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Abstract

Composite materials are prone to various kinds of defects in their service life,

among which delamination is a very hazardous type of damage. The traditional

visual inspection techniques often fail to detect delamination in composite struc-

tures. Guided Lamb waves are increasingly being applied for the identification of

delamination in these structures. Scanning laser Doppler vibrometry can measure

the full wavefield of guided Lamb waves, such full wavefield contains rich informa-

tion about defects. In this research work, a novel deep learning-based semantic

segmentation technique is applied for delamination identification on full wavefield

data. A big dataset of full wavefield images resulting from the interaction with

delamination of random shape, size, and location was utilised and fed into the pro-

posed deep learning model. The main motive of this research work is to investigate

the applicability of deep learning-based approach for delamination identification in

composite structures by using only the animations of guided Lamb waves. It is ver-

ified that the performance of the proposed deep learning model is good. Moreover,

it enables better automation of identification of delamination, which can further

produce damage maps without the intervention of the user. Furthermore, the de-

veloped deep learning model also indicates the capability of generalising well to the

experimental data.
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1 Introduction

These days, composite materials are extensively used for acquiring the desired per-
formance in a broad range of industries, such as aerospace, wind turbines, automotive,
marine, and many more. This extensive use of composite materials is due to their consid-
erable advantages, such as lightweight, low cost, high strength, higher stiffness-to-mass
ratio compared to metals, and effective corrosion resistance [1–3]. However, these mate-
rials are prone to different kinds of defects such as cracks, fiber breakage, debonding, and
delamination [3, 4]. Among these defects, delamination is one of the most hazardous forms
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of defects in composite materials. Delamination diminishes the life of these structures and
can lead to catastrophic failures if not detected at an early stage [4, 5]. Therefore, for the
safe operation of these structures, it is essential to identify the delamination effectively.

The detection of delamination in composite materials is very challenging for conven-
tional visual inspection techniques because it occurs between plies of composite laminate
and is invisible from external surfaces [6, 7]. Accordingly, different types of nondestructive
testing (NDT) and structural health monitoring (SHM) techniques have been proposed
for delamination identification in composite structures. Among various damage identifica-
tion techniques, ultrasonic guided waves are widely known as one of the most promising
techniques for the quantitative identification of defects in composite structures. The
widespread applications of these waves are due to their higher sensitivity to small defects,
propagation with low attenuation, and potential to monitor large areas and the need of
only a small number of sparsely distributed transducers [8–10].

However, utilising a smaller number of transducers is not appropriate for acquiring
high-quality resolution damage maps and the assessment of damage size. On the other
hand, the employment of a very dense array of transducers is also not feasible in most
situations. To alleviate such problems, a scanning laser Doppler vibrometer (SLDV) is
employed. SLDV is capable of measuring the propagation of guided waves in a highly
dense grid of points over the surface of a large specimen. This collection of signals is
known as full wavefield [11]. In recent years, full wavefield signals have been used for the
detection and localisation of defects in composite structures [11–14]. Damage identifica-
tion techniques employing full wavefield signals are capable of effectively estimating not
only the location but also the size of damage [12, 13]. Full wavefields provide valuable
information regarding the interaction of guided Lamb waves with potential defects. How-
ever, these full wavefields are very complex. Analysing such wavefields is very difficult for
conventional physics or classical machine learning-based models.

Conversely, deep learning, which is originated from the artificial neural network
(ANN), is capable of handling such complex and nonlinear data and has shown very
promising results in different domains such as computer vision, object detection, speech
recognition, remote sensing, medical sciences, and many more [15–17]. In recent years,
deep learning has also shown significant improvements in image segmentation due to the
advancement of deep convolutional neural networks (CNNs). Deep learning-based sys-
tems intend to derive hierarchical representations from the input data via constructing
deep neural networks with multiple layers of non-linear transformations. In deep learning
architectures, the output of one layer acts as the input to the next subsequent layer.
The stacking composition of many layers enables the model to learn complex patterns
from raw input data. Therefore, these systems do not need extensive human labour and
knowledge for hand-crafted feature design [18].

