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AMOS ULLMANN, AYELET GOLDSTtrIN, and NEIMA BRAUNER-

Gas-liquid and liquid-liquid stratified flows: exact
analytical solutions and mechanistic models

Faculty of Engineering, Tel-Aviv IJniversity, Te]-Avjv 69978, Israe]

Abstract
An exact analytical solution has been obtained for fully developed laminar stratified flow in

inc]ined pipes with a plane or curved interface. This so]ution is of practical significance mainly
for studying liquid-liquid flows. However, it is also needed as a benchmark for testing the validity
of numerical methods, and for testing closure relations for two-fluid models. Two-fluid models
maY Yield Poor Predictions in inclined co-current and counter-current flows. The commonly used
closure relations for the wall and interfacial shear stresses do not correctly represent the fine
balance between the gravity body forces and viscous shear in inc]ined flows. The exact so]ution
obtained for laminar flows is used to estab]ish and validate new closure relations, rvhich account
for the interaction between the phases and are applicable also for turbu]ent stratifiecl flows.

KeYwords: Stratified flow; Curved interface; Waves; Interfacial shear; Wa]l shear; Two-fluid

Nomenclature

A - flow area, m2
a - ]ocal flow area, m2
C - wall shear stress parameter (Eq. 15)
c - coefficient in Eq. (18.2)
Ca - Capillary number (Eq. 20.3)
D diameter, m

*Corresponding author. E-mail address: brauner@eng.tau.ac.il
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Eorl - Eotvós number
F - interaction correction factor
Fw,Fl-,Flw - wave augmentation factors (Eq, 20)
Fr Froude number
l - friction factor
9 - gravity acceleration, m/s2
gl7, g12, gzl, 92 , geometlical correction factors (Eq. 17)
n - wa}I shear stress parameter (Eq. 15)

F - dimensionless driving force
p - pressure, Pafm2
q flow rates ratio
Re - Reynolds number
S - perimeter, m
U - axial average velocity, m/s
u \oca] axial velocity, m/s
X2 - Martinelii parameter
Y - inclination parameter
I,a,z - Cartesian coordinates, m
§, Ot - inclination, radian
11 - viscosity, Pa-s
T - shear stress, Paf m2
p - density, kg/m3
,| - shape factor (Eq. 21)

ó* - interface curvature
óo - lower phase dimensionless wetted perimeter
ó,Ę - bipolarcoordinates
O - Fourier amplitude
u - frequency
O, A - integral functions (Eq. 7)
€ . - holdup
a , surface tension, N/m

Subscripts

l - lower phase
ls - ]ower phase, superfical
2 - upper phase
2s - rrpper phase, superflcia.l
f - frictiona]
G - gas (Gs- superficial)
9 gravitationaI
h - homogenous solution
i - interfacial
L - liquid (trs-superficial)
p , particular solution

Accents
- dimensionless
- average
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lntroduction

Stratified flow is considered a basic flow pattern in horizontal or slightly inclined
gas-Iiquid and liquid-liquid systems of a finite density differential, since for some
range of sufficiently low flow rates, the two phases tend to segregate, Counter-
current and co-current stratified flows are encountered in the process industry
in various mass transfer and direct contact heat transfer systems, Pipe lines
design requires accurate prediction of the holdup and pressure gradient. Multiple
holdups and pressure drops can be obtained for specified operation conditions
in co-current and counter-current inclined flows, which are relevant in practical
applications |1-2],

There are some significant differences between stratified flow in gas-liquid
and liquid-liquid systems. In fact, compared to gas-liquid systems, liquid-liquid
systems can be considered a more general case of two-fluid systems. Gas-liquid
systems are characterized by low-density ratio and low viscosity ratio (P : Ąlp2)
between the light and heavy phases, and therefole represent a very particular ex-
treme of two-fluid systems, In liquid-liquid systems the density difference between
the phases is relatively low. However, the viscosity ratio encountered extends over
a lange of many orders of magnitude. The velocities of the two liquids are, in
many cases, of a similar order of magnitude, and it is not evident which of the
liquids dominates the interaction at the liquids' interface. Therefore, modeling
of the interfacial shear stress becomes more ambiguous in liquid-liquid systems
compared to gas-iiquid systems. Moreover, as a result of the relatively low density
difference, surface tension and wetting effects become important,

In smooth stratified flows, the Eotvós numbet, Eop: LpgD2lo is an impor-
tant parameter in determining the interface shape. Stratified flow with a plane
interface is typical to gravity-dominated systems of large Eop, when surface
tension forces become significant, the wetting liquid tends to c]imb over the tube
wa]I resulting in a curved (convex or concave) interface (see Fig. 1). The interface
shape depends on the Eo2 number, the fluids/wall contact angle and the holdup
[3-a]. The possible stratified flow configurations extend from fully eccentric core
of the upper phase to fully eccentric core of the lower phase. The configuration of
a fully eccentric core was shown to be the basic pattern in surface tension domi-
nated systems of Eop ( 1. In the stratified wavy regime, the interface curvature
is dominated by the wave phenomena and the resulting secondary flows.

