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Abstract

The article presents a mathematical description of compression process in a pump and an original
concept to increase efficiency in this process.
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1 Introduction

A typical rotor machine for pressure increasing process for incompressible fluid
is rotordynamic pump. Designing the system of vane pump is more often sup-
ported by higher order numerical methods 2D-model or 3D-model. Those models
give many detailed informations about field of flow parameters by stage what
allows improving the system of flow thereby eliminate (for example) separation
or minimalization of dissipation loss. It has influence on increasing efficiency in
compression process of incompressible fluid in nowadays designed pump. How-
ever, from the obtaining of dissipation loss isn’t the only factor which decisived
in efficiency in pressure rise process of incompressible fluid. As we can see in
analysis below efficiency in pressure increase of incompressible fluid is also de-
pendent to kinematic flow parameters like angles of flow deviations in channels.
Achieving maximum efficiency in pressure rise process of incompressible fluid in
pump is determined by appropriate correlation between dissipation loss and flow
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kinematics. It turns out that different dissipation loss levels are corresponds to
different kinematics implementing maximum efficiency in compression process.

Presented analysis is based on well known 1D-model of flow by stage of cen-
trifugar pump [3]. Novelty of proposed optimalization comparing to available
literature sources consists analysis method for expression for efficiency of com-
pressing process. The results of this analysis can constitute a fundamental ac-
curacy assessment of matching rotor channels with reversing channels in pumps
providing maximum efficiency in compression process for given dissipation loss
levels. It can be a tool, which let us evaluate experimental research data of pump
stage in respect of getting maximum accumulation efficiency for provided profiles
of rotor and reversing channel of pump.

2 Basic relation

To find a relation between efficiency in pressure rising process and characteristics
of pump blade system it is necessary to take into account the basic laws of physics
which are used according to flow-model [2, 3]. Down below this model is 1D-model
understood like a scheme on Fig.1. The picture presents abstract trajectory of
fluid element in multistage pump. Fluid element starting from the position ‘1’ and
after a while it is in the position ‘2’. Observer related with this element placed in
‘L’ – intermediate position is noticing the changes of parameters in time. In this
meaning we are discrubing the changes of parameters in Lagrangian coordinates.

Figure 1. Typical trajectory of fluid element in blade system of multistage pump.

In chosen sectional view along trajectory of fluid element we will use this form
of mass conservation equation:

m = ρS1 c1n = ρS2 c2n = const , (1)

where: m – mass rate of flow, kg/s, ρ – density, kg/s, S1, S2 – channel face area,
m2, c1n, c2n – normal velocity to channel face area, m/s.
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After eliminate ρ from Eq. (1), another form of this equation for incompressible
fluid is

V = S1c1n = S2c2n = const . (2)

Energy resource carried by fluid element consists of four types and is expressed
by the sum of four energy types:

E =
c2

2
+ Π +

p

ρ
+ e , (3)

where

• kinetic energy c2

2 of fluid element movement in (X,Y,Z)-system,

• potential energy Π = ±gz − u2

2 which is sum of potential energy of gravita-

tional field (gz) and potential energy of centrifugal force (−u2

2 ),

• pressure energy p
ρ , where ρ is density,

• internal energy e = cp T determined by level of temperature, where cp is
specific heat.

Sum of those four types of energy could stay constant in stationary blade to
coordinate system or change in moving blade. Transition of fluid element from
stationary blade to moving blade and in opposite side is associated with changes
the sum of four energy types.

Process of changing parameters runs according to Gibbs relation in form

T
ds

dt
=

de

dt
+ p

d

dt

(

1

ρ

)

, (4)

where: d
dt – time differential symbol by observer ‘L’, T – temperature, s – entropy,

e – internal energy, p – pressure. Without any discussions about a limits of
applicability this equation we can assume that for this technical case – pressure
rising process of fluid – applicability this equation is justified.