Different researchers have applied basic ANN and deep learning architectures for dam-
age identification in composite structures by employing thermography, vibration, and
frequency-based approaches [19–22]. Furthermore, many researchers have also applied
ANN and deep learning-based approaches for damage identification in composite struc-
tures by utilising guided Lamb waves [23–30].

In this work, the author applied a deep learning model on the full wavefield frames of
propagating Lamb waves. This means that there is no need of any signal post-processing
technique like for example RMS. Consequently, a many-to-one prediction scheme (many
input frames to damage map) was used in the proposed deep learning model. In sim-
ple words, a sequence of full wavefield frames (animation) is fed into the proposed deep
learning model. The proposed model is inspired by convolutional long short-term mem-
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ory (ConvLSTM) architecture and tailored to the particular problem of delamination
identification. Two classes (damaged and undamaged) were defined in the pixel-wise
segmentation problem.

To the best of the author knowledge, it is the first implementation of deep neural
networks utilising Lamb wave propagation animations for damage imaging with semantic
segmentation. The proposed model showed excellent capabilities to identify the delamina-
tion in the numerically generated dataset. Moreover, the developed model can generalise
well, therefore, the proposed model could be used for delamination identification in real-
world scenarios. This is confirmed through the experiments on CFRP plates with single
and multiple delaminations.

2 Image segmentation

It is not justified to process the entire image at the same time as there maybe re-
gions in the image which do not contain any useful information. By dividing the image
into segments, only the important segments can be used for processing the image. That,
in a nutshell, is how image segmentation works. Image segmentation is a fundamental
component in numerous visual recognition systems. In the last few years, image segmen-
tation has widely been employed in autonomous driving [31, 32], medical applications [33],
agriculture sciences [34], augmented reality [35] and many more. The purpose of image
segmentation is to partition images or video frames into multiple objects or segments [36].
It can be expressed as a pixel-level classification problem with semantic labels, which is
known as semantic segmentation, or partitioning the images into individual objects, which
is called instance segmentation [36, 37]. Semantic segmentation functions on pixel-wise
labeling with a set of object categories for an image. Therefore, it is generally a more
difficult task than image classification, which only predicts a single label for the entire
image [37]. Furthermore, semantic image segmentation not only depends on the semantics
in the question but also on the problem that needs to be addressed [38].

3 The dataset

In this work, a synthetic dataset of propagating waves in carbon fibre reinforced
composite plates was computed by using the parallel implementation of the time domain
spectral element method [39]. Essentially, the dataset resembles the particle velocity
measurements at the bottom surface of the plate acquired by the SLDV in the transverse
direction as a response to the piezoelectric (PZT) excitation at the centre of the plate.
The input signal was a five-cycle Hann window modulated sinusoidal tone burst. The
carrier frequency was assumed to be 50 kHz. The total wave propagation time was set
to 0.75 ms so that the guided wave could propagate to the plate edges and back to the
actuator twice. The number of time integration steps was 150000, which was selected for
the stability of the central difference scheme.

The material was a typical cross-ply CFRP laminate. The stacking sequence [0/90]4
was used in the model. The properties of a single ply were as follows [GPa]: C11 =
52.55, C12 = 6.51, C22 = 51.83, C44 = 2.93, C55 = 2.92, C66 = 3.81. The assumed mass
density was 1522.4 kg/m3. These properties were selected so that they simulated numer-
ically wave front patterns and wavelengths that are similar to the wavefields measured by
SLDV on CFRP specimens used later on for testing the developed approach for delami-
nation identification. The shortest wavelength of the propagating A0 Lamb wave mode
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was 21.2 mm for numerical simulations and 19.5 mm for experimental measurements.
475 cases were simulated, representing Lamb waves propagation and interaction with

single delamination for each case. The following random factors were used in simulated
delamination scenarios:

� delamination geometrical size 2b and 2a, namely ellipse minor and major axis ran-
domly selected from the interval
[10 mm, 40 mm],

� delamination angle α randomly selected from the interval [0◦, 180◦],

� coordinates of the centre of delamination (xc, yc) randomly selected from the inter-
val [0 mm, 250 mm− δ] and
[250 mm + δ, 500 mm], where δ = 10 mm).

