of cooling of heat transfer surfaces, requiring less amount of
liquid, is spray cooling using water-gas jets.

Surface wetting by means of impinging two-phase jet consisting of gas and
liquid droplets is used for a more intense cooling. Particularly intense is cool-
ing, when the film evaporates. Such type of surface cooling can be applied in
heat exchangers, chemical engineering apparatus, electronic equipment with hi gh
thermal loads or computers of large power. The process of distribution of the
liquid layer formed from the droplets on the wall was investigated theoretically
and experimentally not by too many authors. Up till now it has yet to be fully
understood. A correct mathematical description is still missing. Works known
from literature [1-2] provide only very simplified models. The inertia forces are
neglected, which in the case of the jet impingement cannot be disregarded as
the kinetic energy of the jet approaching the wall decreases whereas the pressure
increases. At the point of impingement the kinetic energy is equal zero and the
pressure is at its highest. In the region of impingement of the axisymmetric jet a
radial gas flow starts to develop. The pressure reduces and the radial gas velocity
increases. Therefore there exists the radial pressure gradient, which influences
the liquid film motion. The atomised liquid phase contained in gas in the form
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of droplets separates on the wall due to bigger than gas inertia, which lead to
deviation with respect to gas streamlines. The droplets form a liquid film, which
flows out radially. In the vicinity of stagnation the flow is laminar. In the work
considered are thin liquid films moving with the laminar character on the wall.
The process of impinging liquid distribution on a horizontal surface was inves-
tigated both theoretically and experimentally in [4-5]. The aim of the present
work is to understand phenomena of liquid distribution in the film formed by
the impingement of a jet of gas with liquid droplets on the surface. Developed
has been model of the phenomenon based on integral equations of liquid film
motion on the wall. Numerical calculations have been performed to illustrate the
method.

2 Motion of liquid film resulting from liquid and gas-
liquid jet
2.1 Motion of liquid film produced by the liquid jet

A flat surface, inclined by the angle «, is presented together with the co-
ordinate system in Fig. 1. A cylindrical system of co-ordinates has been assumed.
The axial co-ordinate is perpendicular to the inclined surface. A two-dimensional
flow is considered described by the co-ordinates r and ¢. Both co-ordinates are
in the plane of considered surface, where the jet with the volumetric rate @
impinges.

It has been assumed in the analysis that

Figure 1. Impingement of a liquid jet on an flat inclined surface: a) physical situation, b) system
of coordinates.

e The flow of the liquid film is steady, laminar and governed solely by the
action of the gravity and inertia forces;
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e The surrounding medium is at rest and there is no shear stress at the
interfacial surfaces; :

e Liquid-wall and liquid-vapour interfacial surfaces are smooth;

e Physical properties of the liquid are constant;

e The liquid film thickness is small, which justifies simplifications in the mass
and momentum conservation equations;

e Velocity across the film is constant and equal to the average velocity in the
film. The average velocity is a function of the co-ordinates r and ¢;

e The circumferential and vertical (normal) components of velocity vanish
(v = w = 0). That means that the radial component of the velocity and
the film thickness are functions of r, ¢.

In accordance with outlined above assumptions a full set of conservation
equations of mass and momentum written in cylindrical co-ordinates, after im-
plementation of the above simplifications yields:

e continuity equation

19(rv) 8 o(w)

- or 9z b
e momentum equation in radial direction
v v 10p po%w
b S e L By ) e 1
U8r+w82 9 p8r+p8z2’ (1)

e momentum equation in the normal direction

e momentum equation in the circumferential equation

21 Ov

pr? ¢

The components of the gravitational force as results from the schematic in Fig. 1
are having a form

+g4 = 0.

gr = gsina.cos ¢,
gs = gsinasin ¢, (2)
g. = gcosa.
The mass balance in the limits of liquid film thickness is obtained by integration
of the first equation in (1) in the limits of the liquid layer

9(rvd)
or

il (3)
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Integrating and comparing against the volumetric flow rate of impinging jet we
obtain
& = 2mrvé. (4)

On the other hand, by integration in the z direction we get the pressure distri-
bution

P = pgd cos o + po, (5)

where, after differentiation we get

ap a6
L/ e 6
o — P95, cose, (6)

From the momentum equation in the circumferential equation we get

ov 90 2 .
MR , : 7
5 r° sin o cos ¢, (7)

Differentiating (7) we obtain

02’0 gpi o, 5

—5 = —7rsinasin ¢. 8
Substituting (6) and (8) into the radial equation of motion integrated in the z
direction and incorporating (2) we obtain after some re-arrangements

9 (v? e L rou
5(7 +g§cosa) :igsmacosqﬁ—p—(su(—az)w. (9)
Introducing the shear stress into (9) we obtain
o (v? 1
E(% +g(5cosa) = %gsinacosd)— ;57. (10)
The shear stress at the wall can be expressed as
2
v
7 =Cypv (11)

Then, knowing a relevant friction coefficient we can use Eq. (10) both in laminar
and turbulent flows.