Changes in time of total fluid energy seen by observer moving together with
element is determined by two factors according to relations [3]:

dE

dt
=

1

ρ

∂p

∂t
+O(µ) . (5)

The first factor is nonstationary pressures field along trajectory of fluid element.
The second factor is friction on the blade channel walls which is dependent to
viscosity coefficient µ.

Lets enter definition facilitated discribing pressure rising process – enthalpy
definition

h
def
= e+

p

ρ
, (6)
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allows us to record Gibbs relation in form

T
ds

dt
=

dh

dt
−

1

ρ

dp

dt
, (7)

which after including entropy gain expression as result of positive entropy sources

ρ
ds

dt
= s+µ , (8)

leads to relation
dp

dt
= ρ

dh

dt
− Ts+µ . (9)

If ρ = const relation (9) allows integration along trajectory of fluid element and
after leads to expression

p2 − p1 = ρ (h2 − h1)−

∫ 2

1
T s+µ dt . (10)

This relation is a fundamental for definition of efficiency in pressure rising process.
If ρ = const we could eliminate integral from Eq. (10) because

T
ds

dt
=

de

dt
ρ
ds

dt
= s+µ , (11)

hence
∫ 2

1
T s+µ = ρ(e2 − e1) > 0 . (12)

Relation (10) could be expressed

p2 − p1 = ρ(h2 − h1)− ρ(e2 − e1) | : ρ(h2 − h1) , (13)

which allows to insert the definition of efficiency of pressure rising process (after
dividing by ρ(h2 − h1))

η1,2
def
=

p2 − p1
ρ(h2 − h1)

= 1−
ρ(e2 − e1)

ρ(h2 − h1)
. (14)

We transform Eq. (14) by eliminating ρ from ρ(e2−e1)
ρ(h2−h1)

to get efficiency expression
in form

η1,2 = 1−
e2 − e1
h2 − h1

= 1−
e2 − e1

p2
ρ + e2 −

p1
ρ − e1

=
p2 − p1

p2 − p1 + ρ(e2 − e1)
. (15)

Right side of relation (15) suggested that internal energy gain from dissipation
process, defined by positive entropy sources s (12), leads to decrease this effi-
ciency. To adapt efficiently (15) expression to a special technique situation like a
pump it is necessary to enter to the relation (15) parameters which determinated
kinematics of flow through blade channel of pump.
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3 Presentation of compression process in a pump

One of the most difficulty to describe flow through blade channel of pump is to
express internal energy gain as result of dissipation process. For this analysis we
will defined loss coefficient as:

• for pump rotor defined by kinetic energy after rotor with velocity signed as
w2

ςR
def
=

∆e1,2
w2

2

2

, (16)

• for diffuser (reversing channel) after rotor similarly where velocity is signed
as c2

ςD
def
=

∆e2,3
c2
2

2

. (17)

In this way internal energy gains in effciency definition (15) are determinated by:
rotor

∆e1,2 = ςR
w2
2

2
, (18)

for diffuser

∆e2,3 = ςD
c22
2
. (19)

Second parameter describing diffuser (reversing channel) is coefficient of orbital
momentum reduction defined as

ϕ
def
=

orbitalmomentumoutlet

orbitalmomentuminlet
. (20)

Value of this coefficient can range within [0,1]. Total orbital momentum reductions
can be accepted only if it doesn’t cause to much dissipation.

Compression process in diffuser could be presented on ‘total energy - internal
energy gain’, E–∆e, diagram (Fig. 2).

From energy balance expression in form

E =
c21
2

+
p1
ρ

+ e1 =
c22
2

+
p2
ρ

+ e2 = const , (21)

we can get the expression

c21
2

+
p1
ρ

=
c22
2

+
p2
ρ

+ (e2 − e1) , (22)

when ∆e1,2 > 0, which. allows to present this process in E–∆e diagram (Fig. 2.)
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Figure 2. Presentation of compression process on a diagram E–∆e.

