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Plasma fuel reforming: a critical review

McIARS/Department of Engineering Physics, McMaster University,
Hamilton, Canada L8S 4M1

Abstract
‘n this work, a recent development of plasma fuel reforming was critically reviewed. The fun-
amental characteristics, the reforming efficiency and the energy efficiency of the nonthermal
olasma reforming of hydrocarbon gases and liquid fuels, and the thermal plasma reforming of
mid and solid fuels will be discussed in detail.

Keywords: Plasma reforming; Natural gas; Coal; Solid waste; Liquid fuel

1 Introduction

Hecent development of low pollution, emission and high thermal efficiency fuel
requirements generated a new application area called the plasma clean fuel re-
‘orming. In this work, the fundamental reforming characteristics and the energy
Hiciency of the reforming by the thermal and non-thermal plasmas for solid, lig-
d and gaseous fuels are critically reviewed. The focus of the fuels considered is:

e Gaseous Fuel: Natural Gas (Methane, Propane), Waste Gases, etc.
e Liquid Fuel: Gasoline, Diesel, Heavy Oil, Waste Oils, Bio-Oils etc.

e Solid Fuel: Coal, Plastic and Rubber Wastes, Tar Sand, Sludges, Methane
Hydride, Biomass, etc.

The plasma systems considered are:

A. Thermal Plasma: DC, RF and Microwave Plasma Torches; DC, AC single-
phase and three-phase arcs, etc.

“Corresponding author. E-mail: changj@Qunivmail.cis.mcmaster.ca
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B. Non-Thermal Plasma: Electron Beam, Flow Stabilized DC Coronas, Pulsed
Corona, AC Barrier Discharge-Packed Bed, Surface and Silent Discharges, etc

C. Plasma-Catalyst: Hybrid and Superimposed Systems.

2 Gaseous fuel reforming

For a co-generation system using a fuel cell, the hydrogen fuel is normally gener-
ated from hydrocarbon gases such as butane, propane, methane, or natural gas
since they are already used in towns as gases for home heating or coking. Using
proton exchange membrane (PEM) type fuel cells up to 80% efficiency can be
achieved if CO and soot free hydrogen dominant syngases can be produced. CO
is the main poison for PEM type fuel cells [1|. At the moment, shift conversion of
natural gas reformer has been used. However, this method requires high pressures
and high temperatures.

2.1 Conventional and plasma reforming of natural gas

Typical natural gas consists of approximately 94 to 95% CHy (methane), 2 to 3%
CoHg (ethane), 0.1 to 0.3% CsHg (propane), 1.5 to 2% Na, 0.5 to 0.6% CO9 with
traces of iso- and n-pentane (0.01 — 0.02% CsHi2), and CgHi4 and sulphur (S) (7
to 8 mg/m? in North America). Some European natural gas may contain a small
percentage of HoS. Its relative density is on average 0.582 that of air, and its heat-
ing value is 38 MJ/m? (or 1020 BTU/CF) [43]. Hence, any oxidation processes at
elevated temperatures generate thermal and fuel NO, as well as SOy and CO as
unwanted by-products. Thus, most processes start with the removal of all other
natural gas components, then convert methane using one of the following methods:

A. Steam reforming

Methane is reformed by steam as follows:

CHy; + H20O = CO + 3Hs : Methane steam reforming;
CO + 2Hs = CH30H : Catalytic methanol reaction;
CO + Ho0 = CO2 + Hy : Water-gas shift conversion.

Hence, a mixture of CO, CO2 and Hy can be generated at high gas tempera-
ture conditions without a catalyst or producing methanol mixtures with a catalyst
[2-4].

B. Partial oxidation process
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Methane can be reformed under high gas temperature conditions with or without
1 catalyst [5, 6], as follows:
CHy4 + 1509 = CO + 2H, : Partial oxidation process.
C. Thermal decomposition
Based on thermodynamic calculations, methane can thermally dissociate at ap-
proximately 2 to 6-10% K as follows:
CHy + CHy = C, CHy, CoHy, C3 + Hy : (Thermal decomposition).

Based on the Senkin code simulation, a gas temperature of approximately
10° K is the optimum condition for Hydrogen production [7, 8.

D. Arc plasma process

“re plasma, or thermal plasma, can generate extremely high gas temperatures
ip to 2:10% K), which normally cannot be generated by other combustion or
‘ectrical heating processes. Hence, an ac arc plasma reactor is commonly used
“or methane reforming with suitable quenching processes as follows [9-12]:

CHy + CHy — Cq + 4H,.

“owever, this process also generates:

CEYSCR N e e (1)
CH + CH3 + M — C2H4 T l\[ (2)
CHs + CH; + M — CyHg + M ({3)

ind trace C3Hg as by-products.

