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AMOS ULLMANN, AYELET GOLDSTEIN, and NEIMA BRAUNER*

Gas-liquid and liquid-liquid stratified flows: exact
analytical solutions and mechanistic models

Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel

Abstract

An exact analytical solution has been obtained for fully developed laminar stratified flow in
inclined pipes with a plane or curved interface. This solution is of practical significance mainly
for studying liquid-liquid flows. However, it is also needed as a benchmark for testing the validity
of numerical methods, and for testing closure relations for two-fluid models. Two-fluid models
may yield poor predictions in inclined co-current and counter-current flows. The commonly used
closure relations for the wall and interfacial shear stresses do not correctly represent the fine
balance between the gravity body forces and viscous shear in inclined flows. The exact solution
obtained for laminar flows is used to establish and validate new closure relations, which account
for the interaction between the phases and are applicable also for turbulent stratified fows.

Keywords: Stratified flow; Curved interface; Waves; Interfacial shear; Wall shear; Two-fluid

Nomenclature
A - flow area, m?
a —  local flow area, m>
C - wall shear stress parameter (Eq. 15)
(c - coefficient in Eq. (18.2)
Ca - Capillary number (Eq. 20.3)
D — diameter, m

*Corresponding author. E-mail address: brauner@eng.tau.ac.il
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Subscripts
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Accents
>

Eotvos number

interaction correction factor

wave augmentation factors (Eq. 20)
Froude number

friction factor

gravity acceleration, m/s>
geometrical correction factors (Eq. 17)
wall shear stress parameter (Eq. 15)
dimensionless driving force
pressure, Pa/m?

flow rates ratio

Reynolds number

perimeter, m

axial average velocity, m/s

local axial velocity, m/s

Martinelii parameter

inclination parameter

Cartesian coordinates, m
inclination, radian

viscosity, Pa-s

shear stress, Pa/m?

density, kg/m?

shape factor (Eq. 21)

interface curvature

lower phase dimensionless wetted perimeter
bipolar coordinates

Fourier amplitude

frequency

integral functions (Eq. 7)

holdup

surface tension, N/m

lower phase

lower phase, superfical
upper phase

upper phase, superficial
frictional

gas (Gs- superficial)
gravitational
homogenous solution
interfacial

liquid (Ls-superficial)
particular solution

dimensionless
average
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1 Introduction

Stratified flow is considered a basic flow pattern in horizontal or slightly inclined
gas-liquid and liquid-liquid systems of a finite density differential, since for some
range of sufficiently low flow rates, the two phases tend to segregate. Counter-
current and co-current stratified flows are encountered in the process industry
in various mass transfer and direct contact heat transfer systems. Pipe lines
design requires accurate prediction of the holdup and pressure gradient. Multiple
holdups and pressure drops can be obtained for specified operation conditions
in co-current and counter-current inclined flows, which are relevant in practical
applications [1-2].

There are some significant differences between stratified flow in gas-liquid
and liquid-liquid systems. In fact, compared to gas-liquid systems, liquid-liquid
systems can be considered a more general case of two-fluid systems. Gas-liquid
systems are characterized by low-density ratio and low viscosity ratio (i = ui/uso)
between the light and heavy phases, and therefore represent a very particular ex-
treme of two-fluid systems. In liquid-liquid systems the density difference between
the phases is relatively low. However, the viscosity ratio encountered extends over
a range of many orders of magnitude. The velocities of the two liquids are, in
many cases, of a similar order of magnitude, and it is not evident which of the
liquids dominates the interaction at the liquids’ interface. Therefore, modeling
of the interfacial shear stress becomes more ambiguous in liquid-liquid systems
compared to gas-liquid systems. Moreover, as a result of the relatively low density
difference, surface tension and wetting effects become important.

In smooth stratified flows, the Eotvos number, Eop = ApgD? /o is an impor-
tant parameter in determining the interface shape. Stratified flow with a plane
interface is typical to gravity-dominated systems of large Eop. When surface
tension forces become significant, the wetting liquid tends to climb over the tube
wall resulting in a curved (convex or concave) interface (see Fig. 1). The interface
shape depends on the Eop number, the fluids/wall contact angle and the holdup
[3-4]. The possible stratified flow configurations extend from fully eccentric core
of the upper phase to fully eccentric core of the lower phase. The configuration of
a fully eccentric core was shown to be the basic pattern in surface tension domi-
nated systems of Eop < 1. In the stratified wavy regime, the interface curvature
is dominated by the wave phenomena and the resulting secondary flows.