These parameters are defined in Fig. 1 which illustrates exemplary possible locations,
sizes, and shapes of random delaminations used for Lamb wave propagation modeling. It
should be noted that the numerical cases include delaminations located at the edge and
corners of the plate.

Figure 1: Exemplary locations, sizes and shapes of random delaminations used for Lamb
wave propagation modeling.

The dataset contains frames of propagating waves (512 frames for each delamination
scenario) and is available online [40]. The synthetic dataset is used for training the
proposed neural network architecture with the aim of delamination identification directly
from SLDV measurements without the need for a baseline wavefield.

Fig. 2 shows selected frames at different time-steps of the propagating Lamb waves
before and after the interaction with the delamination. Frame f1 represents the initial
interactions with the delamination, which was calculated using the delamination location
and the velocity of the A0 Lamb wave mode. While frame fm represents the last frame in
the training sequence window, accordingly, m = 64 for the proposed model, which will be
discussed in the next section. The dataset contains 475 different cases, with 512 frames per
case, producing a total number of 243, 200 frames with a frame size of (500× 500) pixels
representing the geometry of the specimen of size (500× 500) mm2.
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Figure 2: Sample frames of full wave propagation.

For training and evaluation of the proposed deep learning model, the dataset was
divided into two sets: training and testing, with a ratio of 80% and 20% respectively.
Moreover, 10% of the training set was preserved as a validation set to validate the model
during the training process. Additionally, the dataset was normalised to a range of (0, 1)
to improve the convergence of the gradient descent algorithm. The author selected 64
consecutive frames in each delamination case as using all frames in each case has high
computational and memory costs. Additionally, frames displaying the propagation of
guided waves before interaction with the delamination has no features to be extracted.
Hence, only a certain number of frames were selected from the initial occurrence of the
interactions with the delamination (see Fig. 2 for details).

Figure 3: The procedure of calculating the RMS prediction image.

Fig. 3 illustrates the complete procedure of obtaining the intermediate predictions for
the testing cases and finally calculating the RMS image. Where f1 refers to the starting
frame and fn is the last frame, (n = 512) in the dataset. Further, m refers to the number
of frames in the window, which is 64 frames for the proposed model, and k represents the
total number of windows. Accordingly, the author slide the window over all input frames.
The shift of the window is one frame at a time.
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4 Introduction to RNN, LSTM and ConvLSTM

Feed-forward neural networks such as traditional ANNs and CNNs cannot learn tem-
poral features from the data and hence are not the best choice for sequential data pro-
cessing. To handle such problems, a recurrent neural network (RNN) was introduced,
which was specifically developed to address sequential data [41–43]. RNNs contain loops
among the different nodes in their architecture to retain information in the model for long
periods. RNNs employ the current input with the previous memory state. This ability
of memory-keeping enables RNNs to predict what comes next. Furthermore, RNNs were
designed to handle sequential data, which implies that updating the learnable weights
must consider the extent of the time dimension. Accordingly, the backpropagation [44]
algorithm responsible for updating the learnable weights needs some modification to work
along with the time dimension. To alleviate this problem, backpropagation through time
(BPTT) [41, 43] was introduced. Therefore, in basic RNNs, short-term memories are only
preserved, so it becomes unfeasible in the case of dealing with long sequences of data.
Therefore, basic RNNs usually suffer from issues like vanishing or exploding gradients
in such situations [45]. Therefore, the fine-tuning of the model parameters and train-
ing of RNNs becomes very hard. To overcome such issues, Hochreiter and Schmidhuber
developed the Long-Short Term Memory networks (LSTMs [46]).

(a) LSTM

(b) ConvLSTM

Figure 4: LSTM and ConvLSTM architectures.