The relation (10) together with the mass balance Eq. (4) forms a closed
set of equations enabling determination of velocity field as well as local film
thickness. According which quantity we want to determine, i.e. either velocity or
film thickness, we can formulate adequate boundary conditions to the problem.
Both, velocity and film thickness at the initial radius r;, are assumed as known
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and equal to §;, and v;,. Let’s introduce the film thickness from the mass balance
Eq. (4) and the relation (11) to the momentum balance Eq. (10). In effect, after
some transformations we get

gQcosa  gsinacos¢@ C’f'u37rr

B : @ (12)
dr gQ) cos o ’
fl} i
2rrv

where Cy — is a friction coeflicient which can be determined from the Blasius
relation in the case of turbulent boundary layer as

.664
el Do (13)

v(r — Tin)p

Voo

where r;, — is the inlet radius of the liquid layer.

Integration of Eq. (12) gives a relationship for the velocity as a function
of the radius r or expressing the velocity in terms of the film thickness from
Eq. (4), a relationship between the film thickness and the film radius can be
found. The direction of the integral curve is determined either by the value of
the velocity derivative or the film thickness derivative with respect to the radius.
The derivatives tend to infinity if the denominator in Eq. (12) approaches zero.
This situation is characteristic for the so-called turning point. Physically it refers
to the critical flow conditions. Let us find the criticality conditions equating the
denominator in Eq. (12) to zero. Then we have

v = (L2227, (1)

or in the dimensionless form

3 2
i ta Fr? = cosa. (15)
9@  goc

The relation (15) for the flat horizontal surface was obtained in [5]. It follows
from (15) that the parameters of the critical flow are local and depend neither on
the integration path nor on the friction coefficient. Therefore, they are the same
also in the case of inviscid flow without friction.

In the case when both the numerator and denominator in (12) are simultane-
ously equal to zero, then the derivative, which locally determines the direction of
the integration path is indefinite and we obtain a singular point. That situation
also refers to the critical conditions given by Eq. (14).
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Equating the numerator and denominator of (12) to zero, one can obtain the
dimensionless co-ordinates of the singular point as follows

3 *( 2Q? cos? o )1/5 (16)
* \n2g(Cycosa — sinacos )3/
gl cosa1/3
= |¥—— ; il
Xy ( 27r, ) e

The co-ordinates of the singular point in the dimensionless form have a fol-
lowing form
Frs = +/cosa, (18)

r 1 cos?/3

SR

x

RJ = (19)

" 3cosa—sina =P’
/3 Cy

where Reg; = UsOs :

It results from (16) that a singular point can appear only in the gravity driven
flow, even in the case of an ideal liquid flow without friction. The dependence
between the Froude number and the dimensionless radius of the film, as a function
of the inclination angle, are given in Fig. 2a and Fig. 2b. The relation between
the Froude number and the dimensionless film radius is presented in Fig. 2c.
The behaviour of the integral curves in the vicinity of the singular point can be

Fr,
iyt |
1.00
c)
0.9 frg
100
096 X FE
5 02 0b o 09921
bl 2
1S 0986 -
10 ¢ 0976 +
05 0964 |-
0 Il 1 0960 1 1 [ L A i
0 02 04 o 0 03 06 09 12 15 gt

Figure 2. Distribution of critical parameters: a) Froude number, b) non-dimensional film thick-

ness, ¢) Froude number in function of radius.
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investigated by linearisation of the left hand side of Eq. (27). In order to calculate

d ¢
the slope of the integral curve in the singular point ( = 7 let’s unveil the

)
drt/s
function into the Taylor series, both the nominator V and the denominator R,

(12) and then apply the de I‘Hospital theorem

av 5 dv dvt

dv’* det dul dr”
N = = o 20
1= (7). in . dR dv* e

drt  dot drt
The above relation is identical with the characteristic equation
dR , (dR 5 dV)"?— av
dvt drt " dut drt
According to values of the roots of (21) we get different types of singular

points. These are: the saddle point, nodal point and spiral point. An example of
the nodal point has been shown in Fig. 3c.