A configuration of a curved interface is associated with a variation of the
location of the triple point (TP) and thus, with a variation in the contact area
between the two fluids and the pipe wall even for a specified holdup. Depending
on the physical system involved, these variations can have prominent effects on
the pressure drop and transport phenomena.

Most studies on stratified flows in pipe have been carried out using mechanis-
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Figure 1. Schematic description of stratified flow configuration and parameters.

tic models, where various averaging techniques are used to achieve more practical
models (e.g. [5-6]). But these models may only predict the integral flow char-
acteristics, such as the axial pressure drop and the in situ holdup. The only
way to obtain the velocity profiles, shear stress distribution and other local flow
properties, is from a more rigorous solution of the Navier-Stokes equations.

The feasibility of obtaining exact solutions for stratified flows is restricted
to laminar-laminar flows [7-8], which are frequently encountered in liquid-liquid
systems. Exact solutions are also needed for validation of approximate mecha-
nistic two-fluid models, or of numerical methods for solving stratified flows (e.g.
[9-10]). Both mechanistic models and numerical methods are challenged by their
capability to predict the flow characteristics in inclined pipes (e.g. [1-2]). Exact
solutions for laminar stratified flows were recently used to derive new, theory-
based, closure relations for the wall and interfacial shear stresses that account for
the interaction between the phases [11]. These closure relations, which are valid
for smooth stratified flows, were used as a platform for introducing necessary
empirical corrections for the stratified wavy regime [12].

Most of the analytical solutions available in the literature for stratified laminar
flows in pipe geometry are restricted to horizontal flows. The only exceptions are
the solution of stratified inclined flow, which has been recently obtained, however,
for the particular case of a plane interface. An analytical solution for the general
case of inclined stratified flows with curved interface is presented here and is
not yet available in the literature. The exact solution obtained for laminar flows
is used to establish and validate new closure relations, which account for the
interaction between the phases and are applicable also for turbulent stratified
flows.
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2 Analytical solutions

Given the location of the fluids interface, the 2-D velocity profiles in steady and
fully developed axial laminar pipe flow (LPF) of stratified layers, ui (z,y), ua(x, y)
are derived from the Navier-Stokes (N-S) equations (in the z direction, see Fig. 1):

Op . :
WV = == = pigsinf; j=1,2. (1)

The required boundary conditions follow from the no-slip condition at the pipe
wall and continuity of the velocities and tangential shear stresses across the fluids’
interface. Many researches have followed this approach, both analytically and
numerically (e.g.[7-11]). Exact analytical solutions for Eq.(1) can be obtained in
the case of constant interface curvature (represented by ¢* in Fig. 1). Then the
bipolar coordinate system fits the flow geometry [7].

In the bipolar coordinate system (¢, &), the pipe perimeter and the interface
between the fluids are iso-lines of coordinates ¢, so that the upper section of the
tube wall bounding the lighter phase is represented by ¢, while the bottom of
the tube, bounding the denser phase, is represented by ¢¢ + m. The interface
coincides with the curve of ¢ = ¢*. Thus, the two-phase domains map into two
infinite strips in the (¢, &) domain defined by: —co < £ < oo, ¢* > ¢ > ¢q for the
upper phase,—oco < £ < 00, ¢g + 7 > ¢ > ¢* for the lower phase. The relations
between ¢g, ¢* and the geometrical variables (e.g. flow areas, wetted perimeters)
are given elsewhere [6].

A plane interface corresponds to a constant curvature arc, ¢* = 7. In this
case the flow geometry can also be described by the thickness of the lower fluid
layer, h = 0.5(1 — cos ¢g). Analytical solutions for horizontal laminar stratified
flow with a plane interface can be found in several publications in the sixties
and seventies. A complete analytical solution for the more general case of a
curved interface was obtained in Brauner et al. [7]. However, it is restricted to
horizontal flows. More recently, the solution for the velocity and shear stresses
profiles in the case of inclined flows with a plane interface has been also obtained
[8,11]. Compared to horizontal flows, the solution for inclined systems is more
complicated in case the fluids differ in their density, as the axial driving force in
the two phases is not the same. The two non-dimensional N-S equations for 2-D
flow of the two phases in the bipolar coordinate system are:

%ty 0%\ =18 & sin? ¢ 0%ty 0%y z sin? ¢o
SR + oo o el 35 D) T 8P2 2
73 0¢ £~ (cosh&—cos @) 0¢ ol0) (cosh € —cos @)

(2)

where 4; = u;/Uss; (j = 1,2) are the normalized velocity profiles with respect
to the lighter phase superficial velocity, Uss = R? (—dpy/ dz),./(8u2), while Py
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and P, represent the dimensionless driving force in the heavy and light phase
respectively: ]53 = (dp/dz — pjgsin §)/(—dpys/dz), . The pressure gradient used
for normalizing the driving forces is the frictional pressure drop obtained in single-
phase flow of the lighter phase, (dpy/dz),,. Note that the inclination angle J is
always taken as positive. In co-current flow, Uy, Uss are both positive in case of
downward flow and negative for the case of upward flow. The boundary conditions
required for solving equations (2) are: no-slip conditions at the tube walls and
continuity of velocities and shear stresses across the free interface:

(1) gpmgr = (B2) gy (M%>az¢* = (ug%%>¢:¢* : (3.2)

The general solution of Egs. (2) is composed of the particular and homogeneous
solutions, t1p,liop and typ,Ugp, respectively. In view of the non-homogeneous
terms in Eqs. (2), the following functions, which satisfy b.c. (3.1), and (3.2), are
chosen as the particular solutions:

. sin(¢—do)

_ = - B sin (¢ — ¢o)
= —P =
Utp 7 1 sin ¢ e Ugp = 4P sin ¢y

coshé —cos¢ (4

The homogeneous set of equations and corresponding boundary conditions (in
view of the above particular solutions) are then given by:

g, - Oy

5 O¢?

=T (5.1)
(allﬂb)¢:¢0+7T =0 (a2h)¢:¢0 = 0; (ﬁlh)gzioo =0; (a2h)§:ioo =0; (5.2)
= = SOt sin(¢*—¢0) (5 P1Y .

(ulh)¢:¢* = (Uzh)¢:¢* = 4sin ¢Om <P2 = ﬁ ; (5.3)

< Ol 811% cosh € cos (¢* — ¢p) — cos ¢y

olo) 0o (cosh £ — cos ¢*)? :
The solution of the homogeneous set (5) can be obtained in the form the following
Fourier integrals:

) = 4(P; — Py)sin g (5.4)
g=¢"

Uiy = /@1 ) sinh [w (¢— 7 — ¢p)] cos(wé)dw
0

top = /(I>2 (w) sinh [w (¢—¢o)] cos(wé)dw
0
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The r.h.s of b.c. (5.3) and (5.4) can be represented as Fourier Integrals. The
solution obtained for ®; and ®y (Fourier transforms of @y, figp) is given by:

1 {A _ pw2sin (¢* — ¢o) sinh [w (¢* — 7))

iBiEs wO sin ¢* sinh (wr) sinh [w (¢* — ¢g)]

cosh [w (¢* — 7 — qﬁo)]} ,
(7.1)
8sin ¢o (P, / fi— By) sin (¢* — ¢g) +®3 sin ¢* sinh (w)

e sin ¢* sinh (wm) sinh [w (¢* —7—¢p)] il el

where:

A= { [8 sin ¢g (P —]51)(— cos ¢g+cos(p* —(/f)o))} {w cosh [w(¢* —7)] sin ¢*

- ~ 79
— cos ¢* sinh [w(¢™ — )]} —8sin ¢g cos(¢* — ¢o)(Py —Pl)} m; il
© = cosh [w (¢* — ¢o)] cosh [w (¢* — 7 — ¢o)] {2 tanh [w (¢* — 7 — ¢o)] (7.4)

— tanh [w (6™ — ¢o)]} / sin [w (¢* — ¢0)] .
Equations (4, 6 and 7) can be used to obtain the velocity profiles i o = U196 +

U1,2p- Integration of the velocity profiles over the corresponding flow cross-
sectional area yields the flow rates of the two fluids:

1 [¢otm roo U e o* poo 9
;/ [Jlj(ﬁ@dfd%g S /¢ /_OOU2J(§,¢)d€d<b—1 (8)