LSTMs were developed to keep information related to long-term dependencies and to
solve the problem of vanishing and exploding gradients. Further, LSTMs handle inputs or
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outputs of any length, which makes LSTMs powerful for solving very complex sequential
problems. Basic LSTM architecture shown in Fig. 4a consists of four units: an input
gate, a cell state, a forget gate, and an output gate. These gates help regulate the flow of
information that is added to or removed from the cell state. The hidden states in LSTM
hold the short-term memory, while the cells state holds the long-term memory.

The purpose of the forget gate is to decide what information to keep and what to
neglect. The current input xt and the previous hidden state ht−1 are passed through a
sigmoid function (σ) which produce values between 0 and 1. Then the outputs of the
sigmoid are multiplied with the previous cell state ct − 1. Consequently, (0) outputs are
discarded. The mathematical calculation at the forget gate (ft) is depicted in Eq. (1):

ft = σ

(
Wf

[
ht−1

xt

]
+ bf

)
Wf =

[
Wht−1Wxt

] (1)

where Wf represent the learnable weights at the hidden and input states ht−1 and xt,
respectively, and bf represents the bias term.

The input gate it takes the current input xt with the previous hidden state ht−1,
then applies the sigmoid function to get values in a range between 0 (not important) and
1 (important). Then, the same current input xt, and the hidden state ht−1 are passed
through a tanh function at the cell state (c̃t) that regulate the network by transferring
the values into a range between −1 and 1. Then, the outputs from the sigmoid and
tanh functions are multiplied point-by-point to eliminate 0 values. Eq. (2) depicts the
calculation at the input gate:

it = σ

(
Wi

[
ht−1

xt

]
+ bi

)
c̃t = tanh

(
Wc

[
ht−1

xt

]
+ bc

) (2)

At this point, the network has sufficient information obtained from the input and
forget gates. Hence, the current cell state ct can be calculated by multiplying the previous
cell state ct−1 with the output of the forget gate. Then, the result is added to the
calculated input values as depicted in Eq. (3):

ct = ft · ct−1 + it · c̃t (3)

The output gate ot computes the next hidden state ht which holds information related
to the current inputs. Accordingly, the current input xt and the previous hidden state
ht−1 are passed through a third sigmoid function to produce values between 0 and 1.
The current cell state ct is passed through a tanh function and multiplied point-by-point
with ot to produce the new hidden state ht which is transferred to the next timestamp.
Equation (4) illustrates the calculations at the output gate:

ot = σ

(
Wo

[
ht−1

xt

]
+ bo

)
ht = ot · tanh (ct)

(4)

where Wf ,Wi,Wc and Wo have shared learnable weights.
Recently, LSTMs have been widely used for large-scale learning of language transla-

tion models, speech recognition systems, chatbots, forecasting stock markets, text data
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analysis, and many more [47, 48]. However, LSTMs are inefficient at capturing spatial
information by themselves when the time series inputs are consecutive images. Hence, the
ConvLSTM architecture, which is a combination of CNN and LSTM units, was introduced
by Shi et al. [49] to solve such kind of problems. In ConvLSTM, the convolution opera-
tions are applied both at the input-to-state transition and at the state-to-state transitions.
The ConvLSTM unit, shown in Fig. 4b is a variation of the LSTM cell as it performs a
convolution operation within the LSTM cell. ConvLSTM is a combination of a convo-
lution operation and an LSTM cell. Thus, ConvLSTM can capture the time-correlated
and spatial features in a series of consecutive images. Equation (5) depicts the ConvL-
STM operations as the inputs x1, . . . , xt, hidden states h1, . . . , ht, cell states c1, . . . , ct
and input, forget, and output gates are represented as it, ft, and ot, respectively:

it = σ
(
Wxt

∗ xt +Wht−1
∗ ht−1 +Wci · ct−1 + bi

)
ft = σ (Wxf ∗ xt +Whf ∗ ht−1 +Wcf · ct−1 + bf )

ct = ft · ct−1 + it · tanh (Wxc ∗ xt +Whc ∗ ht−1 + bc)

ot = σ (Wxo ∗ xt +Who ∗ ht−1 +Wco · ct + bo)

ht = ot · tanh (ct)

(5)

where (∗) indicates the convolution operation, which is an element-wise multiplication
operation.