A configuration of a curved interface is associated with a variation of the
location of the triple point (TP) and thus, with a variation in the contact area
between the two fluids and the pipe wall even for a specified holdup. Depending
on the physical system involved, these variations can have prominent effects on
the pressure drop and transport phenomena.

Most studies on stratified flows in pipe have been carried out using mechanis-
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Figure 1. Schematic description of stratified flow configuration and parameters.

tic models, where various avelaging techniques ale used to achieve more practical
models (e.g. |5-6]), But these models may only pledict the integral flow char-
acteristics, such as the axia1 pTessure drop and the in situ holdup. The only
way to obtain the velocity profiles, shear stress distribution and other loca1 flow
properties, is from a more rigorous solution of the Navier-Stokes equations,

The feasibility of obtaining exact solutions for stratified flows is lestricted
to laminar-]aminar flows [7-B], which are frequently encounteled in liquid-liquid
systems. Exact solutions ale also needed for validation of approximate mecha-
nistic two-fluid models, or of numerical methods for solving stratified flows (e.g.

[9-10]). Both mechanistic models and numericaj methods are challenged by their
capability to predict the flow characteristics in inclined pipes (e.g. [1-Z]). Exact
solutions for laminar stratified flows were recently used to derive new, theory-
based, closure relations for the wall and interfacial shear stresses that account for
the interaction between the phases [11]. These closure relations, which are valid
for smooth stratified flows, were used as a platform for introducing necessary
empiricaI corrections for the stratified wavy regime [12].

\,{ost of the analytical solutions available in the literature for stratified laminar
flows in pipe geometry are restricted to horizontal flows. The only exceptions are
the solution of stratified inclined flow, which has been recently obtained, however.
for the particular case of a plane interface. An analytical solution for the general
case of inclined stratified flows with curved interface is presented here and is
not yet available in the literature. The exact solution obtained for laminar flows
is used to establish and va]idate new closure relations, which account for the
interaction between the phases and are applicable also for turbulent stratified
florvs.

,/ A" \.
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2 Analytical solutions

Given the location of the fluids interface, the 2-D velocity profiles in steady and
fully developed axial laminar pipe flow (LPF) of stratified layers, ul(r,u),uz(r,?J)
are derived from the Navier-Stokes (N-S) equations (in ihe z direction, see Fig. 1):

_, 0p
lliY'ui:ń-plgsinP; j:1,2. (1)

The required boundary conditions follow from the no-slip condition at the pipe
wall and continuity of the velocities and tangential shear stresses across the fluids'
interface. Many researches have followed this approach, both analytically and
numerically (e.g.[7-1t]). Exact anaiytical solutions for trq.(1) can be obtained in
the case of constant interface curvature (represented by d- in Fig. i). Then the
bipolar coordinate system fits the flow geometry [7].

In the bipolar coordinate system (ó,Ę), the pipe perimeter and the interface
between the fluids are iso-]ines of coordinates /, so that the uppel section of the
tube wall bounding the lighter phase is represented by @6, while the bottom of
the tube, bounding the denser phase, is represented by óo ł r, The interface
coincides with the curve of ó : ó*. Thus, the two-phase domains map into two
infinite strips in the (/, {) domain defined by: -oo < € < 6, ó* > ó > /6 for the
uppel phase,-oo < { < oo, do łr> ó> ó* forthe lower phase. Therelations
between óo,ó* and the geometrical variables (e.g. flow areas, wetted perimeters)
are given eisewhere |6].