Let’s enter designation for velocity triangles (Fig. 3) while inlet to rotor pump
(index 1), while outlet from rotor and inlet to diffuser (reversing channel) (index
2), while outlet from diffuser (index 3):

Figure 3. Designation of velocity vectors.

• Inlet to rotor (Fig. 3a): c1 – velocity in absolute system (laboratory ‘E’),

w1 – velocity in convection system (rotor ‘L’),

u1 – convection velocity.

• Outlet from rotor (inlet to diffuser, reversing channel RC) – (Fig. 3b):

c2 – velocity in absolute system (laboratory ‘E’)
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w2 – velocity in convection system (rotor ‘L’),

u2 – convection velocity.

• Outlet from diffuser (Fig. 3c):

c3 – velocity in absolute system (laboratory ‘E’).

Pressure rising process in a pump in coordinate system E–∆e is presented in
Fig. 4.

Figure 4. Compression process in a rotor of pump (R) and reversing channel (RC).

We could distinguish the following energetic levels

E1 =
p1
ρ

+
c21
2

+ e1 , E2 =
p2
ρ

+
c22
2

+ e2 , E3 = E2 =
p3
ρ

+
c23
2

+ e3 , (23)

Ew =
p1
ρ

+ e1 +
w2
1

2
−

u21
2

=
p2
ρ

+ e2 +
w2
2

2
−

u22
2

. (24)

Simple calculation shows us a unitary work leaded to pressure rising

a =
w2
1

2
−

c21
2

︸ ︷︷ ︸

a1

+
u22
2
−

u21
2

+
c22
2
−

w2
2

2
︸ ︷︷ ︸

a2

, (25)

which can be taken into account the energy balance

E2 = E1 + a , (26)
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leading to the expression

p2
ρ

+
c22
2

+ e2 =
p1
ρ

+
c21
2

+ e1 +
w2
1

2
−

c21
2

+
u22
2
−

u21
2

+
c22
2
−

w2
2

2
, (27)

and the expression of differential pressure

p2
ρ
−

p1
ρ

=
w2
1

2
+

u22
2
−

u21
2
−

w2
2

2
− (e2 − e1) . (28)

Relations for velocity triangle

w2
1 = c21 + u21 , (29)

w2
2 = c22 + u22 − 2c2u2 cosα2,

allow to have an expression for differential pressure in form

p2 − p1
ρ

=
c21
2
−

c22
2

+ c2u2 cosα2 −
ςR
2

(

c22 + u22 − 2c2u2 cosα2

)

. (30)

Now we can present efficiency in pressure rising process as

ηR =

p2−p1
ρ

p2−p1
ρ + (e2 − e1)

=
c21 − c22 + 2c2u2 cosα2 − ςR(c

2
2 + u22 − 2c2u2 cosα2)

c21 − c22 + 2c2u2 cosα2
.

(31)
For reversing channel diffuser we have relation

p2
ρ

+
c22
2

+ e2 =
p3
ρ

+
c23
2

+ e3 , (32)

p3 − p2
ρ

=
c22
2
−

c23
2
− (e3 − e2)← e3 − e2 = ςD

c22
2
, (33)

p3 − p2
ρ

= (1− ςD)
c22
2
−

c23
2
. (34)

Using the relations (mass conservation equation and definition of arbital angular
momentum reduction) Eq. (20)

ρS2c2 sinα2 = ρS3c3 sinα3 , (35)

ϕr2c2 cosα2 = r3c3 cosα3 .
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We can eliminate c3 and α3 from Eq. (34) gaining

p3 − p2
ρ

= (1− ςD)
c22
2
− (ϕ2r2 cos

2 α2 + s2 sin
2 α2)

c22
2
, (36)

where there were included geometric (overall) parameters

s =
S2

S1
=

S2

S3
, r =

r2
r1

=
r2
r3

. (37)