Recently, ConvLSTM has become very popular and is increasingly being used in image
processing applications.

5 The proposed model

In this work, the author developed an end-to-end deep learning model utilising full
wavefield frames of Lamb wave propagation for delamination identification in CFRP ma-
terials. The developed model have a scheme of many-to-one sequence prediction, which
takes m number of frames representing the full wavefield propagation through time and
their interaction with the delamination to extract the damage features and finally predict
the delamination location, shape, and size in a single output image.

The proposed model, presented in Fig. 5 takes 64 frames as input, and it consists of
three ConvLSTM layers. The first ConvLSTM layer has 12 filters, the second layer has 6
filters, and the third layer has 12 filters. The kernel size of the ConvLSTM layers was set
to (3 × 3) with a stride of (1). Padding was set to ”same”, which makes the output the
same as the input in the case of stride 1. Furthermore, a tanh (the hyperbolic tangent)
activation function was used within the ConvLSTM layers that output values in a range
between (−1 and 1). Moreover, a batch normalization technique [50] was applied after
the first two ConvLSTM layers.

At the final output layer, a 2D convolutional layer followed by a sigmoid activation
function is applied that outputs values in a range from (0, 1) to indicate the delamination
probability. Consequently, a threshold value must be chosen to classify the output into
damaged (represented by 1) or undamaged (represented by 0). Hence, the author set the
threshold value to (0.5) to exclude all values below the threshold by considering them as
undamaged and taking only those values greater than the threshold to be considered as
damaged.

For evaluating the performance of the proposed model, the mean intersection over
union IoU (Jaccard index) was applied as the accuracy metric. IoU is estimated by
determining the intersection area between the ground truth and the predicted output.
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Figure 5: The architecture of the proposed deep learning model.

Further, there are two output classes (damaged and undamaged), the IoU was calculated
for the damaged class only. Equation (6) illustrates the IoU metric:

IoU =
Intersection

Union
=
Ŷ ∩ Y
Ŷ ∪ Y

(6)

where Ŷ is the predicted output, and Y is the ground truth. Additionally, the percentage
area error (ε) depicted in Eqn. 7 was utilised to evaluate the performance of the proposed
model:

ε =
|A− Â|
A

× 100% (7)

where A and Â refer to the area in mm2 of the damage class in the ground truth and the
predicted output, respectively. This metric can indicate how close the area of the predicted
delamination is to the ground truth. Accordingly, the lower the value of (ε), the higher
the accuracy of the identified damage. Furthermore, for all of the predicted outputs,
the delamination localisation error (the distance between the delamination centres of the
GT and the predicted output) was less than (0.001%), hence, it is not considered in the
discussion section.

6 Results and discussions

In this section, the author presents the evaluation of the proposed model based on
numerical data of 95 different cases representing the frames of the full wavefield prop-
agation. The proposed model was evaluated using numerical and experimental data to
demonstrate the capability to predict delamination location, shape, and size. Therefore,
three representative cases were selected from the numerical dataset to show the perfor-
mance of the developed model. For numerical cases, the predicted results were obtained
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by using only the first window of frames after the interaction with the damage, as the
delamination ground truths are provided, which is not the case for real-life scenarios as in
the experimental section. Consequently, the part of producing intermediate predictions
and further calculating the RMS image was skipped.

To evaluate the generalisation capability of the developed model, experimental data
of single and multiple delaminations were considered. The IoU metric was utilised to
examine the performance of the model. Furthermore, the proposed deep learning model
was implemented on Keras API [51] running on top of TensorFlow on a Tesla V100 GPU
from NVIDIA.

6.1 Numerical cases

In the first numerical case, the delamination is located at the upper left corner, as
shown in Fig. 6a, representing its ground truth (GT). This case is considered difficult due
to edge wave reflections that have similar patterns as delamination reflection.

