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ZYGMUNT WIERCINSKI*

Theoretical foundation for velocity measurement by
means of the five holes sphere probe

The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952
Gdansk, Poland

Abstract

The measurement of the local velocity belongs to the most common in the fluid dynamics
and power engineering. This measurement is mostly done by the five hole sphere probe. In this
paper, basing on the potential flow past the sphere, the analysis of the velocity measurement by
means of the sphere probe is presented. The transformation relation between the spherical and
the probe coordination i.e. yaw and pitch angle « and £ is found. Solving next the system of five
nonlinear equations with four unknowns the simple theoretical characteristics of the five hole
probe is found and compared with the experimental one. There is a quite good agreement in the
angle ranges of —10° < a < 10° and —10° < 8 < 10°. The discrepancies between theoretical
and experimental characteristics outside this region are probably caused by the inaccuracies in
manufacturing of the sphere probe and differences between potential past a sphere and real flow
past a sphere probe.

Keywords: Velocity mesurement; Sphere probe

Nomenclature
A, B —  constants
R — radius of sphere
U — local velocity, m/s
U —  stream velocity, m/s
D ~ pressure, Pa
o — declination angle, rad
B8 —  pitch angle, rad
[% — angle from the stagnation point, rad
r,¢,% — spherical coordinates

*E-mail address: zw@imp.gda.pl



4 Z. Wiercinski

6} - velocity potential, m?/s
P - density, kg/m?®
z.y,z — Cartesian coordinates
Subscripts
:=1,...5 — denotation of points on the sphere

1 Introduction

The sphere probe is one of the most used device for velocity measurement in
flows. By means of such probe the measurement of the velocity amplitude and
two angles of the coordinate system connected with the probe is possible. The
measurement is carried out by the pressure measurements in the chosen points
on the surface of sphere i.e. mostly in five points given on the two intersecting
planes creating a cross on the sphere surface. The sphere probe is known as a
probe of great durability and simplicity, contrary to the hot wire probe. And, if
additionally, its small size, e.g. a diameter of 5 mm and the possibility of using the
pressure sensors of small size and fast dynamical response on the sphere surface,
are taken into account, than a measurement device with great capabilities of
recording of fast varying velocity fluctuations in a small measurement space is
possible to be accomplished.

In this work, basing on the potential fluid flow past a sphere and solution of
he system of five nonlinear equations with four unknowns given from the pres-
sure measurement on the sphere, is shown that it is possible to gain a simple
t'_--:t,—, ﬂal characteristics of the five holes sphere probe. Such theoretical char-

ristics is then compared with the experimental one and the consistency of
characteristics in the range of deflection angle —10° < o < 10° and pitch angle
—10° < B < 10° is stated. The discrepancies shown in the greater range of an-

nees 'i etween potential and real flow past a sphere probe.

I w. there was almost no interest in the theoretical characteristics of
= sphere probe because the disrepancies between the potential and real flow
past a sphere are considered so great and without a chance for success.

2 Pressure distribution on the sphere surface as a
base for velocity measurement

T heoretical foundation of the velocity measurements by means of the sphere
probe may be the potential uniform flow of the ideal fluid past the sphere, on
' © = possible to determine the velocity and pressure distribution on the
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In other words, to measure the velocity by means of the sphere probe the
knowledge of the pressure distribution on the sphere surface is needed, as the
velocity measurement consists in the measurements of pressure in several points
— mostly in five points — on the sphere surface.

The mostly used sphere probe is the five hole probe, i.e. five holes creating a
isosceles cross intersecting at the straight angle on the sphere surface.

et

/
/
!

=3
R
br i |
7z o ! o]
=S R

Figure 1. Axial symmetry of the flow past the sphere of radius R: S - a stagnation point, P —
point where the flow is considered (velocity and pressure), § — angle between point S
and P.

The flow past a sphere belongs to the flows with axial symmetry, thus to
describe it the radius R of the sphere, the momentary position of the stagnation
point S and angle 6 between stagnation point S and considered point P freely
chosen on the sphere surface.

Examining the stationary uniform flow of fluid of density p and velocity U
the velocity distribution past the sphere can be given by following well known

formulae flow, e.g. [3]
D 3 3
u 6———U6089{1—<£>] v o ~Usin @ 1+%<%>} ;

w Ofol R "~ ROR
: (1)
where ® is the velocity potential of flow.
At the sphere surface for R = 7 it is then:
e |
=30 vinsmH. (2)

Applying Bernoulli equation we determine the interesting pressure distribution
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on the sphere surface following the formula (e.g.[3]):
1 9
pp:po—ipUQ <1—Zsin29>. (3)

It is well known from the experiment [2, 11] that the real velocity distribution
past the sphere differentiate from the distribution given by the solution for the
ideal fluid flow.