A piane interface corresponds to a constant curvature arc, S* : n. In this
case the flow geometry can also be described by the thickness of the lower fluid
layer, h: 0.5(1 - cos/6). Analytical solutions for horizontal laminar stratified
flow with a plane interface can be found in several publications in the sixties
and seventies. A complete analytical so]ution for the more general case of a
curved interface was obtained in Braunet et al. [7]. However, it is restricted to
horizontal flows. More recently, the soiution for the velocity and shear stresses
profiles in the case of inc]ined flows with a plane interface has been also obtained

[B,11]. Compared to horizontal flows, the solution for inclined systems is more
complicated in case the fluids differ in their density, as the axial driving force in
the two phases is not the same. The two non-dimensional N-S equations for 2-D
flow of the two phases in the bipolar coordinate system are:

(a'a, ó2a,\ 8 5, sin2 @o _ fu- &2] :8Ą Sin2 d0 - Q)
\za* aF): E" G;r.a-.6Y' (o." oa"/ c;,h?-"*7r 12)

where ili : uil[]zr;(j:I,2) are the normalized velocity profiles with respect
to the }ighter phase superficial velocity, (J2" : R2 (-dpl/dr)r"l(Bpr), while Ą
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and P2 replesent the dimensionless driving force in the heavy and light phase
respectively, Pi : @,pldz - pjg sin 0lGapr laz)r". The pressure gradient used
for normalizing the driving forces is the frictional pressure drop obtained in single-
phase flow of the lighter phase, (dpyldz)rr. Note that the inclination angle P is
always taken as positive, In co-current flow, [Jt",flz, are both positive in case of
downward flow and negative for the case of upward flow. The boundary conditions
required for solving equations (2) are: no-slip conditions at the tube walis and
continuity of velocities and shear stresses across the free interface:

(i,l)E_ao+,. : 0 : (tt2)r_*o:0: (żl)r_1". : 0: (żz)€:r"o : 0, (S,t;

(3.2)

The general solution of Eqs. (2) is composed of the particular and homogeneous
solutions, tb,ilzp and fr17.,fr,27r, Iespectively, In view of the non-homogeneous
terms in Eqs. (2), the following functions, which satisfy b.c. (3.1), and (3.2), are
chosen as the particular solutions:

(,)ł:ł-: (tz)ó:ł- ; (^#) r:r_: (*#) 
ó:ó_

sin (/ - @6) tt2p: 4P2sinsg
sin (@ - /6)

cosh{ - cos@ ' cosh{-cos/

The homogeneous set of equations and corresponding boundary conditions (in
view of the above particular solutions) are then given by:

4-
tttp : _ P1 sin clg

rył*O2tt"sn _o.ł _1r.
0Ę'' aó2 ,! - 1

(urn)ó:óo+n : 0; (uzn)ł:ło : 0, (frrł)€:*oo : 0;

(4)

(t m)ł:o- - (ńzn)ł:ł- : 4sinóo
sin (/- - @g)

cosh{-cos/*

(5.1)

- 0; (5.2)

; (5,3)

(uzn)++*,

(^-+)

GW W)ó:ó_ Ą@, -Ą)sin^ffi (54)

The solution of the homogeneous set (5) can be obtained in the form the following
Fourier integrals:

rilm : / O, (r)sinh |cu (ó-"-óo)]cos(c,.,{)dr,.,
.l
0

T
l óz @) sinh [-,,, (ó- ao)l cos(cu{)dc^ł .

.J
0

ilzn :
(6)



The r.h.s of b.c. (5.3) and (5.4) can be represented as Fourier Integrals. The
solution obtained for ó1 and ó2 (Fourier transforms of tt"l1r, ń27) is given bv;

o, : 1. { n _ i-rc"'2 lin (ó- .- @o) sinh [c,., (o- - n)] 
cosh lu , ,

,ro l.- sin ó* sinh (cuzr)sinh lr lE- - Qo)) , ia- - " - Óo))} ,

(7.1)

* Bsin/6(Ę l u_ Fłsin(/*-do)+ozsin/*sinh(c,.,n,)
O, : sinh [cł (ó- -")) (7,2)

where:

n:{ [' sinQg(P2-P1)(-cos/6*cos(d--óo))] {c^ucosh |u($- _ r)lsinQ" /ż,\
- cos @* sinh [cu(@- - ?T.)]} -8 sin @6 cos(@* - ódlz - Ą )i ;ffiĘh[*d , " 

'"
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O : cosh l, @- - @6)] cosh l" @- - " - ód){Ptanh l, (ó- - " - óń]
- tanh l, (ó- - óo)]} lsin [r,., (/- - do)] ,

(7 4)

Equations (4, 6 and 7) can be used to obtain the velocity profiles tĄ,2 : tll,zn *
tlt,zp, Integration of the velocity profiIes over the corresponding flow cross-
sectional area yields the flow rates of the two fluids:

: r'*" f ,,r(r.ę)dĘdó: q:H, 
+ l_-" l:ilzJ(Ę,ó)dĘd,ę:1 (B)

7r Jó" J-c*

where J (Ę,ó): -sin2 óof ko"n{ - cos ó)' i" the transforming Jacobian from
bipolar to Cartesian coordinates. For specified @*, Eqs.(8) provide the phase flow
rates corresponding to a given pressure drop and holdup (o. do), The latter is
determined by the following geometrical relation:

, A1 1| 1 .^,) sin2/6;_ 1 l)u:7:;tdo - 1sin(2Q'o- ;ffi lr- -" -;sin(2a-))} . (9)

From the practical point of view, the interest is in obtaining a solution for the
iocai flow characteristics (velocity and shear stresses profiles) and integral flow
characteristics (pressure drop and holdup) corresponding to specified flow rates
of the two fluids. This is considered to be the 'inverse problem'. The soiution
of the inverse problem is more complicated, since the location of the interface
is a priori unknown and must be determined in an iterative manner. It is much
more complicated in inclined systems, as both Ą and P2 relate to the (unknown)
frictional pressure drop and holdup. The difference between the two, however, is
equal to the inclination parameter,Y,.

(Pt - pz) g sin PPl-P2_
(-dp7ldz)r" -Y, ( 10)
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Equations (B) can be manipulated to obtain explicit expressions for the unknown
Pt, Pz, When these are used in Eq, (10), an implicit equation for the unknown p6
is obtained) once @* is specified. This is a complicated equation, which includes
triple integrals (over cu and the flow area({,/)), and requires numerical compu-
tations. The so-obtained so]utions for the holdup (determined by @o, ó*) and the
corresponding dimensionless pressure gradient II.f : (dp 1 l dz) l @p 7 f dz) r", are
dependent on three dimensionless parameters iI,q and Y. Note that in laminar
flows, the Martinelli parameter, which represents the ratio of the superficial fric-
tional plessure drop in the two phases, is X2 : (dp7ldz)rrl@p7ldz)rr: Pq, and
can replace either q oT P. As the characteristic interface curvature is dependent
on the system Eop and the fluid/wall contact angle [3-4], the complete solution
for the general case of laminar stratified flows with smooth interface is dependent
on five dimensionless parameters: q, P,,Y,Eop,a.

3 Two-fluid models

The exact solutions of the Navier-Stokes equations are restricted to laminar flows
and involve extensive computations. In many practical situations, one of the
phases (or both) is turbulent. Therefore, averaged one-dimensiona] two-fluid
mode]s are widely used for the prediction of the plessure drop and in-situ holdup
(e.g. |5-0]). In the two-fluid mode1, the momentum and mass conservation equa-
tions are expressed in terms of the average phases' velocities. For steady and
fully developed stratified flow, the momentum conservation equations are (see[1]

for details):

r],n

-Alańłr1,2S1,2lriSi* h,zAt,zgsinP:0 (upper sign for the lighter phase).

Eliminating the pressure drop yields: 
(11)

This equation can be solved for the holdup provided closure relations are available
for the wall and interfacial shear stresses, as well as for the interface shape (i.e.
interface curvature) . The commonly used approach is to assume a plane interface
and to mode1 the shear stresses based on single phase models/correlations for
the friction factors in laminar or turbulent flows. The interfacial shear is taken
as proportional to the velocity difference, and the interfacial friction factor is
modeled based on the wa]l friction factor of the faster 1ayer.

A crucial issue irr applying the two-fluid mode] to gas-liquid systems is fre-
quently the modeling of a correction factor, which accounts for the augmentation

",* - ",Ż -,,r, (* - i) + bt _ pz) g sin 0 : 0. (I2)
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: .:e interfacial shear due to the wavy iiquid interface, However. in the genera1

-- of liquid-liquid systems, inclined flows and countel-curlent flows, where ve-
,_:les of the two phases are of comparable values, the main issue concerns the

,,.:sion as to which of the fluids actually dominates the interfacial interaction,
.:,_ce fi. AIso, commonly used wa1l shear explessions are problematic for in-
._::ed flows, since they are incapable of representing reversed wal1 shear in cases

_ rackflow of one of the phases in the near wall region (e.g. downward flow of
-_: liquid phase near the wa1l in co-current upward gas-liquid flows). The poor
::tdictions obtained by the commonly used closure relations were demonstrated
,":-_i1 discussed in Ullmar^n et al, [1-2], These ale a result of using single-phase

._..ed c]osure re]ations for the wall and interfacial friction factors and ignoring
-__e interaction between the phases flowing in the same pipe.

3,1 Smooth-stratified flow

].en theory-based closure relations were recently formulated, w}rich account for
,ie interaction between the phases (N,{TF model, |11-12]). These were obtained
:,ased on the exact analytical solution for laminar flow between two infinite plates,
;,,hich suggests the fbl]owing structure for the wa1l and interfacial shear stresses:

Tl * -}łrrr|tĄ|Ut|F1|"| sign(F1) , (Ą,: (13)
U*,

)

€

T2 - -f,nrIyrl, t]zlFzl"' sign(F2); Uz: 

=. 