(a) GT image of 1st case (b) IoU = 0.86

(c) GT image of 2nd case (d) IoU = 0.89

(e) GT image of 3rd case (f) IoU = 0.98

Figure 6: Delamination cases on numerical data (Figures: (a), (c), and (e) correspond to
the GT of each numerical case. Figures: (b), (d) and (f) correspond to the predictions of
the proposed model).

The predicted output of the first numerical case is shown in Fig. 6b. For the second
numerical case, the delamination is located at the upper centre of the plate, as shown in
Fig. 6c, representing the GT. This case is considered difficult due to the waves reflected
from the edge have similar patterns to those reflected from the delamination. Fig. 6d
shows the prediction of the second numerical case. In the third case, the delamination is
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located at the upper left corner but a little farther from the edges, as shown in Fig. 6e,
representing the GT. Fig. 6f shows the predicted output of the model. As can be seen in
all predicted outputs, the proposed model is able to identify the delamination with high
accuracy and without any noise.

Tab. 1 presents the evaluation metric of the proposed model, regarding the numerical
cases shown in Fig. 6. As shown in Tab. 1, the actual (A) and predicted areas (Â) of
delaminations were computed in mm2 with respect to each case. The percentage area
error (ε) was also calculated for the proposed model. The achieved mean IoU with respect
to all numerical data of 95 cases was (0.90). Furthermore, the mean percentage area error
(ε) was calculated for all numerical cases (95) was equal to 4.57%.

Table 1: Evaluation metric of the three numerical cases

Case number A [mm2] IoU Â [mm2] ε

1 272 0.86 318 16.9%

2 186 0.89 196 5.4%

3 842 0.98 871 3.4%

6.2 Experimental cases

In this section, the author investigated the proposed model using experimentally
acquired data. Similarly to the synthetic dataset, a frequency of 50 kHz is applied to
excite a signal in a transducer placed at the centre of the plate. A0 mode wavelength
for this particular CFRP material at such frequency is 19.5 mm. The measurements
were performed by using Polytec PSV-400 SLDV on the bottom surface of the plate with
dimensions of 500 × 500 mm. The measurements were conducted on a regular grid of
333× 333 points. The measurement area was aligned with the plate edges. The sampling
frequency was 512 kHz. To improve the signal-to-noise ratio, 10 averages were used. The
total scanning time for one specimen was about 1h 40’. Further, a median filter using
a window size of three was applied to each frame. Additionally, all frames were upsampled
by using cubic interpolation to 500× 500 points.

During the testing stage of the synthetic dataset, the model was fed with a consecutive
number of identified frames (window of frames) containing the interactions of the Lamb
waves with the delamination to identify it.

6.3 Single delamination

The first experimental case is for a CFRP specimen with single delamination created
artificially by a Teflon insert of a thickness 250 µm. The complete specifications of
this CFRP specimen is similar to the numerical investigations. A plain weave fabric
reinforcement was used. The Teflon of a square shape was inserted during specimen
manufacturing, so its shape and location are known. Based on that, the ground truth
was prepared manually. Fig. 7a shows the GT image which corresponds to the artificial
delamination location, shape and size. The number of the full wavefield frames is 256
frames in this case. Fig 7b shows the delamination prediction for the proposed model,
and the highest IoU is (0.53) achieved for a group of frames (35− 99).

Furthermore, the percentage area error metric (ε) was equal to 41.78%. Therefore,
delamination was detected, located but its size was unidentified properly with mentioned
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error. The predictions were highest for the group of frames corresponding to the first
interaction of the guided waves with the delamination. Accordingly, such frames contain
the most valuable feature patterns regarding delamination.

(a) GT of Teflon insert (b) IoU = 0.53

Figure 7: Experimental case: single delamination of Teflon insert. (Figure (a) correspond
to the GT of this experimental case. Figure (b) correspond to the predictions of the proposed
model).