A CUps'

where J (£,¢) = —sin® qbo/(cosh{ — cos ¢)? is the transforming Jacobian from

bipolar to Cartesian coordinates. For specified ¢*, Eqs.(8) provide the phase flow
rates corresponding to a given pressure drop and holdup (or ¢g). The latter is
determined by the following geometrical relation:

sin? ¢
sin? ¢

Ay 1 Ts. .
627:;{¢0—§Sln(2¢%—

P —m — %sin(qu*)} } : (9)
From the practical point of view, the interest is in obtaining a solution for the
local flow characteristics (velocity and shear stresses profiles) and integral flow
characteristics (pressure drop and holdup) corresponding to specified flow rates
of the two fluids. This is considered to be the ’inverse problem’. The solution
of the inverse problem is more complicated, since the location of the interface
is a priori unknown and must be determined in an iterative manner. It is much
more complicated in inclined systems, as both P, and P relate to the (unknown)
frictional pressure drop and holdup. The difference between the two, however, is
equal to the inclination parameter,Y:

= ol (pii e pp) gein B
BT ek Y. (10)
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Equations (8) can be manipulated to obtain explicit expressions for the unknown
Py, P,. When these are used in Eq. (10), an implicit equation for the unknown ¢
is obtained, once ¢* is specified. This is a complicated equation, which includes
triple integrals (over w and the flow area(¢, ¢)), and requires numerical compu-
tations. The so-obtained solutions for the holdup (determined by ¢q, ¢*) and the
corresponding dimensionless pressure gradient Iy = (dps/dz)/(dps/dz),,, are
dependent on three dimensionless parameters ji,q and Y. Note that in laminar
flows, the Martinelli parameter, which represents the ratio of the superficial fric-
tional pressure drop in the two phases, is X? = (dpy/dz),,/(dps/dz),, = fiq, and
can replace either g or fi. As the characteristic interface curvature is dependent
on the system Eop and the fluid/wall contact angle [3-4], the complete solution
for the general case of laminar stratified flows with smooth interface is dependent
on five dimensionless parameters: ¢, ii,Y, Eop, a.

3 Two-fluid models

The exact solutions of the Navier-Stokes equations are restricted to laminar flows
and involve extensive computations. In many practical situations, one of the
phases (or both) is turbulent. Therefore, averaged one-dimensional two-fluid
models are widely used for the prediction of the pressure drop and in-situ holdup
(e.g. [5-6]). In the two-fluid model, the momentum and mass conservation equa-
tions are expressed in terms of the average phases’ velocities. For steady and
fully developed stratified flow, the momentum conservation equations are (see[l]
for details):

d
—A; 9—p + 71,2812 & 7S + p1,2A1,2gsin B = 0 (upper sign for the lighter phase).

“dz
(11)
Eliminating the pressure drop yields:
S1 So 1 1 :
g4 _T2A—2—TZSZ <A—1+Zg>+(01*,02)981ﬂ/3—0- (12)

This equation can be solved for the holdup provided closure relations are available
for the wall and interfacial shear stresses, as well as for the interface shape (i.e.
interface curvature). The commonly used approach is to assume a plane interface
and to model the shear stresses based on single phase models/correlations for
the friction factors in laminar or turbulent flows. The interfacial shear is taken
as proportional to the velocity difference, and the interfacial friction factor is
modeled based on the wall friction factor of the faster layer.

A crucial issue in applying the two-fluid model to gas-liquid systems is fre-
quently the modeling of a correction factor, which accounts for the augmentation
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" the interfacial shear due to the wavy liquid interface. However, in the general
wse of liquid-liquid systems, inclined flows and counter-current flows, where ve-
cities of the two phases are of comparable values, the main issue concerns the
=cision as to which of the fluids actually dominates the interfacial interaction,
wence f;. Also, commonly used wall shear expressions are problematic for in-
“ned flows, since they are incapable of representing reversed wall shear in cases
¢ backflow of one of the phases in the near wall region (e.g. downward flow of
the liquid phase near the wall in co-current upward gas-liquid flows). The poor
~redictions obtained by the commonly used closure relations were demonstrated
and discussed in Ullmann et al. [1-2]. These are a result of using single-phase
ased closure relations for the wall and interfacial friction factors and ignoring
“he interaction between the phases flowing in the same pipe.