The experimental distribution of the velocity past a sphere is given by the
formula:

3 ;
v= 5U(e —0.2914 63 4 0.09873 65 — 0.00019844") . (4)

This formula is valid for the following angle range 6, 0 < 6 < 1.48 rad and for
Reynolds numbers smaller than Re, = 2 - 10° (Reynolds number based on the
sphere radius).

For this velocity distribution the velocity maximum is at the angle § =
1.291 rad = 72°, while for the potential flow past a sphere this maximum is at

= 7/2 = 90°, so the difference is essential.

Using the expansion of the sine function, the difference between theoretical

and real velocity distribution can be determined as:

3
Av = U(0.124 3 —0.09046° +0.2818 07 +...). (5)

Dispite the difference we will continue our consideration treating the solution of
potential flow as a certain pattern for the sphere probe.

3 Measuring probe in the flow

The problem of velocity measurement is considered in two systems of coordi-
nates. Each of them is connected with the sphere probe which is used for velocity
measurement and more correctly the pressure measurements on the probe sur-
face. To solve the problem of velocity measurement by means of the sphere probe
the transformation between these two systems should be found [12].

The first system is connected with the displacement of the velocity vector
relative to the probe shown in Fig. 2. In this system two perpendicular to each
other planes are derived and the axis of the probe z lies in both these planes.
The plane zz is the co called declination plane and the plane zy is so called pitch
plane. The projection of the velocity on these planes determines the declination
angle o and pitch angle 3 appropriately. In this system calibration of the probe
is usually carried out. In order to assure that the direction of the velocity vector
coincides the probe axis the probe should be turn of corresponding angles (a, 3).
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probe axis

Figure 2. Coordinates system connected with the sphere probes and the velocity vector.

The five hole sphere probe has the points of pressure measurements symmet-
rically in the declination and pitch planes but one of the points so called central
point is placed in the axis z.

In Eq. (3) for pressure distribution on the sphere the expression with the
§ angle is included, so the formula tying the 6 angle depending on the system
containing the measuring point P and the stagnation pressure point S is to be
found, Fig. 1.

To achieve that the dependence between the system connected with the probe
and the cartesian system is tried to be determined and after the setting of the
linear distance between these points on the sphere the angle 6 between these
points is calculated.

It can be shown that all the points of coordinate o or [ are situated on the
ellipses created by the projection of the great circle of the sphere on the plane Ty
and given by following formulae:

2 2
2 4 2 2 o 2
+ = + — — i 6
sin® o ¢ sin? B o)

These equations pose the simple equation system with unknowns z and y and
the solution of this system is given by following equations:

rcosasinf rcos sin «

= ; = :
\/1 — sin? asin? 8 \/1 — sin? asin? B

(7)
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[0.6]

The coordinate z is easy to calculate by means of the Pythagoras theorem:

7 COS (x cos (3

= . (8)
\/1 — gin? asin? 3

z

Searching the value of # one can use two formulae: first for the distance between
two points and for the central angle based on the distance between these two
points:

d? = (21 — 29)° + (11 — 12)* + (21 — 22)% ; 9)
d= 2 Sin-z— : (10)

Putting formulae (7), (8) and (10) into (9) and making use of the identity given
below:

0089:1—251112% (11)
after simple, but rather long calculations the expression for the 6 angle is found:
cos (a1 — ag) cos (B1 — B2) — sin g sin ag sin F sin By

\/1 — sin? a3 sin? 8; \/l — sin? ag sin? By '

It can be seen that in the cartesian coordinate system the calculation of the
angle by means of two points on the sphere surface is rather complicated, and its
farther use even rather unfeasible.

That is why the use of the spherical coordinate system is much more natural
and appropriate for the description of the velocity measurement by the sphere
probe.

The second coordinate system is a spherical coordinate system (r = 1, ¢, ¥)
linked with the probe axis, Fig. 3. In this system are also defined the coordinates
of the pressure measuring points on the sphere surface (r = 1, ¢;, ¥;). Also
in this coordinate system the temporary position of the stagnation point is to
be searched. Thus relative to this temporary stagnation point the theoretical
pressure field is found out.

Below Eqs. (13) show the commonly used spherical coordinates with a small
departure not to mix the symbols, i.e. instead of the symbol € the symbol 1 is
used for colatitude coordinate leaving 6 for the denomination of the coordinate of
the temporary axialsymmetric flow past a sphere, i.e. a flow which is independent
on the coordinate ¢.

ol = (12)

Tz =rsinyYcosy, y=rsinysing, 2z=rcosy. (13)

In the experimental praxis the system of coordiante angles «, [ is used, it
is necessary to find the transformation between it and the spherical coordinates.
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Figure 3. Spherical coordinate system (7, ,) for sphere probe, z — probe axis.