Furthermore, this behaviour can be depicted in Fig. 8, which shows the IoU values
with respect to the predicted outputs as the author slide the window over all input
frames from the starting frame till the end. Since there are 256 frames of full wavefield in
this damage case, there are 192 frames of windows and has 192 consecutive predictions.
Furthermore, in Fig. 8a, three places for the sliding window was selected. The first place
depicted in a dark blue star shown in Fig. 8b represents a group of frames (72 − 136)
which correspond to the initial interaction of guided waves with the delamination. The
second place is depicted in the pink pentagon shape shown in Fig. 8b represents a group of
frames (129−193) that correspond to the guided waves reflected from the edges, in which
the drop in the IoU values can be noticed as these frames have fewer damage features.
The third place, depicted in the green circle shown in Fig. 8b represents a group of frames
(192− 256) corresponding to the interaction of the guided waves reflected from the edges
with the delamination. As it can be seen, the value of IoU increases again as the valuable
feature patterns regarding delamination start to appear again. The predicted outputs of
the proposed model regarding the dark blue star, pink pentagon, and the green circle are
shown in Fig. 9.

Additionally, for the experimental cases, the author applied the root mean square
(RMS) according to Eq. 8 for all N predicted outputs Ŷ regarding all windows of frames
in order to show the damage map.

RMS =

√√√√ 1

N

N∑
k=1

Ŷ 2 (8)

To separate damaged and undamaged classes from the RMS images, a binary thresh-
old with a value (threshold = 0.5) is applied as shown in Fig. 10a. The threshold level
was selected to limit the influence of noise and at the same time highlight the damage.
Fig. 10b shows the RMS image for the experimental case of single delamination predicted
by the proposed model. The calculated IoU value for the case of single delamination was
(0.46).
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(a) IoU for the sliding window centered at consecutive frames.

(b) Corresponding frames of guided waves.

Figure 8: IoU corresponding to a sliding window of frames (Teflon insert-single delamina-
tion).

Tab. 2 presents the evaluation metric for the proposed model, regarding the experi-
mental case of single delamination shown in Fig. 10. As shown in Tab. 2, the actual (A)
and predicted areas (Â) of delaminations were computed in [mm2] with respect to each
case and the percentage area error (ε) was calculated.

Table 2: Evaluation metric for experimental case of single delamination

Experimental case A [mm2] IoU Â [mm2] ε

Single delamination 255 0.46 319 41.78%
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Figure 9: Predictions of the proposed model at different window places (Teflon insert-single
delamination).

(a) (b)

Figure 10: RMS and thresholded RMS images of predicted outputs -Teflon insert (sin-
gle delamination): (a) RMS image of predicted output, (b) Thresholded RMS image of
predicted output (IoU = 0.46)

6.4 Multiple delaminations

In the second experimental case, the author investigated three specimens of car-
bon/epoxy laminate reinforced by stacking sequence of 16 layers of plain weave fabric as
shown in Fig. 11. Teflon inserts with a thickness of 250 µm) were used to simulate the
delaminations. The prepregs GG 205 P (fibres Toray FT 300–3K 200 tex) by G. Angeloni
and epoxy resin IMP503Z-HT by Impregnatex Compositi were used for the fabrication of
the specimen in the autoclave. The average thickness of the specimen was 3.9 mm.

In Specimen 2, three large artificial delaminations of elliptic shape were inserted in
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the upper thickness quarter of the plate between the 4th and the 5th layer. The de-
laminations were located at the same distance, equal to 150 mm from the centre of the
plate. For Specimen 3, delaminations were inserted in the middle thickness of the plate
between 8th layer and 9th layer. For Specimen 4, three small delaminations were inserted
in the middle of the thickness of the plate, and three large delaminations were inserted
at the lower quarter of the thickness of the plate between the 12th layer and 13th layer.
The details of Specimen 2, 3 and 4 are presented in Fig. 11.

