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Abstract
In this work there are presented flow calculation models through the longitudinal eccentric
throttle clearance ring. There are shown some calculations for laminar and turbulent flow.
Turbulent flow is described as self-similar and with application of model k − ε , the description
is illustrated with calculative example. The measurement results of pressure fields measured
in the longitudinal eccentric clearance are presented. The calculation results obtained with
different methods are compared with one another.
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Nomenclature

Uj(j, i = 1, 2, 3) – components of the flow rate vector in a rectangular coordinate
system (in T-F), m/s

b, bm, ∆b – width of the clearance, mean value of this width, increase in
width of the clearance, m

e – eccentricity, m
l – axial length, m
Fx, Fy , F – force (radial force), N
∆p1−2, ∆pwl, ∆psz, ∆pwyl – total, inlet, continuous, outlet pressure drop in the axial clear-

ance, Pa
p1, p2 – pressure between inlet, outlet in the clearance, Pa
R, r, Rt, Rw – radius, radius of sleeve, radius of shaft, m
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Re, ReP , ReC – Reynolds number, ReP in Poiseuille’s flow, ReC in Couette’s flow,
r, φ, z – coordinates of the cylindrical coordinate system, m, rad, m
t – temperature, ◦C
q – flow rate through the clearance, m3/s
u = ωr – circumferential speed of the wall, m/s
vr, vφ, vz – components of the vector of the flow rate in a cylindrical coordinate

system, m/s
x, y, z – coordinates of a Cartesian coordinate system, m

Greek symbols

ω – angular velocity of the rotating ring, s−1

�ω – angular velocity of the rotating system (in T-F), s−1

ϕ – circumferential coordinate, rad
λ – coefficient of the continuity resistance
ρ – density of the liquid, kg/m3

ζwl – coefficient part of the inlet losses
ζwyl – coefficient part of the outlet increase,
ε = e

b
– relative eccentricity

ε – value of the energy of dissipation (in T-F), m2/s2

δ – angle of inclination axle
ϕF – angle of radial force
µ – dynamic viscosity, kg/ms
µT – dynamic turbulent viscosity (in T-F), kg/m s
ν = µρ – kinematic viscosity, m2/s

1 Introduction

The longitudinal clearance is a crucial element of flow systems in hydraulic ma-
chines. In the figure 1, there are shown longitudinal clearances of the centrifugal
pumps, which choke the flow by means of: a) impeller neck of single-stage pump,
b) stage wheel, c) balance disk set for axial force of multi-stage pump. The sealing

Figure 1. Longitudinal clearances of centrifugal pumps: a) impeller neck, b) stage wheel, c)
balance disk set for axial force.
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clearance task is to reduce the flow q between spaces with different pressures [19].
The calculations are conducted for laminar and self-similar flow in the computer
program written in Fortran language, whereas for three-dimensional turbulent
flow in the TascFlow program. The obtained results are subject to further calcu-
lative and graphic treatment in the commonly used editor programs.

Time needed for preparation of conduced calculations depends on the level
of mastering and knowing the programs. The presented selected measurement
results for pressure fields and flow parameters through the longitudinal clearance
come from the work [15], where they are described in a greater amount of detail.

2 Theoretical rudiments for modelling the flow through
clearances

The geometry of real longitudinal clearances has some characteristic shape errors
(Fig. 2):

• eccentricity e,

• non-parallelism of the walls determined with the angle ϑ,

• confusority or diffuseness,

and as a result variable speed, which differs from the rated one (average one) by
∆b.

Figure 2. Eccentric longitudinal clearance.
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After some time of usage, the erosion can lead to further shape change of the
clearances. The width of the clearance b affects the flow stream substantially and
as a result the efficiency of hydraulic machine. Widening of the width b, e.g. due
to the erosion causes the volumetric efficiency of the machine lower and provides
the economic reason for its repair [19].

Figure 3. Pressure course in the eccentric clearance for (1) ϕ = π is b = bm −e and for (2) ϕ = 0
is b = bm + e.

The eccentricity e is caused by the shaft deflection and the performance in-
accuracy of machine components compounding the dimensional chain, which de-
termines the machine. Pressure field asymmetry in the clearance (Fig. 3), caused
by the eccentricity and the resultant radial force arising from it, affects the ma-
chine dynamic properties significantly, and particularly the shaft deflection and
critical rotational speed of the impeller unit [11-13, 5]. Moreover, the eccentricity
influences also the leakage q. The angle of wall non-parallelism ϑ affects both the
pressure field in the clearance and the flow stream. The present article deals with
the eccentric clearance (Fig. 2).