(14)

The friction factors,/1 and f2, are based on the Reynolds number of the colre-
sponding layer, each flowing as a single phase in its own channel. In case of
hydrodynamic-smooth wall surface, the Blasius-type powel law expressions for
the wall shear stresses can be used (rough-wa}1 expressions are provided in [12]):

f.: Cj Re -PilU:|Di. D. - 
 Ai i-l D /1x\LL- 1aerlu, 

.l(j 
,u 

]Jj (sr*s,J' J:t,z, \1U]

Given the flow regime in the two phases, the constants, C12 and n12 are pre-
scribed (e,g. laminat: C :16, n: 1, turbulent: C:0.046, n:0.2), and the
single-phase-based friction factors ft, fz can be calculated. The factors Ą and
Ą represent theory-based corrections of the single-phase based expressions for
the wall shear stresses due the interaction between the two fluids flowing in the
same channe1 (the conventiona] TF closure relations assume Ft, Fz:1). These
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are given by:

o. _l + 
^b|g,,x'(ź)' 

- Qd'-"'g,rf

+ trX' (=)' l (16)

, _ 
, * ?ńVrr+, (#)'- (2 (1 - e))l -"' srrf \rul

,r -

T!" sni in Eqs.(16) are functions of the dimensionless wetted perimeters Ś1, Ś2, Śi,
(S : SlD) and for the pipe geometry are given by:

ślś2aśz4ś,9tt:3,1§ i 9zz: E;§' 9lz: n .z§l§i 92I: 
"+rEltr

For the interfacial shear, the generalized MTF closure relations are:

_ l -Lprfr|U|(ci2U2 - U)lFnl" ; lĄll", ż lĄzl",
lr] - \

| -źpzfzlUzl(Uz - cnt]t) lFłzl"' ; lĄll"' ś lFnl"'

(17)

(18.1)

l 2o lI nz 1 2 ,l,,ntcir: l;-j-| ; c1z:l_ ] (1B.2)"' ll+ql l1+s|

The first form in trq. (1B.1) corresponds to the case where the interfacia] shear is
dominated by the flow of the heavy phase, whereas the second form corresponds
to dominance by the light phase. Fn, Fn represent correction factors due to
the interaction between the flows in the two layers, The Ę interaction factors,
Eq.(1B.2), and the criterion used in Eq. (1B.1) for switching between the two
a]ternative expressions for ri, suggest a matching between the solutions obtained
q'ith the two expressions for the interfacial shear. The MTF closure reiations for
t}re interfacial shear thus alleviate the discontinuity and other ill-effects encoun-
tered in the predictions of TF models (see Ullmann et. aI l1-2))

3.2 Wavy stratified flow

The \ITF closure relations, which are vaiid for smooth-stratified flow in horizontal
or inclined pipes, were used in Ullmann et al [12] as a platform for introducing
necssary empirical corrections required in the stratified wavy flow regime.

Irr n'avy stratified flows, the interface curvature is dominated by the secondary
flot's. rvhich develop in both phases. Based on the experimental data reported in
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the literature for the wetted wall perimeter and holdup in wavy gas-liquid flow,
the following correiation has been recently obtained for Q-|I2]:

Q*:,r+2tg- |z; z:57.2|, '9 f'|+lo'& (19)"'-lit-pdgcosPDl Ir"l
The values predicted for S* by this correlation aTe compared with experimental
data in Fig. 2. The validity of Eq. (19) is demonstrated by the favorable agree-
ment with an additional independent data set obtained in large diarneter tube of
D :5" 116].

4

o- 3.5

J

ż,5

ż

r AirAMater, D:5lmm, OJterrs [14]

l Air/I(erosene, D=7Smm, Chen et. al [15]

r AirĄVater, D=127mm, Rea & Azopardi [16]

- correlation

0,80.60.2

Z

Figure 2. Experimental correlation for the interface curvature in wavy stratified gas-liquid flow,
Eq. (19): comparison with data.