Furthermore, the SLDV measurements were conducted from the bottom surface of
the plate. Consequently, Specimen 2 is the most difficult case, as the delaminations
are barely visible. For Specimens (2, 3, and 4), 512 consecutive frames were generated
representing the full wavefield measurements in the plate. The measurement parameters
were the same as in the experiment with single delamination. Since SLDV measurements

Figure 11: Experimental case of delamination arrangement.

were conducted from the bottom surface of the plate, the GT images and the output
predictions of the proposed model are flipped horizontally (mirrored). Fig. 12a shows
the GT image of Specimen 2. The predicted output of the proposed model is shown in
Fig. 12b in which the highest calculated IoU value is 0.15 achieved for the group of frames
(167 − 231). Figure 12c shows the GT image of Specimen 3. The predicted output is
shown in Fig. 12d in which the highest calculated IoU value is 0.18 achieved for group of
frames (279− 343).

Fig. 12e shows the GT image of Specimen 4. This is assumed to be the largest de-
laminations in the cross-sections because the full wavefield was acquired from the bottom
surface of the specimen. It is also to be noted that such a case with stacked delaminations
in cross-sections was not modeled numerically (see Specimen 4 in Fig. 11). Although the
model was not trained on such a scenario, the predictions were satisfactory. The predicted
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(a) GT of Specimen 2 (b) IoU = 0.15

(c) GT of Specimen 3 (d) IoU = 0.18

(e) GT of Specimen 4 (f) IoU = 0.18

Figure 12: Experimental cases of Specimens 2, 3, and 4. (Figures: (a), (c), and (e)
correspond to the GT of each Specimen. Figures: (b), (d) and (f) correspond to the
predictions of the proposed model).

output of the proposed system is shown in Fig. 12f in which the highest calculated IoU
value is 0.18 achieved for the group of frames (235− 299).

(a) (b)

Figure 13: RMS and Thresholded RMS images of predicted outputs - Specimen 4: (a)
RMS image of the predicted output, (b) Thresholded RMS image of predicted output (IoU
= 0.07).
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The RMS images depicting the damage maps of Specimen 4 are presented in Fig. 13a
for the proposed model. Fig. 13b shows the thresholded RMS image for the proposed
model, and the calculated value of IoU is (0.07). Furthermore, the mean percentage area
error (ε) with respect to the three delaminations (Specimen 4) for the proposed model
was equal to 79.41%.

7 Conclusions

In this work, the author presented a novel deep learning-based approach for delami-
nation identification in composite laminates. The developed approach introduces an end-
to-end scheme that performs a many-to-one sequence prediction to identify delamination
location, size, and shape. Accordingly, the proposed model is trained on a consecutive
number of frames depicting the full wavefield of Lamb waves propagation in a plate of
CFRP, and their interactions with the delamination, and the edges. Hence, the proposed
model learn how to extract the valuable features regarding the damage from such frames
in order to have a prediction.

To evaluate the performance of the developed model, the author examined them on a
numerical test-set that was unseen before. The results verified their ability to identify the
delaminations with high accuracy. Furthermore, to evaluate the generalisation capability
of the proposed model, the author tested it on several experimentally measured cases
of single and multiple delaminations simulated by Teflon inserts. The predicted results
are promising, considering the experimental case of multiple delaminations is difficult as
the model was trained only on cases of single delamination. Consequently, the currently
developed model showed its potential capability of identifying multiple delaminations at
once in real-life cases.

However, there are several limitations to the SLDV measurement technique, which
is used for full wavefield acquisition. The measurements constructed by using SLDV are
stationary and time-consuming. Therefore, the proposed technique is more appropriate
for NDT than SHM. However, it is probable that in the future, as laser technology pro-
gresses, the process of data acquisition will be possible at an array of points instead of a
single point, which will considerably decrease the measurement time. It is also possible
that the measurement time can be reduced by using fewer points in the spatial grid along
with the compressive sensing approach. Another issue with SLDV measurements is that
the laser needs access to the surface of the inspected structure, which may require partial
disassembly of the structure.

The limitation related to the developed deep learning model is that the material
properties of the inspected structure have to be approximately known in order to simulate
the dataset for training.
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