3.1 Smooth-stratified flow

New theory-based closure relations were recently formulated, which account for
the interaction between the phases (MTF model, [11-12]). These were obtained
based on the exact analytical solution for laminar flow between two infinite plates,
which suggests the following structure for the wall and interfacial shear stresses:

1 : %

n=—cahlUlULIR™ sign(R); Uy = =% (13)
1 ot Uss

Ty = —-Q—prQ‘UQIUQ 1F2| Szgn(Fg); UQ = — . (]‘4)

The friction factors,f; and fs, are based on the Reynolds number of the corre-

sponding layer, each flowing as a single phase in its own channel. In case of

hydrodynamic-smooth wall surface, the Blasius-type power law expressions for

the wall shear stresses can be used (rough-wall expressions are provided in [12]):

Cj pi U] D; 44,
Rej =i

= ey g R

=1,2. (15)

Given the flow regime in the two phases, the constants, C; 2 and n; o are pre-
scribed (e.g. laminar: C = 16, n. = 1, turbulent: C = 0.046, n = 0.2), and the
single-phase-based friction factors fi, fo can be calculated. The factors F; and
F5 represent theory-based corrections of the single-phase based expressions for
the wall shear stresses due the interaction between the two fluids flowing in the
same channel (the conventional TF closure relations assume Fy, F» = 1). These
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are given by:

2 o
1+ g |guX? (%) — (2e)'™™ 912}
F1 = 9 ;
L (doe)
2 s
L Z—; {922% <1€T5> = ?))1 z 921}

1B (=)

Fy =

The g;; in Eqs.(16) are functions of the dimensionless wetted perimeters Sy, Sa, S;,
(S = S/D) and for the pipe geometry are given by:

g —; gm= * P g12= il S go1= L (17)
==——7 | g=%——= gio= = ; e e
STETA 245 T+2 8+ T+2 5,45
For the interfacial shear, the generalized MTF closure relations are:
{ =301 f1|U1|(caUsz — Un) | Fir|™ 5 |Fa|™ > |Fip|™ (18.1)
i = :
—3p2f2|U2|(Us — eal) |Fia["?; |Fua|™ < |Fip|™
with:
1 1 2 1no 1-nq
Fz‘lz——zf“—;ﬁ; 8R! Cﬂ:Iﬁ ; Ci2:‘ﬁ . (18.2)
P =5 = =
1+ X3 (L) Tl

The first form in Eq. (18.1) corresponds to the case where the interfacial shear is
dominated by the flow of the heavy phase, whereas the second form corresponds
to dominance by the light phase. F;;, Fjy represent correction factors due to
the interaction between the flows in the two layers. The F; interaction factors,
Eq.(18.2), and the criterion used in Eq. (18.1) for switching between the two
alternative expressions for 7;, suggest a matching between the solutions obtained
with the two expressions for the interfacial shear. The MTF closure relations for
the interfacial shear thus alleviate the discontinuity and other ill-effects encoun-
tered in the predictions of TF models (see Ullmann et. al [1-2]).

3.2 Wavy stratified flow

The MTF closure relations, which are valid for smooth-stratified flow in horizontal
or inclined pipes, were used in Ullmann et al [12] as a platform for introducing
necessary empirical corrections required in the stratified wavy flow regime.

In wavy stratified flows, the interface curvature is dominated by the secondary
fows, which develop in both phases. Based on the experimental data reported in
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the literature for the wetted wall perimeter and holdup in wavy gas-liquid flow,
the following correlation has been recently obtained for ¢*[12]:

0.5 05 _
UL (19)

Ug

el
(pr — pg) g cos BD

*=1+2tg71Z; Z=572

The values predicted for ¢* by this correlation are compared with experimental
data in Fig. 2. The validity of Eq. (19) is demonstrated by the favorable agree-
ment with an additional independent data set obtained in large diameter tube of
B =8".18.

®
4.5 4
4
(D"‘ 3.5 4
3] By " & Air/Water, D=51mm, Ottens [14]
4 Air/Kerosene, D=78mm, Chen et. al [15]
|
2.5 4 @ Air/Water, D=127mm, Rea & Azzopardi [16]
= Correlation
2 T T T
0 0.2 0.4 0.6 0.8 1
Z

Figure 2. Experimental correlation for the interface curvature in wavy stratified gas-liquid flow,
Eq. (19): comparison with data.