The wall shear stress in the gas phase, .rG 
= T2) is generally well-predicted

by the closure re]ation used in the stratified smooth regime (e.g. [t3]). However,
the interfacia] waves are known to have a pronounced effect on the interfacia]
shear and on the liquid wall shear stresses. Therefore, experimental data of
simultaneous measurements of the holdup and pressure drop, combined with Eq.
(19) for the interface curvatule, can be used to deduce from the two momenturn
equations (Eqs. 11) the corresponding values of the 'experimental' liquid wall
shear stress,r1 = (ry)exp:a,Ild interfacial shear, (rz)"*p. To this aim, the data-
base described in Ullmann and Brauner [12] was used. The data correspond to the
region of large amplitude 2D and 3D waves. The so-obtained (r7,) exp and ("ł)"*p
were compared with the corresponding values predicted by the closure relations of
smooth stratified flow (trq. (13) and (18)). The ratios between the'experimental'
values and those predicted for smooth interface were used to derive correlations
for the empirical correction factors on the friction factors th,at account for the
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wave augmentation effects. Based on data bank of simultaneous measurement of
the holdup and plessure drop, the wave effects on the interfacial and liquid wall
shear stresses have been correlated by (see [12]):

Fi,: -, i i 
-1 - L0.25(lq)o"

\Ti )"-ooth \ PGO /
Fr}6r.o,rs -+ 0.lCa' 2 * 15t]7 ,

- / /- \

Fw : : . ł@ : s.r5Frż]5a*0,6 ł 0.25Ca0,7 ;rL/\T L) smooth,

Fr5" : lr=łt-*]o' |r.,l , Frtr, : lrr_łłrur*lo' lu."] ,

(20.3)
n^ - lUc-Ullpl

In trq. (20.1), ]"o ,"or"."nts the air density at atmospheric pressur e (:1.2kg/-3),
i97 is the inclination (in radians, positive for co-current down-flow, negative for
concurrent up-flow), Accordingly, in wavy stratified flows, the closure relation
for the interfacial shear (second lbrm of Eq. (1B.1)) is augmented by the factor
(1 +Ę-). The closure relation for the liquid wal1 shear, trq. (13) is augmented
by the factor FLw : (7 + FźuJ) lFw, in case the liquid wa]l shear stress is not
reversed duc to backflow (Fr : Ą > 0 in Eq. (16)), Otherwise, for F1, ( 0

and Fna, ż l, F54,: 1 is assumed (as backflow is not augmented due to wave
effects). More details a,re given in llllmann and Brauner |12].

It is of interest to compare the correlation obtained for the wave attgmenta-
tion of the interfacial shear with anot}rer, widely used correlation obtained by
Andritsos and Hanratty [17]. This correlation was developed assuming a plane
(rather than curved) irrterface. The clata of (Ę-)"*o : ftr).*r/(Tż)smooth- 1is
compared in Fig. 3a witlr that correlation:

r _,"/hlos(U", ), (Ja,t_:5r!?)|rnlsl . QI)Iiu:"\D/ 
\rr._ 

-l),,uD.L,\pc ) Llll/b]. \zL)

In this correlation (Jg",1 is the critical gas superficial velocity for transition from
stratified-smooth to stratified-łvavy (SS/SW) as suggested by Andritsos and Han-
ratty [17]. Fol1owing their assumption of a plane interface, one obtains a large
scatter in (Ą-)""pcompa,red to their original correlation, Moreover, negative
r-alrtes of Fi- may result from Eq.(21) due to miss-prediction of the critical gas-
r-elocity for the SS/SłV transition, which should be discarded.

_Ą question may arise regarding the necessity of accounting separately for the
effect of the waves on the interface curvature. To this aim thc data bank in [12]
rvas used to obtain correlations for the wave effects on the augmentation of the

( 20.1 )

(20.2)
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2 4 6 8 l0,12].4161820

Experimental

Figure 3. Wave augmentation of the interfacial shear: a. Andritsos and Hanratty |17] correlation
(plane interface); b. improved correlation for Ę- (plane interface); c. Ą,, calculated
by Eq. (20,1) (curved interface),

interfacial and liquid-wall shear stresses assuming a plane interface also in the
wavy regime. The best fits we could arrive at for Flly and Fly are the following:

FW: Tl(rl),-nnłl,, : o.zaFrĘ!6 e-2 + 1.3Ca0,25

(22.1)

(22.2)
rr l (rt) ,*ootn

A comparison of the data with the Ą-values predicted by Eq, (22.I) is shown
in Fig. 3b, r,vhile those predicted by Eq. (20.1) are shown in Fig, 3c. The latter
was derived assuming a curved interface, rvhere the curvatule was calculated by
Eq. (19). The scatter in Fig. 3b is evidently larger, suggesting that accounting
for the wave effect on the curving of the interface allows a better representation
of the wave effect on the interfacia] shear for a wide variety of gas-iiquid systems
(see also Fig. B below),

4 Results and discussion

The pipe inclination is connected to a nurnber of interesting trvo-phase flow phe-
nomena. These include the possibility of obtaining multip]e solutions of different
holdups for specified operational conditions and partial backflow of either of the
fluids due to the gravity force acting opposite to the main flow direction. Results
obtained via the exact solution for lamirrar pipe flow (LPF) are demonstrated
in Fig. 4 for different interfacial curvatures. The figure shows that the inter-
face curvature has a plonounced effect on the holdup and thus on the stratified

Fi, : r ,,'' - 1 - t8 rlc )o'' rr31.o," ł 1.0Ca0,5 ;

\ri ) srnooLlt \ PG) /

lBdi€ cl al. (moo); ai/water

EBadb e| al. (Too)i ai/ó!