= 0. (21)

Figure 3. Integral curves; a) supercritical flow, b) subcritical flow, ¢) nodal point.

As can be seen, three possible types of solutions can be distinguished, which
have been sketched in Fig. 3. The flow is supercritical and reaches the critical
parameters, or just before it reaches the critical parameters there appears a hy-
draulic jump and the transition to subcritical flow takes place (Fig. 3a). The
hydraulic jump, possible under such conditions, causes the increase in the film
thickness and a corresponding decrease in the Froude number, which leads to the
subcritical flow. Such a condition, however, cannot be drawn from the analysed
equations and should be derived in a similar manner as in the case of a shock
wave in gasdynamics. The flow is supercritical and reaches the critical parame-
ters at a singular point. Depending on the nature of the singularity the flow can
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turn into a subcritical one (Fig. 3c). The flow is subcritical and never reaches
the critical parameters, (Fig. 3b).

The supercritical flow can reach critical parameters at a turning point. In
this case, in order to integrate Eq. (12) within the whole range of supercritical
and subcritical flow it is necessary to reverse the status of the dependent and
independent variable. Then the turning point becomes the extremum. The curve
referring to the critical parameters is also shown in the figure. The curve divides
the plane of solutions into regions of supercritical and subcritical flow. Starting
from the parameters corresponding to the supercritical conditions, it is possible
to reach the critical parameters. It follows from the figure that the integral curve
has a maximum for a certain value of the film radius r, which from the physical
point of view means that the flow can be supercritical up to a maximum value
of radius (the critical radius). The hydraulic jump can occur in response to a
variety of disturbances before the flow reaches the critical conditions and the flow
will convert to a subcritical flow, described by the part of solution towards left
from the extremum. The subcritical part of the curve has the physical meaning
only when the transition from supercritical to subcritical flow takes place due to
the hydraulic jump as a decrease in the film radius otherwise is not physically
possible.

A formulated simple model of liquid jet impingment on an inclined surface
consisting of conservation equations of mass and momentum with closing equa-
tions may serve, with some modifications, in the development of the liquid jet
distribution on the cylindrical surface and subsequently in calculations of heat
transfer on such surfaces. As mentioned earlier that is concerned with calcula-
tions of performance of spray cooled heat exchangers and other installations.

The model has been tested for the existence of possible solutions in the case of
supercritical and subcritical flows. It has been shown that the model is capable of
describing the flow, which reaches the critical conditions. The critical film radius
is a result of integration of governing equations and is determined by the closure
equation (friction coefficient), whereas the critical parameters are the local ones
and depend on the Froude number only. The critical parameters are determined
by the model and should be considered as an integral part of the model. The
consistency between the model and the experimental values of the critical pa-
rameters is, undoubtedly, a measure of the correctness of the model. In the case
with a singular point, the model allows for the transition from supercritical to
subcritical flow without the hydraulic jump.

2.2 The shape of the liquid film distribution

The distribution of the liquid layer on the solid surface has its specifics. That
will be presented below. The momentum of the jet impinging on the surface is
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recovered by the friction forces, and finally balanced by the surface tension forces.
In such way the wetted surface area is limited.

Let’s assume that the liquid flows into the sector tangentially, picks up the
liquid flowing in the sector and leaves the sector tangentially, as shown in Fig. 4.

Figure 4. A schematic of the liquid distribution in the elementary segment d¢; a) velocity dis-
tribution at the jet border, b) surface tension acting on the element of the jet border,
c) balance of surface tensions acting on the liquid film

Let’s consider the momentum balance on the elementary distance of the liquid
border (Fig. 4)

vopATrdg = &(1 — cos 0)ds. (22)

On the left hand side there exists the momentum flux, whereas on the right hand
side there are surface tension forces of liquid and gas as well as of the solid, as
shown in Fig. 4. The balance of forces in the direction normal to the jet border
gives an equation

gpv cosYrdg = o(1 — cos #) sinyds, (23)

where ¢ = Q/27r is a specific volumetric flux of liquid in the film.
The length of the element of the border ds can be expressed as:

ds=4/1+ (7%%)2, (24)
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and p
g ¥ = oo (25)
Introducing the length of the arc (24) and ctgy (25) into (23) we get
dr
1+
e (rdd)) (26)
o(1 — cos 0) U(ﬂ)
rdo
Solving Eq. (26) with respect to w we get
GE G - . (27)

do 2
\/(0(1 —pios 0)) A

Assuming that the liquid layer thickness does not vary a lot and can be
regarded as constant as well as that the entire liquid flows into the sector with
the central angle ¢ and then flows tangentially to the border, then the continuity
equation in the following form holds