In this end in view the comparison of the cartesian coordinates (7) and (8) with
the spherical one (13) is made. Simple calculations give in result two formulae
joining the angles ¢ and 1 with the angles o and 3 appropriately:

tanle — —— tan?4) = tan® a + tan® g3 (14)
an

and inversely angles o and (§ with the angles ¢ and :
tan a = tan 1 sin ; tan 8 = tan 1 cos . (15)

Because in the formula for pressure distribution on the sphere surface the angle
¢ appears, the expression connecting angle 6 with angles ¢ and 1; as well as
angles ¢ and 1y of the two points on which the angle 8 is spanned.

Again, putting Eqs. (6), (7) and (8) into (9) and again using the identity
11) after series of calculations with application of (15) the following formula is
obtained:

cos 0 = sin )y sin ¢g cos (1 — @2) + cos ¥y cos g . (16)

It is easy to note that for ¢; — 2 = 90° the equation (16) has a form of Pythagoras
theorem for the spherical triangle based on the angle 6 (section) and two angles
1 and v [10]. The spherical triangle is based on the angle § and its vertex lies
in the point, where z axis intersects the surface of the sphere.

For ¢1 = @9 Eq. (16) is the cosine of the angle difference 1; and 5, and for
1 — 2 = 180° is the cosine of the angle total 1); and 13, as then the angle 6
lies on the circumference of the great circle going through the z axis. Thus these
relationships confirm Eq. (16).
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This formula (16) is of much easier form as the formula (12) derivated in
cartesian coordinates and will be used in further calculations. We received simple
formula for the cos#, so it is worthy to transform Eq. (3) to the form containing
cosine function instead of sine. We use the simple trigonometric unity relation
to get the following formula:

T 2)
= SR e i 1%
p—p0~|~2pU ( 4+40059 (17)

To make further calculations easier we write down the equation describing the
pressure distribution on the surface of the sphere in much compact way:

=
p=A+ Bcos?0, where A:po—épU2, Bz%pUz. (18)

In further calculations we will use a little different notation as before: subscript

will denote the coordinates of the point on the surface of the sphere where the

value of pressure is measured or calculated. Values without subscript refer to the

stagnation point.

Thus the pressure in the i-th point is given by the formula:

p; = A+ Bcos? 6; (19)

where:

cos 0; = sin 1 sin 1); cos (¢ — ;) + cos Y cos ;. (20)

Thus pressure in i-th point of coordinates ¢; and v; is given by following formula:
pi = A+ B (sinsin; cos (¢ — ;) + cos i cos ;) . (21)

In this equation there are four unknowns: A, B, i p. Thus, to measure the
velocity vector in a flow it is sufficient to measure the pressure only in four points
on the sphere surface, i.e. ¢; 9;, ¢ = 1..4 [12]. In this way the system of four
nonlinear equations with four unknowns is obtained, for which the condition for
unique solution should be investigated [8]. To find them it is necessary to solve
the system of four independent equations, thus to put to the Eq. (21) four sets
of different coordinates of points, hence to carry out the pressure measurements
in four different points on the sphere.

The problem of determination of the velocity by means of the pressure mea-
surements in four points will be undertaken in the near future and some results
are still given in [12].
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Table 1. Coordinates of the point on the surface of the standard five hole probe.

Point No. P 10) fo I}
1 0 - 0 0
2 afd | /2 /4 0
3 w/4 | —mw/2 | —7/4 0
4 /4 0 0 /4
5 /4 T 0 —7/4

Figure 4. The arrangement of points of the standard five holes sphere probe.

4 Five hole sphere probe

The coordinates of the five points of the standard sphere probe are shown in
Tab. 1 together with the configuration scheme given in the Fig. 4. This numbering
of five probe points is most frequently used e.g. [1].

The equations for the five points of pressure measurements according to the
general equations for the pressure on the sphere surface are given in Eq. (22).

pi = A+ B (sinysint; cos (¢ — ;) + cos ¢ cos 15 )2 hi= loh. (22}

After setting the appropriate values of the angles from the Tab. 1. we get the
following system of nonlinear equations:

= A+ Bcos?;
— A+ E(sinq/)sing0+cos¢)2;
(— sin 4 sin ¢ + cos 1)? ; (23)
pa=A+2 (smz/)coscp + cos 1)?
(— sin ¢ cos ¢ + cos 1)?

