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Abstract

In this work an in-house pseudo-spectral direct numerical simulations solver

for particle-laden forced isotropic turbulence is developed. The code has been

validated against the results of a decaying three-dimensional Taylor-Green vortex

field at moderate Reynolds number. The solver can be relatively easily adapted

for large-eddy simulations using the concept of spectral eddy-viscosity. The solver

is coupled with the Lagrangian particle tracking of a dispersed phase essentially

approximated by point-particles whose particle-to-fluid density ratio is O(103).

High order Lagrange interpolation and combined implicit-explicit time-integration

scheme are used to solve the particle equation of motion.

Keywords: pseudo-spectral; DNS; isotropic turbulence; inertial particles

1 Introduction

Turbulent dispersed multiphase flows are inherent part of many environmental and
industrial processes. Among many others, this includes sand and dust storms, rain forma-
tion, sedimentation processes, cyclone separation, pharmaceutical sprays, fuel atomiza-
tion and spray combustion. Obviously, an in-depth understanding of suspended particle
dynamics in turbulent flows is of significant importance for further developments in the
foregoing areas. Due to inevitable particle-turbulence and particle-particle interactions,
possibly coupled with the heat-transfer, evaporation, or even chemical reactions, particle-
laden turbulent flows are usually associated with multi-scale (or even multi-physics) com-
plex phenomena yet to be fully understood, accurately predicted, and most importantly,
controlled in order to obtain a desired change in the flow behavior. Due to a wide range
of spatial and temporal scales, experimental investigations of dispersed turbulent multi-
phase flows often become problematic (or even unfeasible). On the other hand, it should
be noted that both the continuous improvement of numerical methods and the rapid
growth of computing capabilities provide a unique opportunity to study these complex
flows. For a comprehensive review of recent advancements in the numerical simulation of
particle-laden turbulent flows, the reader can refer to [1, 2].

Insofar as the physics underlying particle-laden flows is concerned, one should confine
to the simplest examples of turbulent flows, usually associated with simple geometries.
This includes for example the flow through a channel, past a sphere or a flat plate.
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Some assumptions can also be made regarding the dispersed phase. In the case of dilute
suspensions of small particles, when compared to the smallest length scales of a turbulent
flow, dispersed entities can usually be approximated by point-particles. The Lagrangian
tracking of such individual mass-points can be effectively coupled with the Eulerian direct
numerical simulations of the continuous carrier phase, essentially leading to the so-called
point-particle direct numerical simulations.

In this work, the author restricts his attention to homogeneous isotropic turbulence
which is considered as the most fundamental turbulent flow. In addition to that, isotropic
turbulence can be realized (to some extent) experimentally [3]. The reader is also briefly
acquainted with some key important elements of the pseudo-spectral solver developed
for the purpose of studying suspended particle dynamics in homogeneous and isotropic
turbulence.

2 The equations of fluid motion in Fourier space

In the case of an incompressible fluid, the continuity equation acquires the form of

∂Uα(x, t)

∂xα
= 0, (1)

where Uα(x, t) is the fluid velocity at position x and time t. The conservation of momen-
tum is governed by the Navier-Stokes equation in the form of

∂Uα
∂t

+ Uβ
∂Uα
∂xβ

= −1

ρ

∂P

∂xα
+ ν∇2Uα + Fα, (2)

where P is the pressure field, F is a body force, and ν is the kinematic viscosity of the
fluid. For the sake of simplicity, the explicit dependence on both the position and time
is dropped. According to the Reynolds decomposition [4], an arbitrary velocity field can
be decomposed into the ensemble mean and a fluctuation about that mean leading to

Uα = 〈Uα〉+ uα. (3)

The flow can only be isotropic in the absence of preferential directions. This essentially
implies the mean velocity is either zero or constant. In this work, the author confines his
attention to turbulent flows for which

〈Uα〉 = 0. (4)

In fact, the above condition is often referred to as the zero-mean-flow condition. With the
substitution of Eq. (3), and the use of Eq. (4), the equation governing the fluid motion,
Eq. (2), can be rewritten to obtain