G = 2000 =grvd = grag. (28)
Introducing the continuity equation into (27) we get

dr r

— =+ A (29)
de ( 27 PGinVin )202 =
op(1l — cos0)
The boundary condition for that equation is a value of the radius 7
for d=n/2, i

Due to the symmetry of impinging jet a value of the limiting radius can be
determined from the integration until the specified velocity is reached
vj:—l— o(l—cosa). (30)
Vin 4
That velocity results from the balance between the momentum and surface ten-
sion forces.

A simple model of the shape of the jet includes the influence of principal pa-
rameters influencing the liquid distribution, for example surface tension of solid
and liquid, and liquid and gas or the surface tension of liquid and gas and the
wetting angle. As mentioned earlier this is connected with calculations of spray
cooled heat exchangers. In the case of supercritical film flow the wetted surface
is often determined by the hydraulic jump, as seen from experiments.
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2.3 Two-phase liquid-gas jets

A two-phase jet impinging normally a flat surface, together with the co-
ordinate system is schematically shown in Fig. 5. A cylindrical co-ordinate
system has been assumed. The z co-ordinate is perpendicular to the surface.
Considered is a two-dimensional axially symmetrical flow of gas and liquid flowing
out from the nozzle with the rate @, described by the co-ordinates r and z.

In the analysis it has been assumed that:

?_liquid
g ; g§air
i e b
e /
» \ free
- stream
H

wall bounded
stream

s
O T R T A T T TN DA T o L e T A TP T it g vy i

E walll !

Figure 5. Schematic of a two-phase jet wetting the surface

e Liquid film motion is laminar and fully developed, and caused by the motion
of the gas phase;

e Gas phase flowing axially symmetric out from the nozzle causes the shear
stress at the liquid film surface and feeds that film with liquid at the rate g;

e Phase interfaces, liquid-wall and liquid-vapour are smooth;

o Physical properties of liquid are constant;

e The liquid film thickness is small, which enables assumption of a linear
velocity profile in the z direction and the assumptions of the boundary
layer in the equation of motion;

e Gravitational force is neglected;
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e The circumferential component of velocity is equal zero due to symmetry
(u = 0). That means, that the radial component and the film thickness are
functions of the radius 7.

In accordance with assumptions a full set of conservation equations in cylin-
drical co-ordinates, after simplifications can be cast in the form

19(m) | o)

=1
r dr 0z '
v ov 10p pd%v
— —=——— 3l
U@rer % por  poz?! )
10p
———==0.
p Oz
Boundary conditions for the problem are as follows
2 =0, w=u=0,

U = Uy, %—u

From the latter Eq. (31) it results, that pressure across the liquid film is
constant, just as in the boundary layer, and depends only on the r co-ordinate.
The pressure gradient and shear stresses at the interface surface, in the case
of film, can be determined from the radial flow of the gas strecam under the
assumption that the film is thin and its thickness can be neglected in the gas flow.
Analytical solution for the axially-symmetric gas flow has been given by White
(1974) and Schlichting (1980), [6]. Here we consider the flow in the boundary
layer with the pressure gradient. Pressure distribution in the flow is described by
the relation (Schlichting)

1
Py =Po — 5pg0” (r* + f(2))- (33)
Velocity components of gas are described by the relations (Martin, 1977), [6]

Vg = arF(n),  wy=—2uz

(34)

a%(%—)(l.OlL—0.0M%), ey

Martin stated, that in the case of axially-symmetric nozzle a value of the
coeflicient a can be expressed by the geometric parameters as from the Fig. 5.
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Shear stress at the border between gas and liquid have been calculated based
on the gas flow. These are

o
T = g t| | = 1312¢/a%0eu,r, (35)

as: FN0) = 1.312,

In order to find an approximate solution to the problem, an integral form of
balance equations was decided to be developed [7].

