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52 W Pietraszkiewicz

1. Introduction

Sheil theory attempts to describe the mechanical behaviour of a thin three-dimen-
sional solid layer - the shell - by a finite number of heids defined over its reference
(usually middle) surface. Since this is not possible, in general, the shell theory is an
approximate one virtually by ciefinition. It cannot provide a complete and exact
information about all three-dimensional fields describing the meÇhanical behaviour
of the shell. However, the results which follow from such a two-dimensional
approximate description of the shell are usually sufÏiciently-ac€urate for the majority
of applications in science and technology. At the same time, the two-dimensionai
problem resulting from an appropriate shell theory is much easier to handle than the

original three-dimensional one.
fni, report deals with one of the sirnplest formulations of the shell theory: the

geometrically nonlinear first-approximation theory of thin elastic shells. This theory
is applicable when: .
a) the shell is made of a homogeneous, isotropic and elastic material;
b) the shell is thin, i.e. hlR < 1, where h is the constant thickness of the undeformed
shell and R is the smallest radius of curvature of its reference surface //;
c) the undeformed reference surface is smooth, i.e. (hll)2 ( 1, where / is the smallest
wave length of geometric patterns af '/./;
d) the shell deformation is smooth, i.e. (hlL)t < 1, where L is the smallest wave
length of deformation patterns on -/4;
e) the strains are small everywhere, i.e. q 4I, where 4 is the largest strain in the shell
space.
Under an additionai restriction of rotations of material fibres to be also small
everywhere, the geometricaily nonlinear theory reduces to the classical linear
first-approximation theory of shells,'which was discussed in detail in many papers
and  books ,  fo r  examp le  [135 ,  296 ,79 ,83 ,  I75 ,275 ,75 ,39 ,  158 ,  85 ,  228 ,26 f .

Within the assumptions given above, the behaviour of an interior domain of the
shell can be described with suflicient accuracy by the behaviour of the shell reference
surface. Already Aron [13] approximated the sheli strain energy density by a sum of

two quadratic functions describing the stretching and the bending of the shell
reference surface. Love t135] came to the same conclusion by the application of two
well known constraints, analogous to those used by Kirchhoff[111, 112] in the plate
theory (cf. Novozhilov t1751). The accuracy of such a so-called KirchhofT-Love shell
theory was examined in  a  number  of  papers 1117,79,80,  113,  1 t r .8 ,50,  123,2I2,26f .
In particular, Novozhilov and Finkelshtein ll77l and Koiter [113] pointed out
explicitly that within the basic assumptions the quadratic expression of Love [135]
for the shell strain energy is a consistent first approximation. Moreover [113],
various versions of the shell theory, which differ from the version given by Love

t1351 only by terms of the order of alR in the definition of the two-dimensionai
measure of change of curvature, should be regarded as equivalent from the point of
view of the first approximation to the shell strain energy. Since the consistently
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approximated strain energy of the shell is expressed entirely in terms of
two-dimensional strain measures of the reference surface, the conclusions are valid
both for the linear and for the geometrically nonlinear theory of shells.

Although some geometric re$ults about nonlinear deformation of the shell space
had been given already by Love [135, Ch.24f, Donneil [54, 55] and Mushtari [146,
147] seem to be the first who proposed the simplest noniinear theory for stability
analysis of cylindrical shelis. Marguerre [144], Mushtari [148, 149] and Vlasov
12951developed the nonlinear theory of shallo.w shells which was applied with great
success to a number of problems of flexible shells analysed for strength, deformability
and the loss of stability. In particular, by applying Marguerre's theory Kârmân and
Tsien [107] discovered that the axial compressive forces applied to,a cylindrical shell
drop considerably in the post-buckling range of deformation. This differed qualitati-
vely frbm the behaviour of compressed bars and plates, but was in good agreement
with the experimental results for cylindrical shells. Many results obtained with the
help of the nonlinear theory of shallow shells have been summarized in the books of
Vlasov 12961, Volmir 1297,298f, Mushtari and Galimov [157], Kornishin ll2ll,
Brush and Almroth [35] and Kantor [105] where further references may be founà.

The foundations for the general geometrically nonlinear theory of elastic shells
were laid down by Chien 1441. He expanded all three-dimensional fields into series of
the normal coordinate and applied order-of-magnitude estimates valid under the
assumption of small strains. As a result, three equilibrium equations and three
compatibility conditions were derived in laal in an invariant tensor notation, which
were then expressed in the intrinsic form, in terms of two-dimensional strains and
changes of curvatures of the shell reference surface. Under additional assumptions
about the thinness of the shell and the smallness of its curvature, 27 types of
approximate versions of intrinsic shell equations were given. It was assumed in [aa]
that when h--+0 the limits of some functions do not change their order upon the
surface differentiation. This assumption was criticized in 177 ,85] as to be applicable
only to a limited class of shell problems. It was also recognized that only special
problems can be formulated and solved directly in the intrinsic form. As a resuit, the
very general approach of [44] has gained little attention in the following papers.