The wall shear stress in the gas phase, 7¢ = 7, is generally well-predicted
by the closure relation used in the stratified smooth regime (e.g. [13]). However,
the interfacial waves are known to have a pronounced effect on the interfacial
shear and on the liquid wall shear stresses. Therefore, experimental data of
simultaneous measurements of the holdup and pressure drop, combined with Eq.
(19) for the interface curvature, can be used to deduce from the two momentum
equations (Egs. 11) the corresponding values of the ‘experimental’ liquid wall
shear stress,71 = (7L) exp, and interfacial shear, (7;) exp. To this aim, the data-
base described in Ullmann and Brauner [12] was used. The data correspond to the
region of large amplitude 2D and 3D waves. The so-obtained (77) exp and (7;) exp
were compared with the corresponding values predicted by the closure relations of
smooth stratified flow (Eq. (13) and (18)). The ratios between the ‘experimental’
values and those predicted for smooth interface were used to derive correlations
for the empirical correction factors on the friction factors that account for the
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wave augmentation effects. Based on data bank of simultaneous measurement of
the holdup and pressure drop, the wave effects on the interfacial and liquid wall
shear stresses have been correlated by (see [12]):

Ti pa \** _ 065 033 1.2
Fpy= ——— —1=10.25 <— Fr265:033 4 0.1Cal2? —158;; (20.1)
(Ti)smooth PGO
Fy = T Tidsmooth _ g 15075.-06 | 0.250407, (20.2)
TL/(TL)smooth
& 0.5 - 0.5
PTT SN SRR Ty 0l i TR ; e D p. -

L {(PL—PG)DHCOW} Ugs| 5 Frrs= (PL*PG)DQCOSB} ULl (20.3)
o |UG—gL1uL ;

In Eq. (20.1), pgo represents the air density at atmospheric pressure (=1.2 kg/m?),
Br is the inclination (in radians, positive for co-current down-flow, negative for
concurrent up-flow). Accordingly, in wavy stratified flows, the closure relation
for the interfacial shear (second form of Eq. (18.1)) is augmented by the factor
(1 + Fiy). The closure relation for the liquid wall shear, Eq. (13) is augmented
by the factor Frw = (1 + F,)/Fw, in case the liquid wall shear stress is not
reversed due to backflow (Fr, = F; > 0 in Eq. (16)). Otherwise, for F, < 0
and Frw > 1, Frw = 1 is assumed (as backflow is not augmented due to wave
effects). More details are given in Ullmann and Brauner [12].

It is of interest to compare the correlation obtained for the wave augmenta-
tion of the interfacial shear with another, widely used correlation obtained by
Andritsos and Hanratty [17]. This correlation was developed assuming a plane

(rather than curved) interface. The data of (Fiy)e,, = (Ti>exp/(7_i)$mooth —1is
compared in Fig. 3a with that correlation:

b 555 Un 1.2
Fiw=15<—> el i, :5<——> m/s] . 21
L (UGs,t aat PG el (25

In this correlation Ugs, is the critical gas superficial velocity for transition from
stratified-smooth to stratified-wavy (SS/SW) as suggested by Andritsos and Han-
ratty [17]. Following their assumption of a plane interface, one obtains a large
scatter in (Fiy)e,compared to their original correlation. Moreover, negative
values of F,, may result from Eq.(21) due to miss-prediction of the critical gas-
velocity for the SS/SW transition, which should be discarded.

A question may arise regarding the necessity of accounting separately for the
effect of the waves on the interface curvature. To this aim the data bank in [12]
was used to obtain correlations for the wave effects on the augmentation of the
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Figure 3. Wave augmentation of the interfacial shear: a. Andritsos and Hanratty [17] correlation
(plane interface); b. improved correlation for Fj,, (plane interface); c. Fi., calculated
by Eq. (20.1) (curved interface).

interfacial and liquid-wall shear stresses assuming a plane interface also in the
wavy regime. The best fits we could arrive at for Fyyy and Fy are the following:

T; PG ! 2.5_0.33 0.5
Fo=7——-1=18 (——) Brooe ™ 4+ 1.0Ca; (22.1)

(Ti ) smooth PGo

Fy = T Tidamootn 0.24Fry %2 + 1.3Ca%%,
5/ (T8 ) smooth 2

A comparison of the data with the Fj,values predicted by Eq. (22.1) is shown
in Fig. 3b, while those predicted by Eq. (20.1) are shown in Fig. 3c. The latter
was derived assuming a curved interface, where the curvature was calculated by
Eq. (19). The scatter in Fig. 3b is evidently larger, suggesting that accounting
for the wave effect on the curving of the interface allows a better representation
of the wave effect on the interfacial shear for a wide variety of gas-liquid systems
(see also Fig. 8 below).