It is practically assumed, that the entire kinetic energy behind the clearance
is the subject to dispersion and then the complete pressure drop in the clearance
is the sum of [7, 3, 9, 18]:

∆p = ∆pwl(ϕ) + ∆p1−2(ϕ) − ∆pwyl (ϕ) . (1)

2.1 Part of inlet pressure drop

Flow at the inlet causing local pressure loss has turbulent character, regardless
of the flow character in the clearance alone. At the inlet to the clearance, the
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pressure drop is:

∆pwl(ϕ) = ρ (ζwl)
w2

2
, (2a)

∆p=
1−2λ

L

2b (ϕ)
w2

2
ρ, (2b)

∆pwyl(ϕ) = ρ (1 + ζwyl)
w2

2
. (2c)

Regardless of the flow character in the clearance, the part of inlet drop in the
whole pressure drop can be determined as:

ψ (ϕ) =
∆pwl

∆p
=

ζwl
λL

2b(ϕ) + ζwl

. (3)

At the parallel axes and the eccentricity, the clearance width with the satisfying
accuracy is determined by the formula [17, 3, 4]: b ∼= bm + e cosϕ, in which:
bm = Rt −Rw.

2.2 Laminar flow through the axial clearance

Designation of the pressure distribution in the axial clearance comes down to
solve the Reynolds equation applied in the lubrication theory. The fluid flow in
the clearance is forced by rotating shaft and axial pressure gradient. We assume
the established axially-symmetrical flow of Newtonian fluid. Except the lower
range of values, the system of motion equations (simplified one) can be accepted
as [4, 10, 17] :

∂2u

∂y2
= 0,

∂2v

∂y2
= 0,

∂p

∂z
= µ

∂2w

∂y2
. (4)

Equation of continuity:
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (5)

Boundary conditions for the coordinate system as in the Fig. 2:

y = b : u = v = c = 0,

y = 0 : u = u0; v = 0; c = 0,

z = 0 : p = p1,

z = L : p = 0

moreover:
u0 = ωr.
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In the solution, one makes allowance for the influence of the pressure loss at the
inlet to the clearance [3]:

pl1,2 =
p1

b′ − c′ cosϕ
,

b′ = 1 +
2bm (ζwl)

λL
, (6)

c′ =
2e (ζwl)
λL

. (7)

From the equation of motion and equation of continuity, after substitution and
transformation, we receive:

∂2p

∂z2
=

12µ
b3

u0

2
db

dx
. (8)

While integrating the above equation, taking into account the boundary condi-
tions, we obtain the formula for pressure distribution in the axial clearance:

p (ϕ, z) =
6µ sinϕ

(bm + ecosϕ)3
ωe

2
(
Lz − z2

)
+

p1

b′ − c′ cosϕ

(
1 − z

L

)
. (9)

2.3 Pressure drop in the clearance with turbulent flow, self-
similar flow

Linear pressure drop along the clearance is determined by the Darcy-Weisbach
formula (2b). It results from the assumption, that the resistance coefficient does
not depend on the Reynolds number (self-similar flow called also auto-modelling).

While assuming the boundary conditions:

a) p1 = p (z = 0) = [1 − ψ (ϕ)] ∆p – at the beginning of the clearance (behind
the inlet),

b) p2 = p (z = L) = 0 – overpressure value at the outlet of the clearance.

The pressure value at any point of the clearance is determined by the formula,
[16]:

p (z, ϕ) = (1 − ψ (ϕ)) ∆p
(
L− z

L

)
. (10)

In the above mentioned description, the influence of the peripheral speed inside
the clearance wall is omitted.
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2.4 Three-dimensional turbulent flow

For designation of flow structure, the commercial program CFX-TascFlow from
AEA Technology Engineering Software company is used [1, 2].

The basic equations in the agreed system of Cartesian coordinates have the
following form:

Equation of continuity:
∂

xj
(ρUj) = 0 (11)

where Uj represents Cartesian components of three-dimensional speed vector (j =
1, 2, 3);

• equation of momentum conservation:

∂

∂t
(ρU i) +

∂

∂xj
(ρU iU j) = − ∂p

∂xi
− ∂

∂xj

{
µeff

(
∂Ui

∂xj
+
∂Uj

∂xi

)}
+ fi (12)

where the term fi = −ρ
(

2ω ×
−→
U + ω × (ω ×−→

r )
)

represents the Coriolis force

Figure 4. Placing the elementary control volume on the calculation mesh for integrating the
basic equations.

and centrifugal force, in the system rotating with the angular speed Ω, where
µeff = µ+ µT and µ means the viscosity and µT turbulent viscosity determined
from the selected model of turbulence.

The authors point out that the flow calculations in this type of clearances with
the first-order digitisation gave the results significantly divergent from the results
obtained in the experiments as well as while calculating with other methods. It is
caused by appearing of the so called numerical viscosity in the first-order schemes
[2, 8, 14].