This system can be easy solved by elimination of the constants A and B making
use of the Eq. (15) and receiving following expression for the declination o and
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pitch 3 angles [12]:

P2=—03 P4 — D5
2tan 2o = '—_—m 2tan25: —j——'z% (24)
b1 2 p1 2

In principle we use here the two subsystems i.e. Egs. 1, 2 and 3 for calculating of
the angle a and Eqgs. 1, 4 and 5 for calculating the angle § because these points
lie in threes on the same plane and the points 2 and 3 as well as the points 4
and 5 are appropriately symmetrical relative to the point 1. Japikse [5] quoting
the work of Pien [6] mentioned only that placing three holes in one plane of the
sphere allows to determine the angle of the flow in this plane.

The rights sides of the Eqs. (24) are used by the calibration of the five
hole sphere probe and designated appropriately by coefficients K, and Kg, e.g.
Poensgen [7], as well Smolny et al. [9]. It is easy to see that for the ideal five
hole probe the coefficients K, and Kj are given by elementary trigonometric
functions. Next, applying equations (23) and knowing the values of angles a1 8
it is possible to calculate the values of A and B by means of following formulae:

g P23 £ P4 — D5
2sintcossing  2sint) cos cosp’

(25)

P2 —DP3 P4 — D5
A=p; — Bcos?yh) =p; — = — 26
s o = 2tan o o 2tan 3 20)

and from these coefficients it is painless to find the dynamics and static pressure
in the flow.

Summarizing the results of the Section 4 it can be said that the ideal standard
five hole probe do not need utterly calibration to measure the velocity vector in
the ideal fluid flow. It is worth to emphasize again that in the case of standard five
hole probe one has to do with five nonlinear equations with four unknowns from
which two subsystem of three equations can be obtained and used to determine
the velocity angle in the plane, where the three holes lie.

In Fig. 5 the experimental calibration of the five hole sphere probe is shown
(Smolny et a., 1994), and in Fig. 6 the theoretical characteristics of the five hole
sphere probe is shown according to the formulae written above. Comparing these
two calibration charactericstics some inaccuracies in carrying out of the probe
are seen such as skewness of the holes plane relative to the basic plane and a lack
of placement of the probe in axis z.

The unequality of the increase of the K, and Ky coefficient depending, on
the linear rise of angles, takes note in the theoretical characteristics plotted in
Fig. 6 as a consequence of their dependence on the tangens of the duplicated
pitch and deflection angle 2« or 23 appropriately. This inequality of the K, and
Kpg is also seen in the experimental characteristics of the probe given in Fig. 5.
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Figure 5. Experimental calibration characteristics of the five hole sphere probe according to
Smolny et al. 1994.
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20
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Figure 6. Theoretical calibration characteristics of the five hole probe.

Comparing both characteristics it can be said that they are sufficiently accurate
in the following range of angles —10° < a < 10° as well as —10° < 8 < 10°.
Furthermore, it is to be noticed that the probe from the Smolny et al. paper [9]
is actually not of spherical shape, thus its shape differs significantly from the ideal
sphere shape. Summarising, it seems that the manufacturing of the sphere probes
can be considerably improved to bring nearer the experimental and theoretical
characteristics.
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5 Summary

In this work the analysis of the velocity measurement by means of the five
hole sphere probe is given. The five hole sphere probe is standard in this field.

The new idea introduced in the paper is to use the spherical coordinates
in calculations. The transformation between the spherical coordinates and the
deflection « and pitch 3 angles coordinates used as the standard in measurements
by means of the five hole sphere probe is found. Solving next the system of five
nonlinear equations with four unknown the simple relationships were found for
the theoretical characteristics of five hole sphere probe.

The solution consists in dividing the system into two subsystems of three equa-
tions and finding the appropriate angles o and § from the subsystems. Theoreti-
cal characteristics was compared with the experimental one and sufficient agree-
ment was stated in the angle ranges —10° < o < 10° as well as —10° < 8 < 10°.
The discrepancies in the broader angle range i.e. greater than +10° can be put
down to the inaccuracies of manufacturing of the sphere probe and the differences
in the potential flow past the sphere and the real flow past the sphere probe. The
frame-work of this paper does not allow to take interest in the analysis of velocity
measurement by means of the four hole sphere probe.

And such measurement is obviously theoretically possible considering the fact
of only four unknowns in the system of equations for the five hole sphere probe.
Nevertheless some difficulty lies in the non-linearity of the theoretical pressure
distribution on the sphere surface immersed in the flow of ideal fluid.

Received 20 August 2004
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