The mass balance in the limits of the liquid film thickness can be obtained
by integration of the first equation from (31) in the limits of the liquid layer.
Differentiating the integral according to the rules of the integral differentiation
with the parameter and utilising the boundary conditions we get

é
0 0
o /(rv)dz o e e 0. (36)
0
Assuming
—gg = —q = const. (37)
Introducing (37) into (36) we obtain the mass balance equation in the form
5 é
o [r / ’udz} —qr=0. (38)
0

Integrating (38) in the limits from 0 to r and multiplying by 27 we obtain a form
of mass balance equation provided in [1]

8
27rr/vdz = mrig. (39)
0

An integral momentum equation is obtained by integration of particular terms of
the second equation from the set of Eq. (31) and then

b E)
0 1  — 1
= /’u2dz —v;iq+ —/vzdz Lo —@6. (40)
or J r p por

In order to solve the above problem let’s assume the simplest, linear velocity
profile in the form
v =10 r)e. (41)
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The coefficient C(r) and the film thickness can be determined from the inte-
gral balance equations,

qr
Seh s 42
ctr) = 555, (42)
and next the wall shear stress can be determined in the form
ov qris
= S y = . 43
Tw /'Laz C(r)lu’ 5(7_)2 ( )

Let’s assume initially, that the inertia forces are small and can be neglected (left
hand side of (40)). Then the following relation can be obtained

3 2
f Zvgiae 292“952 it "’:5’53, (44)

analogical to the one obtained in [6]. The difference is that in the second term of
the right hand side in [6] there appears the coefficient equal to 2/3.
From the full momentum Eq. (40) we get

s 3 (1-312\/(1309;@52 5 Pl gg) (@5)

dr " @r P P P

Introducing the non-dimensional variables

=L, gt=2 (46)

where rg — a characteristic radius.
The relations (44) and (45) have a following form

3 2
g =1.312r2,/ %5“ E a—;ﬁroé”, (47)

dst 3 1.3124/a®pgpgrod? i paa*r3st  qu (45)
gt T Sk p p p/)

In order to solve (48), we need to know the film thickness for the zero radius
or the film thickness after the stabilisation distance, where the inertia forces can
be neglected. As shown from the experiments the film thickness at the centre of
the jet is not equal zero. The film thickness after stabilisation is determined by
the relation (47).

The shear stress at the wall can be generally expressed as

,02
Tw=Cpp (49)
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Then, knowing the friction coefficient we can use (40) both in the laminar
and turbulent flow.

Relation (40) together with the mass balance Eq. (38) is a closed set of
equations enabling determination of local film thickness.

Integrating (48) we can obtain the dependence of liquid layer thickness on
the radius.

Performed have been calculations for the parameters close to those, at which
conducted have been experimental investigations in [6], i.e. a jet of water droplets
atomised by the nozzle in air, which approximately, based on relation (36), can
be characterised by the parameter a = 1500 s~!. Assumed in calculations has
been the air pressure of p, = 240 kPa and the characteristic radius equal to rq =
2:107* m. For the assumed data the stabilised liquid film thickness & has been
determined from (47) in dependence from the wetting rate ¢. The results are
presented in Fig. 6.

03 f 1 t :
+ air - water
¢ Py =240 kPa
0.2 a=1500s""
0.1p :
B
00 10 12
almls)

Figure 6. Dependence of the non-dimensional film thickness on the unit volumetric wetting rate.

Knowing the wetting rate, we are able to determine the stabilised thick-
ness of liquid film. Assuming a unit volumetric flow rate of water equal to ¢

=1 hcfn = E%U%’ we obtain the film thickness d; = 200-10~6 m. In the case of

that volumetric flow rate calculated from (48) has been the film thickness prior
to stabilisation. Calculations have been performed by means of the Runge-Kutta
method of the fourth order. The results of calculations are presented in Fig. 7.
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Figure 7. Change of non-dimensional liquid film thickness in function of dimensionless co-
ordinate.

3 Modelling of heat transfer in liquid film

Let’s consider a single phase liquid jet impinging on a flat surface, which
produces a thin liquid film distributed on the solid surface. In such film three
zones can be discerned: a vicinity of the stagnation point, non-developed film,
where the boundary layer grows and has yet to reach the thickness of the devel-
oped film and the fully developed film, where the boundary layer has reached the
thickness of the fully developed film. In the present work two latter cases will
be considered. In the case of the first zone there is an exact solution presented
by Schlichting [5]. The model presented below provides analytical solutions ap-
proximated to the case where the film flow is laminar. An approximate solution
has been obtained on the basis of so called thin layer approximation. In such
theory neglected is velocity in the transverse direction of the moving liquid layer.
Hydrodynamic aspects of impinging single phase jets have been considered by
the author in [10-11, 13].