Alternative two-dimensional formulations of the nonlinear theory of shells were
given in an invariant tensor notation in the series of papers by Mushtari [150-154],
Galimov 162-101and Alumâe [a-8]. It was assumed there from the outset that the
behaviour of the shell can be described with suflîcient accuracy by the behaviour of
its middie surface. While Mushtari and Galimov presented several forms of shell
relations in the natural bases of the undeformed and deformed surface, Alumâe
derived his nonlinear shell reiations in the intermediate non-holonomic basis, which
was obtained from the undeformed basis by its rigid-body rotation. Unfortunately,
some of these original results were published in the local journals which even today
are hardly available outside the Soviet Union. The monograph by Mushtari and
Galimov [157] was written in the ciassical notation, using the initially orthogonal
system of coordinates coinciding with lines of principal curvatures of the undeformed.

53



54 W. Pietraszkiewicz

surface. It provided well documented sets of shel1 relations for the simpli{ied
nonlinear theory of medium bending and for the one of shallow shells. However, not
all of the general results published in the original works of the authors were
presented in their monograph with sufficient generality and accuracy. In the classical
notation some intermediate formulae became extremely complex and had to be
simpiihed by omitting some terms which were supposed to be small. This raised
some doubts about the consistency and the range of applicability of the final

relations of the geometrically nonlinear theory of shell, cf. [115].
Various equivalent forms of nonlinear relations for thin shells were independently

rederived and developed further by Rùdiger 12111, Leonard [128], Sanders l2l5l,
Naghdi and Nordgren [162], Koiter [115, 116], WoZniak 1299f, Budiansky [36]'
Simmonds and Danielson 1247,248), Reissner [208] and Pietraszkiewicz [182-185].
In particular, concrete error estimates given by John [101, 103] and Berger [30] for

the two-dimensional differential equations of the geometrically nonlinear theory of

elastic shells strengthened the foundations of the theory and established more precise

bounds of its applicability. Danielson [49] and Koiter and Simmonds [120] worked
out the rehned intrinsic shell equations which were expressed in terms of internal
stress resultants and changes of curvatures as independent fie1d variables (cf. also

[185, 190]). Simmonds and Danielson 1247,248] proposed the set of nonlinear shell
equations in terms of hnite rotation and stress function vectors as independent
variables and constructed an appropriate variational principle" Pietraszkiewicz and
Szrvabowicz l20I) derived entirely Lagrangian nonlinear shell equations in terms of

d.isplacements as independent variabies. In case of dead surface and boundary
loadings these equations were derivable as stationarity conditions of the

Hu-Washizu functional (cf. aiso t1971). The theory of finite rotations in shells
developed by Pietraszkiewicz [184, 185, 190] allowed then to work out a consistent
classification of approximate versions of displacement equations for shells under-
going restricted rotations [195, 197f.

Various general theoretical aspects of the nonlinear theory of thin shells are

discussed also in the books by Kilchevskii [110], Teregulov 1273f, Naghdi [159],
Galimov Ul), Pietraszkiewicz [185, 190], Grigolyuk and Kabanov [89], Mason

t1451, Wo2niak [300], 
'Wempner 

l29ll, Dikmen [53], Zubov [304], Berdichevskii

[28], Baçar and Krâtzig 1261, Galimov and Paimushin 173f, Chernykh l42f and

Axelrad [15, 17] as well as in the reviews or extensive papers by Goldenveizer [78],
Koiter ll l7f, N{ushtari [i55, 156], Novozhilov [176], Baçar [20], Langhaar U27f,
Pietraszkiewicz [187, 191, 193], Koiter and Simmonds [120], Wo2niak [301],
Simmonds [243], Naghdi [160, 161], Schmidt and Pietraszkiewicz1224), Atiuri l l4l,
Libai and Simmonds [133], Schmidt 1222f, Stumpf 1263) and Szwabowicz l27Il,
where further references may be found. One-dimensional problems of the noniinear
theory of elastic shells are extensively treated by Shilkrut 1237), Shilkrut and Vyrlan

[238], Valishvili [286], Antman [10] and, in particulat, by Libai and Simmonds

[ 1 34].
The behaviour of the shell near its lateral boundaries, i.e. in an edge zone of depth

l.