E. Non-thermal plasma process

Unlike arc or thermal plasmas, non-thermal plasmas generated by corona dis-
harges, microwave discharges or electron beams, i.e. below combustion tempera-
nure (22300 K), initiate the majority of processes by an energetic electron (mean
electron temperature T, = 1 to 10% eV) as follows [13-16]:

i

CHy + e(fast) — C + 2Hs + e(slow) : Electron impact dissociation
— CH - Hy < H = eplow)
— CHg + Ha + e(slow)
— CHs + H + e(slow)
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where the total reaction rate and branching fraction depend on the electron en-
ergy. Besides direct electron impact dissociations, electron impact dissociative
ionization will generate CH} (z = 0 to 5) and Hy to initiate ion-molecule reac-
tions to form CH, (y = 0 to 3) and Hy. Hence, a mixture of Hy, CoH; (2 = 2,4,6)
and CsH,, (m =3 —6,8) can be generated [1-30]. With a mixture of CH4~O> or
CH4~COs9, reforming gas with additional CO or CH30H can also be generated.
However, the energy efficiency of methane conversion obtained by non-thermal
plasmas (0.2 to 4 mmol/J) are still not ideal, and are in the same order of mag-
nitude as the ac arc (2 to 5 mmol/J) or high temperature oxidation processes
[1-30]. A non-thermal plasma process, based on a flow stabilized corona discharge
system, is used for propane reforming. Propane was used instead of natural gas,
since propane contains more hydrogen per molecule compared with methane, and
is still in gas phase near atmospheric pressure. Moreover, hydrogen production
from hydrocarbon, by non-thermal plasmas, increases with increasing C, [31].
However, due to the high C,, soot formation must be considered [32].

2.2 Plasma reforming of propane

Typical plasma reformed gas composition as a function of primary side power
(charging voltage) is shown in Figs. 1 and 2. Figures 1 and 2 show that signif-
icant amounts of hydrocarbons and hydrogen were formed during the processes.
Propane (C3Hg) was decomposed to form various hydrocarbons with the rela-
tionship (ethylene > hydrogen > ethane > methane > propylene, where this
relationship may change depending on operating conditions for different plasma
reactors). All hydrocarbons and hydrogen increase with increasing applied power.
Up to 6 to 7% of hydrocarbons and 3 to 4% of hydrogen were produced from the
10% propane mixed in nitrogen. The same figure shows that we obtain nearly
50% hydrogen selectivity; when defining hydrogen production selectivity from
total hydrocarbon generated as:

Hydrogen Production [Total Concentration Produced|

Selectivity % [Total Hydrocarbon C,H, by-product concentration (z = 0 to 3)] '

Nitrogen is used as a less reacting balance gas, where the optimum concentration
of O with Ny balance can be obtained from air by pressure swing absorption
(PSA). Argon or Helium can also be used. The advantage of using these balance
gases is that they do not easily produce undesired compounds.

Energy efficiency of hydrogen production is shown in Fig. 3 as a function
of specific energy density (SED: electric power input to reactor/gas flow rate),
where the electrical power input from the secondary side pulse (0.1 to 0.3 W)
was used in the present calculation. Energy efficiency increases with increasing



Plasma fuel reforming: a critical review 21

SE05HT

‘.

-
w s .....
§ =
P e
£ : : &
¢ 5 25 2 %
PoswgeiW i

20°C, Q,~0.5L/min

“izure 1. Hydrogen and hydrocarbon by-products generated by plasma as a function of applied
voltage in N2-10% propane systems (at 20°C, Q4 = 0.5 L/min, f = 50 Hz ) [19].
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~zure 2. Hydrogen and hydrocarbon by-products generated by plasmas as a function of pulse
frequency in N2-10% propane systems (at 20°C, Qg4 = 0.5 L/min, V}, = 10 V) [19].

~ED as expected. Approximately 219 g of hydrogen can be produced by 1 kWh
¢ electricity, where this value is of an order of magnitude higher than the other
n-thermal and thermal plasma methods (0.1 to 10 g [Ha]/kWh) [1-30].

2.3 N,—C,H, plasma chemistry

The mechanism of Hy formation is not well known. For the natural gas reforming
processes, the thermal dissociation process is expected to occur at gas temper-
sture ranges from 800 to 1800°C. Chang et al [32] proposed to replace thermal
lissociation reactions of methane by electron impact initiated plasma reactions to
vroduce this process under low gas temperature conditions (T, <100°C) and Hs
“ormation was confirmed.
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Figure 3. Energy efficiency of hydrogen production as a function of specific energy density (SED)
(at 20°C, Q4 = 0.5 L/min, f = 50 Hz) [19].

Based on available chemical reaction information [33-36], the plasma chemical
kinetic model for No-C,H,, system is proposed as follows and summarized in Figs.

4 and 5.
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Figure 4. Ionic chemistry for N2-C,H, plasmas.