(22.2)

4 Results and discussion

The pipe inclination is connected to a number of interesting two-phase flow phe-
nomena. These include the possibility of obtaining multiple solutions of different
holdups for specified operational conditions and partial backflow of either of the
fluids due to the gravity force acting opposite to the main flow direction. Results
obtained via the exact solution for laminar pipe flow (LPF) are demonstrated
in Fig. 4 for different interfacial curvatures. The figure shows that the inter-
face curvature has a pronounced effect on the holdup and thus on the stratified
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flow characteristics. Generally, in countercurrent flow, ¢ < 0, there are alwars
two possible configurations of different holdups, up to the flooding point beyvons
which no solution is obtained. In the co-current region, ¢ > 0, at least one solu-
tion can be always obtained. However, in a certain flow-rates ratio interval, thres
distinct holdup values correspond to a single flow rate ratio can be obtained (ses
enlargement of the X2 ~ 0 regions in Fig. 4).

0.8
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Figure 4. Effects of the flow rates and interface curvature on the holdup in laminar flow (a) and
on the frictional pressure gradient (b) — exact solution.

Obviously, multi-solutions for holdup are associated with multi-solutions for
the pressure drop. The possibility of obtaining multi-holdups was verified exper-
imentally for the case of countercurrent liquid-liquid flows [1] and for a case of
co-current liquid-liquid flows [2]. It is worth emphasizing, that in the case of mul-
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specified operational conditions, which is not necessarily the relevant one for the
particular application of interest. The introduction of multiple solution regions
on the flow pattern map [2] indicated that these regions might be related to flow
pattern transition. Therefore, a-priori mapping of the multiple solutions region
can help in identifying the regions were these difficulties are expected.

A comparison between the predictions that are obtained via two-fluid models
in the case of laminar stratified flow with plane interface, ¢* = 7, and the exact
solution is demonstrated in Fig. 5. As shown, the MTF model predictions (section
3.1) for the holdup and for the frictional pressure gradient are close to the values
obtained by the exact LPF solution (section 2) in the countercurrent and co-
current regions. On the other hand, the predictions that are obtained with the
commonly used two-fluid (TF) closure relations, which ignore the interactions
between the two layers (assuming F; = 1 and F; = 1 in Eqgs. (13) and (14),
respectively) are poor and problematic. They remain poor independently on
whether the interfacial shear is modeled based on the flow of the heavier phase
fi = f1, or based on the flow of the light phase, f; = fo.

The inclusion of the F'—interaction factors become more significant in inclined
flows, where the gravity body force is important. For example, in Fig. 6, which
corresponds to upward inclined flow, it is demonstrated that the Fj-interaction
factor can attain also negative values. The velocity profile (shown on the r.h.s
of Fig. 6), which is obtained by the LPF exact solution, indicates that negative
Fy is corresponding to conditions of backflow of the heavy phase in the near-
wall region. Hence, the MTF closure relation for the wall shear stress correctly
predicts a reversed wall shear stress compared to the direction that would have
been predicted by the average fluid velocity, Uy.

The MTF closure relations can be used for the calculations of undeveloped
conditions and slow transients in stratified flows via 1-D two-fluid models. The
two-fluid transient momentum equations are then written in terms of the local
and instantaneous holdup (flow area, a;,as) and average velocity in each of the
phases, @,y (e.g. [18]):

F(prarn)+ £ (p1017183) = —7181 +7:Si+ pragg sin f— 2 (a1p1)+pin %2

5 (p202in) + £ (p2a27213) = — 7255 —7:5; + paasg sin B— 2 (azp2)+pind% .
(23)
To represent the wall shear stresses (71,72) and the interfacial shear stress
(7i), the MTF closure relations can be used in the conventional manner, namely,
using the same closures expressed in terms of local/instantaneous values of the
holdup and average phases velocities. However, the application of Egs. (23) to
transient/undeveloped flows requires also correction factors on the inertia terms,
which are denoted as the velocity profile shape factors’. The definition of these
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Figure 5. Comparison of the LPTF solution with the predictions of TF and MTF models for the
holdup and the dimensionless frictional pressure gradient.