The term value of Reynolds stresses apart from simple cases is unknown.
The value of these stresses is related to averaging distribution of speed fields,
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the relationship between the speed field and the stresses are closing equations.
They are called the models of turbulence. In the calculations accomplished for
this work, for determination of turbulent viscosity µT there are used the k-ε and
two-layer model k-ε models of turbulence. Turbulent viscosity is proportional to
the product of turbulent speed scale υt and Prandtl mixing path lt, which was
proposed by Prandtl and Kołmogorow.

µT = ρ · cµ · υt · lt . (13)

In the model k − ε the value υt is determined as the root from kinetic energy
of turbulence υt =

√
k. Whereas, the mixing path lt lt is connected with the

equation, ε = k
3
2

lt
where ε is an energy dissipation factor. After substitution, we

obtain the relation on the dynamic turbulent viscosity µT = ρ · cµ k2

ε , whereas k
and ε are determined from the following differential equations:

– equation for k ∂(ρk)
∂t + ∂(ρUjk)

∂x = Pk − ρε+ ∂
∂xj

(
µT
σk

∂k
∂xj

)
, (14)

– equation for ε ∂(ρε)
∂t + ∂(ρUjε)

∂x = ε
k (Cε1Pk − Cε2ρε) + ∂

∂xj

(
µT
σε

∂ε
∂xj

)
(15)

where Pk = µT

(
∂Ui
∂xj

+ ∂Uj

∂xi

)
∂Ui
∂xj

is the turbulence energy production (16)

The constant models are as follows:

Cµ = 0.09 Cε1 = 1.44 Cε2 = 1.92 σk = 1.0 σε = 1.3

The above described, frequently used model of turbulence, in case of calculations
for fluid-flow machine, requires using so called Wall Principle, in which the log-
arithmic speed distribution between the first node of calculation mesh lying in
the flow area on the canal wall is assumed. In the flow model in the clearance
under our examination, the value of Reynolds number can be within the range
of laminar and intermediate flow. In this area, logarithmic speed distribution is
not applied. Thereby, the two-layer model k − ε is used, in which the flow area
is separated into nodes where and nodes where µT

µ < 36. This separating crite-
rion was proposed by Rodi [9]. In the external layer, the turbulent viscosity is
determined from a two-equation standard k − ε model [6]. In nodes, in which
µT
µ < 36 the viscosity is determined by means of single-equation model. The

value of dissipation energy ε is determined from the equation: ε = k3/2

�tfε
. The

turbulent viscosity is µT = ρ · Cµ

√
k�tfµ , where the mixing path: �t = κ·y

C
3/4
µ

,



Flow through an eccentric longitudinal clearance ring 75

κ = 0.4 – von Karman constant, y – node distance from the wall and in-flow

functions:fε = 1 − exp
(
− y+

3.8·C1/4
µ

)
, fµ = 1 − exp

(
− y+

63·C1/4
µ

)
in which y+ is

dimensionless node distance from the wall. The crucial issue is to control the
values y+ during calculations.

In case of calculations with the standard k-ε model the value y+ should be
included within the range 20-100, whereas for the two-layer model y+<2. In case
of non-fulfillment of these conditions, the calculation mesh should be modified
relatively.

In the calculations, the following boundary conditions are laid down:

1. value of total pressure in the greater pressure chamber,

2. value of static pressure in the smaller pressure chamber,

3. speed zeroing on the canal immovable walls,

4. values of peripheral speeds on the canal moveable walls,

5. turbulence intensity (at the level of 5%) and mixing path for the turbulence
model k − ε in the greater pressure chamber.

3 The force from pressure in the clearance and direc-
tion of its action

The components of the resultant radial force in the longitudinal eccentric clear-
ance, acting on the shaft at the fluid flow can be calculated from the relation [12]:

Fy =

2π∫
0

L∫
0

p (ϕ, z) sinϕrdϕdz, (17)

Fx =

2π∫
0

L∫
0

p (ϕ, z) cosϕrdϕdz. (18)

The resultant force is:
F =

√
F 2

x + F 2
y . (19)

Angle of the resultant force action:

ϕF = arctan
Fx

Fy
. (20)

In the literature, the radial force formed from the pressure drop in the longitu-
dinal eccentric clearance with immovable walls is called the Lomakin force. The
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radial force formed in the longitudinal clearance with rotary walls however with-
out the pressure drop between the inlet and outlet from the clearance is called
the Bernoulli force. This force is characteristic for slide bearings.