∂uα
∂t

+ uβ
∂uα
∂xβ

= −1

ρ

∂p

∂xα
+ ν∇2uα + fα, (5)

which essentially describes the evolution of velocity fluctuations. In addition to Eq. (4),
the velocity field (or the computational box, strictly speaking) must also be infinite in
extent. In practice, the fluid is confined to a cubic box of side LB , with periodic boundary
conditions additionally imposed on its sides [5]. In this case, the velocity field can be
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expanded in a Fourier series according to

uα(x, t) =

(
2π

LB

)3∑
k

ûα(k, t)eik·x

=

(
2π

LB

)3∑
k

ûαe
ik·x, (6)

where (ˆ) is used to distinguish the Fourier-transformed variables from their physical space
counterparts; k = k0n = k0(n1e1 + n2e2 + n3e3) is the wavevector with k0 = 2πL−1

B

being the lowest non-zero wavenumber; ni are integers. In the case of LB → ∞, the
Fourier transform, Eq. (6), takes the following integral form

uα =

∫
d3k ûαe

ik·x, (7)

and

ûα = (2π)−3

∫
d3x uαe

−ik·x. (8)

In should noted that in the Fourier space the differential operator ∂/∂xα is reduced to
a simple complex multiplier ikα. Taking advantage of this property, the continuity equa-
tion in the Fourier space becomes

ikαûα = 0, (9)

whereas with some minor rearrangement, the Navier-Stokes equation, Eq. (5), takes the
form of

∂ûα
∂t

+ ikβF (uαuβ) = −ikα
p̂

ρ
− νk2ûα + f̂α, (10)

where F denotes the Fourier transform, and k2 = kαkα = |k|2. The pressure term on the
right-hand side can be eliminated with the use of Eq. (9), eventually leading to(

∂

∂t
+ νk2

)
ûα = −ikγPαβ(k)F (uβuγ) , (11)

where Pαβ(k) = δαβ − kαkβ/k2 is the projection tensor. Using the convolution theorem,
the non-linear term can be evaluated by summing the Fourier coefficients leading to

F(uβuγ) =

(
2π

LB

)3 ∑
p+q=k

ûβ(p)ûγ(q). (12)

However, this requires O(N2) operations where N is the number of nodes in each spatial
direction. Obviously, the computational cost associated with the evaluation of Eq. (12)
can become prohibitively large.

3 Pseudo-spectral approximation

Consider the velocity field uα(x) defined on points of the discrete N×N×N grid such
that xα = nLB/N for n = 0, 1, ..., N −1, and whose Fourier coefficients ûα(k) are defined
for any k essentially satisfying −N/2 + 1 ≤ kα ≤ N/2. The velocity field is confined to
a cubic box of side LB = 2π, where periodic boundary conditions are imposed so that

uα(x1 + 2πn1, x2 + 2πn2, x3 + 2πn3) = uα(x1, x2, x3, t), (13)
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−N/2 + 1 0 N/2

p q

p + qp + q − N
aliasing

Figure 1: Aliasing errors arising from the application of the discrete Fourier transform.

where n1, n2, n3 are integers. In this case, the velocity field (and the pressure field,
obviously) can be expanded in the Fourier series according to Eq. (6). For completeness,
the maximum resolved wavenumber in each spatial direction is kmax = k0N/2 = N/2.
Taking advantage of the convolution theorem, Eq. (12), Orszag [6] put forward the so-
called pseudo-spectral approximation in which the non-linear term is first evaluated in
the physical space, and then transformed back to the Fourier space. Using the Cooley
& Tukey algorithm [7], often referred to as the Fast Fourier Transform (FFT) algorithm,
the non-linear term can be evaluated in O(N logN) operations. However, this comes at
a price. The use of the discrete Fourier transform introduces the so-called aliasing errors,
see Fig. 1, which should be removed in order to obtain reliable and stable numerical
simulations. These errors are most often removed using the so-called “2/3” rule. In
this method, the discrete Fourier transform is evaluated using M rather N points, where
M ≥ 3/2N . To get a more detailed description of this approach, the reader can refer to [8].
Patterson & Orszag [9] indicated that if the Fourier coefficients are truncated according
to |k| ≤