^ckn 
et aL (l a97)

aE§Dc&lll998) ntń
aolEN(l998) _ P

E-ż(b) jtr

l8
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flow characteristics. Generally, in countercurrent flow, q { 0, there are alrr-als
two possible configurations of different holdrrps, up to the flooding point belond
which no solution is obtained. In the co-current region, q > 0, at least one solu-
tion can be always obtained. However, in a certairr flow-rates ratio interval. three
distinct holdup values correspond to a single flow rate ratio can be obtained (see
enlargement of the X2 = 0 regions in Fig. 4).

0.8

0,1

0.6

0,5

0 0.1 0.z

X'=t rQr/lrrQ,

iol

X'=prQr/pzQz

Figure 4. trffects of the flow rates and interface curvature on the holdup in laminar flow (a) and
on the frictional pressure gradient (b) - exact solution.

Obviously, multi-solutions for holdup are associated with mu]ti-solutions for
tire pressure drop. The possibility of obtaining mu}ti-ho]dups was verified exper-
imentaliy for the case of countercurrent liquid-liquid flows [1] and for a case of
co-current liquid-liquid flows |2]. It is worth emphasizing, that in the case of mul_
tiPle solutions, computational software usually yields only one of the solutions for

5n/4
-1T 3nl4

ź 0.4
o

0.3
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h tlz
p

Y=-4.81

H

Oż
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SPecified operational conditions, which is not necessarily the relevant one for the
Particular application of interest. The introduction of multiple solution regions
on the flow pattern map [2] indicated that these regions might be related to flow
Pattern transition. Therefore, a-priori mapping of the multiple soiutions region
can help in identifying the regions were these difficulties are expected.

A comparison between the predictions that are obtained via two-fluid models
in the case of laminar stratified flow with plane interface, ó* : 7i-) and the exact
so}ution is demonstrated in Fig. 5. As shown, the MTF model predictions (section
3.1) for the holdup and for the frictional pressure gradient are close to the values
obtained by the exact LPF solution (section 2) in the countercurrent and co-
current regions. On the other hand, the predictions that are obtained with the
commonlY used two-fluid (TF) closure relations, which ignore the interactions
between the two layers (assuming Ą : 1 and F2 : 1 in Eqs. (13) and (1a),
respectively) are poor and problematic. They remain poor independently on
whether the interfacial shear is modeled based on the flow of the heavier phase
fl: ft, or based on the flow of the light phase, ń: fz.

The inc]usion of the F-interaction factors become more significant in inclined
flows, where the gravity body force is important. For example, in Fig. 6, which
corresPonds to upward inc]ined flow, it is demonstrated that the Ą_interaction
factor can attain also negative values. The velocity profile (shown on the r.h.s
of Fig. 6), which is obtained by the LPF exact solution, indicates that negative
Ą is corresponding to conditions of backflow of the heavy phase in the near-
wall region. Hence, the MTF closure relation for the wall shear stress correctly
Predicts a reversed wall shear stress compared to the direction that would have
been predicted by the average fluid velocity, (Jt,

The MTF closure relations can be used for the calculations of undeveloped
conditions and s]ow transients in stratified flows via 1_D two-fluid models. The
two-fluid transient momentum equations are then written in terms of the local
and instantaneous holdup (flow area, at,az) and average velocity in each of the
phases, ul,uz (e.g. [1B]):

ft b oO) + fi botl{r?) :-rt,9t ł r.i S l ł Ąa1 g sh B _ 
§; (orn) + pn* ;

ft Grorar) + & ( pzozlza3) : - rr S, - ra S i * p2a2 g sin P - & (orpr) + p n # .