4 Calculation example

Below there are compared the calculation results of pressure distribution in the
clearance as well as of the radial force (Lomakin force) at the description as for:
laminar flow, self-similar flow and model k-ε. The calculations are conducted at
the set geometry of the clearance taking into account the pressure values at the
inlet and outlet. The radii difference for one point in the clearance, resulting from
the shift of impeller neck axle midpoints Ow and body bush Ot, is ignorably small.
The fluid flowing through the clearance is water with temperature t = 15◦C. In
case of calculations done in TascFlow program and for the laminar flow, the
rotational speed of rotary shaft amounted to n = 0 and n = 2500 rpm.
The clearance dimensions:

• clearance length l = 111 mm,

• shaft diameter dwew = 77.78 mm ± 0.001 mm,

• bush diameter dzew = 80.11 mm ± 0.01mm,

• relative eccentricity ε = 0.85.

Water flow parameter:

• inlet pressure pwl = 0.6 MPa,

• outlet pressure pwy = 0.1 MPa.

Reynolds criteria numbers [10]:

• in Poiseuille flow ReP = 2bmc
ν ≈ 39000, (21)

• in Couette flow ReC = ωrbm
ν ≈ 0 oraz 6136. (22)

5 Calculation results

The obtained pressure course is shown in the form of courses for the variable
peripheral angles and clearance length in the whole range of data.

Calculations of pressure distribution (Figs. 5 and 6) done for laminar flow
consider the inlet loss. In the self-similar flow, ζwl = 0.5 is accepted and the outlet
loss (i.e. ζwyl ≈ 0) is omitted. The omission of shaft rotation in the self-similar
turbulent flow causes that the pressure courses (Fig. 7) are symmetrical towards
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the forming one for the smallest and the greatest eccentric. The calculations
conducted in TaskFlow program give the pressure distributions shown in Figs. 8
and 9. The net coordinates of the presented points are compliant with the net of
points of measured pressure field (Figs. 10 and 11). The pressure measurement
in the longitudinal ring clearance is conducted at 72 points with the holes with
diameter 0.4 mm [15].

Figure 5. Calculated for the laminar flow of pressure field in the clearance at n = 0 rpm.

On the basis of obtained pressure fields, the values of Lomakin force are cal-
culated (Fig. 12). Differences of the force values in the clearance, obtained from
the numerical calculations and from calculated and measured pressure fields are
significant. The decisive influence on the discrepancy of Lomakin force values
has the different character of the pressure distribution along the clearance which
appears behind the inlet section. In case of self-similar flow (Fig. 13), the scatter
behind the inlet is decreased proportionally up to the outlet. For the measured
pressure field (Fig. 14), the scatter of pressure values behind the inlet section
undergoes a fast decrease.

The course of calculated pressure field is affected by the agreed values of
the inlet loss factors and of linear loss factor. In the Figs. 15 and 16 the fac-
tor values, obtained from the measurement, are shown: of inlet loss and linear
loss in the clearance with the variable relative eccentricity at the pressure drops
∆p = 0 ÷ 0.5 MPa. The received values of the inlet loss factor for the axially-
symmetrical clearance are smaller than usually agreed ζwl = 0.5, which is con-
firmed in literature [17, 7]. The pressure increase at the outlet from the clearance
is negligibly small.
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Figure 6. Calculated pressure field for laminar flow in the clearance at n = 2500 rpm.

Figure 7. Calculated pressure field in the self-similar flow in the clearance at n = 0 rpm.
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Figure 8. Calculated pressure field in the clearance in TascFlow program at n = 0 rpm.

Figure 9. Calculated pressure field in the clearance in TascFlow program at n = 2500 rpm.
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Figure 10. Measured pressure field in the clearance at n = 0 rpm.

Figure 11. Measured pressure field in the clearance at n = 2500 rpm.
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Figure 12. Comparison of Lomakin force values calculated on the basis of the measurement,
calculated for the self-similar flow and with numerical method.

Figure 13. Calculated pressure distribution for the self-similar flow along the clearance.

Figure 14. Measured pressure distribution along the clearance for n = 0 rpm.



82 A. Papierski and G. Peczkis

Figure 15. Linear loss factor in the eccentric function, n = 0 rpm.

Figure 16. Inlet loss factor in the eccentric function n = 0 rpm.

6 Conclusions

The k− ε model requires assuming of the value of k, which affects the calculation
result significantly. The stream determination for the self-similar flow allows to
verify the assumptions for the calculations with the model k − ε. The ‘simpli-
fied’ numerical calculations conducted for laminar and self-similar flow require
assuming the values of inlet and continuous loss factors in the clearance. These
values are well tested and shown in the literature for the longitudinal axially-
symmetrical clearance, and more poorly and ambiguously for the longitudinal
eccentric clearance.

The k − ε model calculated Lomakin force in the longitudinal clearance is
smaller than calculated for the turbulent and laminar flows than it resulted from
the measurement. The increase of consistency of the results can be achieved by
changing the factors of inlet loss 1 + ζwl and linear loss λ along the clearance
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perimeter. The exact value determination of Lomakin force in the longitudinal
eccentric clearance requires further empirical testing.
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