√
2N/3, then the aliasing errors are significantly reduced. The very same authors

reported that the remaining part of the aliasing errors can be effectively removed if the
convolution sum, Eq. (12), is evaluated at two grids shifted by half a grid cell in each
direction, and subsequently averaged. In this work, the author removes the aliasing errors
using the combined approach proposed by Patterson & Orszag. This dealiasing scheme,
although being less efficient than the “2/3” rule, allows to retain more Fourier modes and
thus becomes a method of choice when memory is a concern.

Due to numerical stability [10], the Navier-Stokes equation, Eq. (5), is often expressed
in the rotation form which can be transformed to the Fourier space according to(

∂

∂t
+ νk2

)
ûα = PαβF(u× ω)β + f̂α, (14)

where ω is the vorticity field in the physical space, and f̂α is an artificial forcing used to
sustain turbulence.

In this work, the author uses a deterministic forcing similar to that introduced in [11]
and [12], i.e.,

f̂α(k) =

{
(εf/2Ef )uα(k) 0 < k < kf

0 otherwise,
(15)

where εf is the energy injection rate, Ef is the total kinetic energy contained in the forced
wavenumber band, and kf is the maximum forced wavenumber, usually not exceeding
2
√

2. The forcing has to be adjusted so that both the smallest, dissipative scales, and the
largest, energy containing scales are accurately resolved on a finite grid.
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4 Time integration of the Navier-Stokes equations

Stable and accurate integration of the equations governing the fluid motion requires
the spatial and temporal discretization errors to be kept at a relatively low level. Accord-
ing to the best of the author’s knowledge, the viscous term in the Navier-Stokes equation
is usually integrated implicitly using the integrating factor technique [13, 14], wheres
the explicit second-order (also third- and fourth-order) Runge-Kutta [15, 16] or second-
order Adams-Bashforth [17] methods are employed to advance the convective term in
time. Some authors also combined the implicit Crank-Nicolson and second-order Adams-
Bashforth methods for viscous and convective term, respectively [18].

Introducing a time step, such that tn = n∆t, the velocity field can be advanced in
time according to

ûn+1
α = ûnαe

−νk2∆t +
∆t

24

[
55Πne−νk

2∆t − 59Πn−1e−2νk2∆t+

37Πn−2e−3νk2∆t − 9Πn−3e−4νk2∆t
]
,

(16)

where
Πn = PαβN̂

n
β + f̂nα . (17)

It should be noted that the forcing term, f̂α, is in general designed to be solenoidal and
statistically isotropic, and thus can be safely added to the non-linear term before the
projection tensor is applied leading to

Πn = Pαβ(N̂n
β + f̂nβ ). (18)

In fact, this minor modification corrects the round-off errors resulting from the repeated
evaluation of the discrete Fourier transforms, thus allowing long-term time-integration of
the Navier-Stokes equation. The foregoing scheme, essentially composed of the integrating
factor technique and the fourth-order Adams-Bashforth methods, seems to constitute
a reasonable trade-off between accuracy and the computational cost of the simulation.

5 Preliminary results

In this section some results are compared against the reference data reported in [19]
for a three-dimensional, incompressible Taylor-Green vortex at Re = 1600. This vortex
field essentially develops from a single-mode initial condition defined according to

u1(x, t = 0) = sin(x1) cos(x2) cos(x3)

u2(x, t = 0) = −cos(x1) sin(x2) cos(x3)

u3(x, t = 0) = 0,

(19)

and was first considered by Taylor & Green [20] who studied the generation of small-scale
turbulence. It is readily apparent from Figs. 2 and 3 that the results are in good agreement
with the reference data. Some discrepancies are readily observed, however, these can
presumably be attributed to the insufficient spatial resolution. In should emphasized
that the results reported in this work were obtained on a 643 discrete grid, whereas the
reference simulations were carried on a much denser one, i.e. 5123. For completeness,
the author would to like to stress that with increasing spatial resolution, the foregoing
differences are significantly reduced (not shown).
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Figure 2: Time history of the normalized energy dissipation at Re = 1600. Reference data
obtained from [19].