(23)
To rePresent the wall shear stresses (rl,12) and the interfacial shear stress

(ri), the MTF closure relations can be used in the conventional manner, namely,
using the same closures expressed in terms of local/instantaneous values of the
holdup and average phases velocities. However, the application of Eqs. (23) to
transient/undeveloped flows requires also correction factors on the inertia tetms,
which are denoted as the velocity profiIe 'shape factors'. The definition of these
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PlV2=1.S
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Figure 5, Comparison of the LPF solution with the predictions of TF and MTF mode]s for the
holdup and the dimensionless frictional pressure gradient.

colrection factors (that evoives from the averaging procedure) is given by:

!,, u!do,1
lI-' -ł luTat

l u,?da,J (1,,

12 - --=6-uaa)
(24)

As the velocity plofiles are not reso]ved in the framework of 1-D model, plug flow
is usually assumed in both layers (rr,z: ż1,2), whereby ?t,z : 1. The velocity
profiles, which ale obtained by the exact solution, can be used to calculate the
shape factors and to test the validity of this assumption. The results of the
heary phase shape factor corresponding to the conditions of Fig. 4 are shown in
Fig. 7. Obviously, the shape factor can attain very large values. The large values
correspond to conditions of backflow, whete part of the fluid is flowing opposite

MTF & LPF 'i '2P!p2=1.g
p =5,5'

Y/X2=18
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Figure 6. Variation of the N4TF F-interaction factors with the light phase flow rate in the case
of co-current up-flow and the LPF solution for the velocity profile at the pipe center
line for L/X2:50.

to the flow direction. ]Vote that the two non-zero holdups that are obtained at
Qt : 0 (upper and middle solutions for the holdup in Fig. 4a) correspond to a
complete circulation of the heavy phase in the pipe, wherebya, - [Jl:0 and
?t --+ oo.

plip2=0.1 03

Y:-4.810l

ł-=3n/ą

0.1

XŻ

Figure 7, Effect of the flow rates on the heavier phase shape factor in an inclined tube.

The va]iditY of the MTF closure re]ations for model]ing turbulent stratified
flows in the smooth and wavy regime was shown in Ullmann and Brauner [12].
To demonstrate the performance of MTF model in the large wave regime (section
3.2), the predicted pressule drop and holdup ale compared with Espedal |19] data
for inclined upward and downward flows (on the r.h.s of Fig. 8). This figure also
shows the imPlications of assuming a plane interface (rather than curved) in the
wavy regime on the MTF model predictions (Lh,s of Fig, B). In this case, the

1000

-0.,lA,
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\yave augnentation factors of Eqs. (22) were used instead of Eqs.(20). Although
the corresponding wave augmentation factors ale reasonably represented also by
the correlations suggested by Eqs.(22) (see Fig. 3b), a consistent deviation of
the resulting prediction of the pressure drop and holdup is indicated (l.h,s of
Fig, B). The predictions with a curved interface ale much better. Accounting
for the wave effect on the interfacial curvatute, and the consequentia1 liquid wa1l
wetting, appears to be essential for establishing general closure relations for two-
flrrid nodels in the stratified wavy regime.

Plane Interface curved Interface
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Figure 8. Comparison of the MTF model predictions with trspeda1 [19] data for the holdup and
the pressure gradient in the stratified 1arge wave regime (W2 - two-dimensional (2D)
waves, W3-3D waves).
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5 conclusions

The exact solution for laminar pipe flow (LPF) in an inclined pipe has been
generalized to be applicable in cases of a curved interface. This solution is used
to study the effect of inclination and interface curvature on the characteristics
of countercurrent and co-current stratified flows, The pronounced effect of the
interfacial curvature on the wetted perimeter, and consequently on the pressure
drop and holdup, was demonstrated.

The exact solution has been used also to examine the validity of the predic-
tions of the holdup and pressure drop obtained by two-fluid (TF) models, It was
found that the common practice of using single-phase-flow-based c]osure relations
for the shear stresses in TF models is problematic in horizontal flows, and fails
in predicting the holdup and pTessuTe drop in co-current and counter-current in-
c]ined flows. New theory-based closure reiations for the wall and interfacial shear
stresses (MTF model), which account for the interaction between the phases, were
suggested. These are formu]ated in terms of the sing}e-phase based expressions,
which are augmented by the two-phase interaction factors.

The MTF closure relations are applicable a]so to turbulent flows in either or
both of the phases. Combined with new empirical correlations, which represent
the wave effects on the interface curvature, the interfacial shear, and the liquid
wall shear, the MTF model is applicable also to the stratified wavy regime of
gas-Iiquid systems.

The predictions of the two-fluid model for the pressule gradient and holdup
are tested against extensive data bank and some analytical solutions for stratified
flows [11-12]. The favorable comparison suggests that the new closure re]ations
are essentially representing correctly the interaction between the phases over a
wide range of flow parameters space in the stratified smooth and stratified wavy
regimes,
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