3.1 Heat transfer in impinging single phase jets
Equations describing the behaviour of non-compressible two-dimensional lig-

uid films flowing on the solid body, written in the cylindrical co-ordinates with
the assumptions relevant to the boundary layer can be written as

e Continuity equation

o — 0, (50)
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e Momentum equation

v v 0%y

| — = f— ol
Var T T Vo L5
e lnergy equation
o(vT) Bl A O°F
e Sinll ol 2
o Yoz pcp 022 (52)

In the further analysis it has been assumed that w = 0, which corresponds to
the simplified “thin layer” theory. Let’s consider first the flow and heat transfer
in the film in the zone with the developing flow and then in the zone, where the
velocity profile is fully developed.

3.2 Analysis of the developing film

Let’s assume the first approximation of the velocity profile in the linear form

Vo2
V= —. 53
5 (

The above profile obeys the condition of zero velocity at the wall and takes =
value of undisturbed velocity at the boundary layer border vg. Substituting the
above velocity profile to the left hand side of momentum equation (51), using

= 0, and then integrating using the boundary conditions of v =0 at z = 0

v

2 =00 =", 5;:0, (54

we obtain a subsequent approximation of the velocity profile in the form

2
e Vg dé 4 _ ¢3 Yo% E
= 12u63_dr(z 6Z)+_6 ' (58

where ¢ is the boundary layer thickness. Using the second condition at the borc
of the boundary layer we obtain a following differential equation

1’1)0d(5_1

o L = (f

4ydr &

This equation can be solved by means of separation of variables and
boundary condition that for r = 0 = § = 0. This enables to determine =
distribution of the boundary layer thickness in liquid with respect to the rad

r, which reads
f=mRd
v
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Defining the volumetric flow rate for the entire film in the form

)

) = 27r'r[/'udz + (h— 5)1)0], (58)

0

we can determine the developing liquid layer thickness, which in the non-dimensional
form reads

h 1
L =043Vt —— 59
h 5 3Vr e (59)
where rt = 7% and 6y = 2.8 \/:)‘(())_7‘2 = \/7;%60. The nozzle diameter has been
v

assumed as 7.
The limiting radius of the boundary layer, where it reaches the liquid film
thickness can be determined from the relation

1 .
Vit =043Vt + —, (60)

which leads to the relation 7. = 1.4. It results further that hg; = 1R7, OF g =

3.35—F0—.
Reo
Let’s define the mean film temperature in the form:
f
vT'dz h
2 q
g Oh e vT'dz. (61)
fodz 0
0

The denominator in (61) can be determined from the continuity equation in the

form
h

27rr/vdz =), (62)
0

where @ is the volumetric flow rate. From integration of (62) in the limits from 0
to h, using the definition of mean temperature (61) and the boundary conditions
we get
a s o
E( ) = —Qpc,,(q“’ — i), (63)
where ¢y, is the heat flux at the wall and g¢; is the heat flux at the phase sepa-
ration surface. Integrating (63), assuming that for r = rg, T, = To we obtain a
distribution of the mean temperature along the radius

I

271 &Y, g
Thm= 1—=)(r*=1)+Tp. 64
Qpcp( qw)< )+ To (64)
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In order to determine the temperature distribution across the film we use Eq. (62)
and a definition of the mean temperature (61). From (61) it results that

Q T'nz

e 65
(VT )m = o2 (65)
Let’s use also the approximation
00T) o, 0WT)m _ Q 8 (T
v = 66
or or 27 Or ( rh ) 688

Expressing the left hand side of the energy equation by (66) we obtain a differ-
ential equation

FT  cop Ol 3
azz S )\ a,r, = A(T)3 (6{)
where
Qepp ;
Alr) = B(rt 6
(1) = =B, (68a)
10Mr? + M(r+)5/2 1 3M/rF — 3y/rt
B(r+):5( OMyr* 4+ M(r™)°/* 4+ 3MVrt —3vVr )’ (68)
(5 + 2(rt)3/2)2
Vv Reg
- 6
M = 03572 (1 qw) (68¢)
(68d)
Integrating (67) at the condition, that we have at the wall T = T, and
‘ﬂ; —9w we obtain a temperature distribution across the film. From that we

etermine the temperature difference T}, — T,,, which enables determination of
the heat transfer coefficient o as well as the Nusselt number

o= —— (69)