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

t

[E
K

(t
)/
E

K
(0

)]

Dairay et al. (2017)

current code

Figure 3: Time history of the normalized energy at Re = 1600. Reference data obtained
from [19].
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6 Lagrangian particle tracking

Consider a small rigid sphere of radius a whose mass is centered at Y (t), which is
essentially moving with velocity Vα(t) in an undisturbed velocity field uα(x, t). If the
particle-fluid density ratio is large, say > 103, than the well-known Maxey & Riley [21]
equation of particle motion takes the form of

dVα
dt

= −fD
Vα − uα[Y (t), t]

τp
+ gα

dYα
dt

= Vα, (20)

where τp = 2ρpa
2/9µ is the particle response time; µ is the dynamic viscosity of the fluid,

ρp is the particle density; uα[Y (t), t] denotes the fluid velocity at the particle location,
and g is the gravitational acceleration. The non-dimensional correction factor

fD = 1 + 0.15Re0.687
p Rep < 1000 (21)

was proposed by Schiller & Neumann [22] to account for the drag force beyond the Stokes
flow regime. In the equation above Rep is the so-called particle Reynolds number defined
as

Rep =

∣∣V − u [Y (t), t]
∣∣d

ν
, (22)

where d is the particle diameter.

7 Fluid velocity at the particle location

It is readily apparent from Eq. (20) that prior to solving the particle equation of
motion, one has to determine the fluid velocity at the particle location. As already
indicated, if the velocity field is expanded in the Fourier series, Eq. (6), then the fluid
velocity at the instantaneous particle location can be determined by summing the Fourier
coefficients. Obviously, the computational cost of this approach can quickly become
prohibitively large. In the pseudo-spectral approximation, however, the velocity field is
Fourier-transformed to the physical space at each time step, and thus can be relatively
easily interpolated to the instantaneous particle locations. For a comprehensive review of
various interpolation schemes, one can refer to [23].

Consider an example of a one-dimensional interpolation given in Fig. 4. In this case,
the value of an arbitrary function f(xp) is approximated by

f(xp) ≈
6∑
i=1

f(xi)Li(xp), (23)

xxp

∆x

h

1 2 3 4 5 6

Figure 4: Six-point, one-dimensional Lagrange interpolation; xp denotes the instantaneous
particle location.
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where Li(xp) are the standard Lagrange basis functions determined at three grid points
lying either side of xp according to

Li(xp) =

6∏
k=1,k 6=i

xp − xk
xi − xk

, (24)

and thus

L1(xp) =
xp − x2

x1 − x2

xp − x3

x1 − x3

xp − x4

x1 − x4

xp − x5

x1 − x5

xp − x6

x1 − x6
=

=
1

120

(
6p− 5p2 − 5p3 + 5p4 − p5

)
, (25)

where p = h/∆x with h being the distance between the particle and its closest left
neighbor. The full set of basis functions for a one-dimensional Lagrangian interpolation
is therefore given by

L1(xp) =
1

120
(6p− 5p2 − 5p3 + 5p4 − p5)

L2(xp) =
1

24
(−12p+ 16p2 − p3 − 4p4 + p5)

L3(xp) =
1

12
(12− 4p− 15p2 + 5p3 + 3p4 − p5)

L4(xp) =
1

12
(12p+ 8p2 − 7p3 − 2p4 + p5)

L5(xp) =
1

24
(−6p− p2 + 7p3 + p4 − p5)

L6(xp) =
1

120
(4p− 5p3 + p5) (26)

It can be readily noticed that for a set of Np particles the foregoing sixth-order Lagrangian
interpolation scheme requires 3×63×Np operations to determine the local fluid velocity at
the instantaneous particle location, and additionally 3× 62×Np operations to determine
the corresponding basis functions.