correction factors (that evolves from the averaging procedure) is given by:

2 2
_ Jo utdar _ Jo, uzdan o
V1= =) OO =9 : ( )
Ulal UQCLQ

As the velocity profiles are not resolved in the framework of 1-D model, plug flow
is usually assumed in both layers (u; o = @ 2), whereby 12 = 1. The velocity
profiles, which are obtained by the exact solution, can be used to calculate the
shape factors and to test the validity of this assumption. The results of the
heavy phase shape factor corresponding to the conditions of Fig. 4 are shown in
Fig. 7. Obviously, the shape factor can attain very large values. The large values
correspond to conditions of backflow, where part of the fluid is flowing opposite
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Figure 6. Variation of the MTF F-interaction factors with the light phase flow rate in the case
of co-current up-flow and the LPF solution for the velocity profile at the pipe center
line for 1/X? = 50.

to the flow direction. Note that the two non-zero holdups that are obtained at
@1 = 0 (upper and middle solutions for the holdup in Fig. 4a) correspond to a
complete circulation of the heavy phase in the pipe, whereby U = U; = 0 and
M 00,
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Figure 7. Effect of the flow rates on the heavier phase shape factor in an inclined tube.

The validity of the MTF closure relations for modelling turbulent stratified
flows in the smooth and wavy regime was shown in Ullmann and Brauner [12].
To demonstrate the performance of MTF model in the large wave regime (section
3.2), the predicted pressure drop and holdup are compared with Espedal [19] data
for inclined upward and downward flows (on the r.h.s of Fig. 8). This figure also
shows the implications of assuming a plane interface (rather than curved) in the
wavy regime on the MTF model predictions (Lh.s of Fig. 8). In this case, the
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wave augmentation factors of Eqgs. (22) were used instead of Egs.(20). Although
the corresponding wave augmentation factors are reasonably represented also by
the correlations suggested by Eqs.(22) (see Fig. 3b), a consistent deviation of
the resulting prediction of the pressure drop and holdup is indicated (Lh.s of
Fig. 8). The predictions with a curved interface are much better. Accounting
for the wave effect on the interfacial curvature, and the consequential liquid wall

wetting, appears to be essential for establishing general closure relations for two-
fluid models in the stratified wavy regime.
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Figure 8. Comparison of the MTF model predictions with Espedal [19] data for the holdup and

the pressure gradient in the stratified large wave regime (W2 — two-dimensional (2D)
waves, W3-3D waves).
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5 Conclusions

The exact solution for laminar pipe flow (LPF) in an inclined pipe has been
generalized to be applicable in cases of a curved interface. This solution is used
to study the effect of inclination and interface curvature on the characteristics
of countercurrent and co-current stratified flows. The pronounced effect of the
interfacial curvature on the wetted perimeter, and consequently on the pressure
drop and holdup, was demonstrated.

The exact solution has been used also to examine the validity of the predic-
tions of the holdup and pressure drop obtained by two-fluid (TF) models. It was
found that the common practice of using single-phase-flow-based closure relations
for the shear stresses in TF models is problematic in horizontal flows, and fails
in predicting the holdup and pressure drop in co-current and counter-current in-
clined flows. New theory-based closure relations for the wall and interfacial shear
stresses (MTF model), which account for the interaction between the phases, were
suggested. These are formulated in terms of the single-phase based expressions,
which are augmented by the two-phase interaction factors.

The MTF closure relations are applicable also to turbulent flows in either or
both of the phases. Combined with new empirical correlations, which represent
the wave effects on the interface curvature, the interfacial shear, and the liquid
wall shear, the MTF model is applicable also to the stratified wavy regime of
gas-liquid systems.

The predictions of the two-fluid model for the pressure gradient and holdup
are tested against extensive data bank and some analytical solutions for stratified
flows [11-12]. The favorable comparison suggests that the new closure relations
are essentially representing correctly the interaction between the phases over a
wide range of flow parameters space in the stratified smooth and stratified wavy
regimes.

Received 2 November 2005
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