Nu= : 70
)\ N(r+2 — 1)+ PB(rt)rt 4 vr+ (0

where N = —PT?)( )andP—14 K

LV Reo
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3.3 Analysis of a fully developed film

An approximate value of heat transfer coefficient can be calculated using the
thin layer theory neglecting the influence of transverse velocity. The continuity
Eq. (58) is fulfilled by the following velocity distribution

Ol

S 1
= 2mwh r ()

Substituting the above velocity profile into the momentum Eq. (51), and
then integrating it using the boundary conditions that for z = 0 = v = 0 and for
2 = = g% =0 we obtain a following velocity distribution

~2

1) = ba), (72)

2
ke
42y
where h is the film thickness and f(r) = %%(%)
Based on the relation (58), in the case of a constant film flow in the film we obtain

dh... h r
et Al 73
dp. GWUQ’ (73)
which integrated at the boundary condition
T =T ha— h,t,-, (74)

gives us the distribution of film thickness with respect to the radius (from the
beginning of the fully developed film)

B el 1 1
E; =9 ()“ pate F) -+ F’ (75)

2
where S = 6-07}%0, superscripts 4+ denote non-dimensional quantities. Energy Eq.

(67) can now be considered, which requires consideration of the relation (64) and
the assumption (66). Incorporating (64) and (66) as well as (75) into the energy

equation we get
T _ cppOWT)m _ Al

022 A Or (), \76)
where Qe
s, CpPLo o
A(r) __—QW/\T,?ThtrB(r ¥ (77a)
B@ﬂ:>w+wwﬁ+25‘2“&%+U4— 35y +2 7mh)

(Sr3— 5+ 1)2 (Srt3 =5 +1)2
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4ai T?r
M=K(1- qw) - (77¢)

Integrating (76) with account of the boundary condition, that at the wall
we have T' = T,,, we obtain the temperature distribution. Subsequently we get
the temperature difference 7,, — T,,, which enables determination of a local heat
transfer coefficient and the Nusselt number

aht-,- 1
Nu = N == :
—9]\@—’"—(]—%” o g i

a0(1-2%)

G

(78)

4 Results

In order to illustrate the performance of the model conducted have been
calculations for different values of K and ¢;/q,. The parameter K was set values
of 10 and 50 respectively, whereas the parameter ¢; /g, = 0.5 and 1.0 respectively.
Additionally assumed were Pr = 7, Reg = 1000. Physical properties of water
corresponded to 20°C. Calculations have been performed on a commercial version
of MATHCAD2000. Results of the influence of K on the Nusselt number and the
non-dimensional film thickness are presented in Fig. 8 and 9.

e Tobed 0 S DL eSO e
% qi=0.5 B
mstene  K=10 DF
2.000 —'6—" K=10 FD =
% ’ — — Ke=50DF
o = A\= K=50FD
4 b
g B L
{ =
-
@ 1.000 = =
=
=
0.000 : -

1 L I L | 3 i >
2.00 4.00 6.00 8.00 10.00
non-dimensional radius r+

Figure 8. Distribution of Nusselt number for various values of K and ¢;/qw = 0.5: DF — devel-
oping film zone, FD — fully developed film.
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igure 9. Distribution of Nusselt number for various values of K and ¢;/qw = 1.0: DF — devel-
oping film zone, FD - fully developed film.

Increase of K from 10 to 50 (reduction of g,, or increase of temperature) causes
the Nusselt number to increase in the case of developing flow (DF) formulation.
No visible changes are perceptible in the case of fully developed calculations (FD).
Increasing the ratio of interface to wall heat flux, ¢;/qy, we obtain much better
agreement between the formulations, i.e. a smoother transition.

5 Conclusions

In the work presented has been an approximate solution of the flow and
heat transfer problem in the case of a film formed by the jet impingement on a
surface. Formulated has been a simple two-dimensional model of the flow and
heat transfer in the film. The model is based on simplified conservation equations
of mass, momentum and energy. Solution of that system of equations at adequate
boundary conditions enables determination of the velocity profile in the film and
local values of heat transfer coefficient and Nusselt numbers. The model enables
analysis of the influence of heat transfer at the free surface on heat transfer from
the wetted wall.

Received 26 February 2002
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