Step 1. Formation of active species

Since Ny is the dominant composition (>90) in No-C,H, systems , the plasma is
generated only by electron impact processes with No and form N, NI, N* Ny*

species as follows:

e(fast) + Ny — NT, Nyo+, N(S), N(P), N(D), No(A), etc. + 2e or e (slow)

(5)

where N and N7 also react with Ny by three body reactions to form N; and N
in a high gas pressure plasma and excited or metastable N* and NT can be also
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Figure 5. Neutral chemistry for No-C,H, plasmas.

‘ormed by a two-step electron ionization process.

Step II. Formation of heavier positive ions and electronegative gases

“lectron and ions N will react with hydrocarbon to produce positive ions CJ,:H;r ;
HyNj, NH; as well as to form electronegative neutral species, H,, NH,,

H, N, where reaction rates larger than 107! cm?/sec for two body reactions
nd 10-30 ¢m® /sec for three body reactions are considered in the present model.
/ Yy p

step III. Formation of negative ions and initiation of recombination

processes

“lectron attachment processes also started to take place when electronegative
cases were produced from step Il and various negative ions will be formed from
gative jon-molecule reactions. NH, Hy, C,H,, C,H,N7 will be formed and
wese positive and negative charged species recombine to form larger molecules as

llows:
X+ + Y~ — Z (larger molecules), (6)

Xt + Y~ +M — Z +M (unreact 3rd body) (7)
‘here electron-ion volume recombinations normally form smaller molecules or

roms as follows:
e+YZ"  —Y + 7Z, (8)

e+ YZ"+M—->Y +7Z+ M. (9)

All of these processes are summarized in Fig. 4 where the two and three body
reaction rates larger than 107 em?®/s and 10730 em® /s, respectively, were only
snsidered in this model.
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Step IV. Formation of heavier molecules

Based on nitrogen radical reactions, the heavier molecules can be generated.
Again, NH,, C.H,, C;H,N,, H, will be formed, where the reaction rates larger
than 107! cm3 /s were only considered and 107'2 cm—2 /s were marked in Fig. 5.

Step V. Formation of stable molecules and aerosols

Atom-molecule and molecule-molecule reactions will take place and stable mole-
cules will be generated. However, due to the ion-induced aerosol particles for-
mations as well as molecule clustering reactions, some aerosol particles may be
generated from the hydrocarbons. Based on these processes, it is clearly the
plasma density that plays a major role in the generation hydrogen or formation
of hydrocarbons.

3 Liquid fuel reforming

The objectives of the liquid fuel reforming are:

e cracking of liquid fuel to less viscous lower C,H, fuel, where the cracked
liquid fuel is also expected to be a less polluting fuel, i.e. generating less
soot formations [37-39];

e removal of pollutant elements from fuels such as S, N, Cl, etc.; and
e generation of gaseous fuels.
In order to maximize mass and heat transfers, the gas-liquid two-phase flow is

used to maximize gas-liquid interfacial area and velocity as well as mixing. The
most common types of reactors are [39]:

1. falling film type reactor;

[N]

bubbly flow column reactor; and

3. liquid atomization countercurrent flow reactor.

However, unlike ordinary gas-liquid flow, electrohydrodynamic phenomena will
dominate flow on account of the existence of space changes and strong electric
field [40, 41].

4 Solid fuel reforming

The objectives of solid fuel reforming are:

e conversion to high thermal value gaseous fuel normal from the mixture of
solid fuel and steam:;
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e removal of metals and inorganics as fly and bottom ashes; and

e recycling of solid waste as gaseous or liquid fuels and construction materials
— unreachable slugs.

Since solid phase must be converted to liquid or gas, only thermal plasma
system can be used under reduction environments [40-42]. Typical thermal plasma
pyrolysis products from waste automobile tires are shown in Tab. 1 [42]. Table 1
shows that a relatively high heating value fuel gas can be obtained from the
‘hermal plasma pyrolysis of waste tires.

Table 1. Gas concentration and heating value from waste automobile tire [32]

Ii\"[olecule

Concentration | Detection methodw

H> 5-20% GC

CcO 4-9% GC, FTIR
CoH, 2-9% FTIR

CH4 0.6-3% GC, FTIR
CoHy 0.5-1% FTIR
COq 0.5-7% FTIR
H,0 FTIR

N» 1-12% GC

SO, 80-300 ppm Detector
NO, 1 00-300 ppm | Detector
O3 GC

Ar GC
Combustible gas | 15-35%

Combustion heat | 4-7 MJ/m®

5 Concluding reforming

“he main objectives of the plasma reforming are the cracking of hydrocarbon to

w CzHy or even to hydrogen level, and the thermal plasma technique demon-
sirated the feasibility of solid and liquid fuel reforming while the non-thermal
plasma technique achieved energy efficient reforming of gaseous and liquid fuels.
However, the energy efficiency of the plasma reforming depends significantly on
the plasma system used. An optimization of the advance reactors and power sup-
lies are required based on higher hydrogen yield or higher heating syngas yield
vith less toxic by-product formation.
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