Using the sixth-order, three-dimensional Lagrangian interpolation scheme, the veloc-
ity field at the instantaneous particle location Y (t) = (xp, yp, zp) can be approximated
according to

uα(xp, yp, zp) ≈
6∑
i=1

6∑
j=1

6∑
l=1

uα(xi, yj , zl)Li(xp)Lj(yp)Ll(zp). (27)

8 Time integration of the particle equation of motion

In this work, the particle velocity is advanced in time using both the fifth-order im-
plicit Adams-Moulton and the fourth-order explicit Adams-Bashforth schemes essentially
leading to

V n+1
α = V nα − fnD

(
∆t′

720
ΠAM
α − ∆t′

24
ΠAB
α

)
(28)

where ∆t′ = ∆t/τp, and

ΠAM
α = 251V n+1

α + 646V n−1
α − 264V n−2

α + 106V n−3
α

− 19V n−4
α . (29)
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The remaining term on the right-hand side can be determined using

ΠAB
α = 55unα − 59un−1

α + 37un−2
α − 9un−3

α . (30)

With the use of Eq. (28), particle trajectories can be advanced in time according to

Y n+1
α = Y nα +

∆t′

720
ΠAM
α . (31)

9 Conclusions and outlook

In this work, the current stage of development of the pseudo-spectral direct numer-
ical simulations solver intended for studying suspended particle dynamics in homoge-
neous isotropic turbulence was presented. Preliminary validation indicates that the DNS
solver can be considered accurate and reliable. Next steps include the validation of the
particulate-phase solver, and the extension of the momentum conservation equation with
specific source terms in order to account for the particle-turbulence interaction. In addi-
tion to that, the LES solver is to be implemented. However, the last step is rather straight-
forward and essentially boils down to extending the Navier-Stokes equation, Eq. (14), with
the spectral eddy-viscosity νe according to(

∂

∂t
+ [ν + νe(k|kc)] k2

)
ûα = PαβF(u× ω)β + f̂α, (32)

where, following Chollet & Lesieur [24],

νe(k/kc) = C
−3/2
K

(
0.441 + 15.2e−3.03kc/k

)√E(kc)

kc
. (33)

In the equation above, CK is set to 1.4, kc is a prescribed cutoff wavenumber, and E(kc)
is the kinetic energy density at the cutoff.
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Received in September 2023

References

[1] J. Kuerten, “Point-particle DNS and LES of particle-laden turbulent flow – a state-
of-the-art review,” Flow, Turbulence and Combustion, vol. 97, pp. 689–713, 2016.

[2] S. Elghobashi, “Direct numerical simulation of turbulent flows laden with droplets
or bubbles,” Annual Review of Fluid Mechanics, vol. 51, pp. 217–244, 2019.

[3] W. McComb, The Physics of Fluid Turbulence. Oxford University Press, Oxford.

ISSN 0079–3205 Transactions IFFM No. 142 (2023) 13–23



22 Micha l Rajek

[4] O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the
determination of the criterion,” Philosophical Transactions of the Royal Society A,
vol. 186, pp. 123–164, 1894.

[5] D. Leslie, Developments in the Theory of Turbulence. Clarendon Press, Oxford, 1990.

[6] S. Orszag, “Numerical methods for the simulation of turbulence,” Physics of Fluids,
vol. 12, pp. II–250, 1969.

[7] J. Cooley and J. Tukey, “An algorithm for the machine calculation of complex fourier
series,” Mathematics of Computation, vol. 19, pp. 297–301, 1965.

[8] C. Canuto, M. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid
Dynamics. Springer-Verlag, New York, 1987.

[9] G. Patterson Jr and S. Orszag, “Spectral calculations of isotropic turbulence: Ef-
ficient removal of aliasing interactions,” Physics of Fluids, vol. 14, pp. 2538–2541,
1971.

[10] S. Orszag, “Numerical simulation of incompressible flows within simple boundaries.
I. Galerkin (spectral) representations,” Studies in Applied Mathematics, vol. 50,
pp. 293–327, 1971.
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