Now it is possible to designate total efficiency of rotor and reversing channel

ηRD =

p3−p1
ρ

p3−p1
ρ +∆e1,3

=

p2−p1
ρ +

p3−p2
ρ

p2−p1
ρ +

p3−p2
ρ +∆e1,2 +∆e2,3

, (38)

through coefficient characterizing rotor or relation rotor-reversing channel

ηR = 1− ςR
1 + ν2 − 2ν cosα2

s2 sin
2 α2 + 2ν cosα2 − 1

, (39)

ηR,D = 1−
ςR(1 + ν2 − 2ν cosα2) + ςD
2ν cosα2 − ϕ2r2 cos2 α2

, (40)

where velocity coefficient is defined as

ν
def
=

u2
c2

. (41)

Equation (40) is fundamental to searching efficiency in compression process con-
ditions.

4 Formulating task for efficiency in compression

process

Searching geometrical parameters of pump providing maximal efficiency defined
by Eqs. (39) and (40) is possible in few variants. Let’s consider the first variant
I (Eq. (42)) where we have rotor loss coefficient, ςR, reversing channel loss coef-
ficient, ςD, and coefficient of orbital angular momentum reduction, ϕ. Then the
task needs only to find extremum of function of variables α2, and ν

ηRDmax
= ηRD(α2opt, νopt) . (42)

We could consider variant II (Eq. (43)) if we have rotor loss coefficient, ςW , re-
versing channel loss coefficient, ςd, and outlet angle from rotor β2. We can need
extremum of function of variables ν and ϕ

ηRDmax
= ηRD(νopt, ϕopt) . (43)
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Figure 5. Two efficiency surfaces according to (42) stretched over α2, ν.

The numerical example below wrote in Wolfram Mathematica software, illustrat-
ing variant 1 (Eq. (42)), has been presented in Appendix 1.

5 Results

For maximum efficiency presented in Fig. 5 there is included program allowing
designate kinematic of flow in velocity triangles form in maximal efficiency point
ηRD. The top surface concerns about rotor efficiency, lower surface concerns
about relation rotor-reversing channel. Visible points on surfaces are illustrating
maximal efficiency ηRD.

In Appendix 2 the numerical example of results of kinematic has been pre-
sented. In Fig. 6 the velocity triangles for maximum efficiency ηRD has been
estimated.

Figure 6. Velocity triangles for maximal efficiency ηRD.
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6 Conclusions

A significant request consequential from presented analysis is necessary to take
into account the dissipation level in rotor channel and reversing channel (the value
of loss coefficients)while designing pump kinematic to get the maximal efficiency
in compression process. It’s very often this fact is ignored [1]. The analysis also
presents the way of crossing from basic flow equation to relation form of technical
meaning.
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Appendix.1: The numerical example proceeding in Wol-

fram Mathematica software

(*PROGRAM OF MAXIMALIZATION OF EFFICIENCY IN COMPRESSION
PROCESS OF INCOMPRESSIBLE FLUID*)

(*DATA*)
n=2850;
m=14;
ρ=1000;
r1z=0.0353;
r1w=0.018
s=2.03342; (*s=s2/s1*)

(*Quality of channels*)

dzw=0.1;(*∆e12 = ςW
w2

2

2
*)

dzd=0.32313;(*∆e23 = ςD
c2

2

2
*)

ϕ=.21;(*K3 = ϕK2*)

(*THE DATA END*)
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Continuation 1st of Appendix.1: The numerical example proceeding in Wol-

fram Mathematica software
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Continuation 2nd of Appendix.1: The numerical example proceeding in Wol-

fram Mathematica software
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Continuation 3rd of Appendix.1: The numerical example proceeding in Wol-

fram Mathematica software
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Appendix.2: The numerical example of kinematic re-

sults
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Continuation 1nd of Appendix.2: The numerical example of kinematic results