I

I

I
i
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of the order of the shell thickness, is nearly always essentially three-dimensional. The
physical explanation of this statement is quite simple. The external (or reactive)
stresses applied to the shell lateral boundary surface arè statically equivalent to the
external force and molnent resultants on the reference boundary contour plus some
self-equilibrated part of the stress distribution over the lateral boundary surface. The
resultants enter into the boundary conditions of the basic boundary-value problem
which describes correctly the shell behaviour in its interior domain, far from its
lateral boundary surfaces. The self-equilibrated part generates additional stresses in
the shell space, which are localized in the edge zone. Within the linear shell theory,
these additional stresses may be calculated approximately as some linear com-
binations of solutions of the plane and anti-plane problems for a semi-inhnite strip
182, 83] and then may be added to the basic stress state associated with the
resultants, (cf. also't91]). An extension of this approximate method, based on
a superposition of elementary stress states, to the nonlinear range of deformation
may not always be correct, in particuiar near the stress states associated with the
bifurcation or lirnit points of solutions of the basic boundary value probiem.
Additionally, the exact stress distribution over the shell lateral boundary surface is
rarely known in the majority of engineering problems, except in the case of a free
edge. As a result, lvithin the geometrically nonlinear theory of sheils, little has been
achieved in a better two-dimensional description of the shell behaviour in the edge
zone. Some approximate results have been given by Koiter and Simmonds [120] and
Novotny 11721.

In -this report basic reiations of the nonlinear theory of thin elastic shells are
reviewed. Various consistent sets of nonlinear shell equations in terms of dis-
piacements, in terms of rotations and some other field variables as well as in terms of
two-dimensional strain and/or stress measures as independent variables are discus-
sed. The frnal nonlinear reiations are then consistently simplified under the
assumption that strains are small, while displacement equations are simplilied
further under consistently restricted rotations. For some types of conservative
surface and boundary loadings, appropriate variational functionals are constructed
for displacement and rotational nonlinear sheli equations.

During preparation of this report it became necessary to clarify some theoretical
problems which have not been fully treated in the literature. Among those new
results is a discussion of integrability of kinematic boundary conditions, the
construction of the generaf form of the work-conjugate static and geometric
boundary conditions for displacement sheli equations, alternative derivation of
rotation shell equations in the rotated and undeformed basis, the construction of the
variational functional in terms of rotations, displacements and Lagrange multi-
pliers as well as an alternative derivation of the rehned intrinsic shell equations.

The literature on various aspects of the nonlinear theory of shells is very
extensive and some kind of selection of references has to be made. The references in
this report are given primarily to those original papers and monographs which deal
with general aspects of the theory and are written in the invariant tensor notation.
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other original papers and monographs, which are written in classical notation or

which deal with special shell geoÀet-ries, are referred on the basis of their historical

or informative uuio.. Although it is believed that the most important papers, which

concern the derivation of various invariant forms of nonlinear shell reiations, are

included into the list of references, no attempt is made to piovide the complete list of

such references' 
that some of the two-dimensionalIt is worthwhile to point out here once agaln

reiations of the nonlinear theory of thin shells are derived by taking a difference

between two groups of terms of the same order associated with the deformed and

undeformed reference surface. In the derivation process it often happens that the

principal terms of those glollps cancel out and the seemingly secondary terms are the

only ones which appear- in the hnal shell relations. In the geometrically nonlinear

theory of shells, in which strains are assumed to be always small, it is quite

dangerous to simplify the intermediate relations by dropping terms of the order of

strains relative to the unity, since then the finai relations may happen to be

inconsistent or even incorrect. This has actually been the case in severai eariy papers

devoted to the derivation and simplilication of the geometrically nonlinear theory of

shells. In this report all two-dirnensional relations associated whith the reference

surface are derived for unrestricted strains. The small strain assumption is then used

at the end of the derivation process to simplify the rrnal set of nonlinear shell

relations.
Stability analysi,s of flexible shells is one of the most important possible

applications of thl geometrically nonlinear theory of shells discussed in this report'

The literature on various approximate versions of the stability eqttations for thin

shells is extensive and has to be reviewed separately. The stability equations are

usually derived as a result of superposition of two or more nonlinear deformations of

the shell. Since different types of àpproximation may be used to describe the first

(basic) deformation and the following (superposed) deformations, a large variety of

types of sheil stability equations for ihin Àlastic shells may be constructed' We only

note here that problems-of superposition of deformations and derivation of various

types of stability equations have b..n discussed, among others, by Novozhilov lI73l'
Koiter [114], Mushtari [153], Alumâe [5, 6], Mushtari and Galimov [157]'

Timoshenko and Gere L27|),Darevskii [52]' Volmir [298], Bolotin 132' 33)' Koiter

U161, Budiansky [36],banielson and Simmonds [51], Seide 1229), Abé [1]' Baçar

lz|f, Brush and 
-Alàroth 

[35], Zubov t30Jl, Grigolyuk and Kabanov [89]'

Taràsridis l2r2),van der Heijden lg2f, Stumpf lz57-2631, Srubshchik [250], Baçar

and Kràt zig 122,261, Krât zig et all. ;lZ+, 125i, Stein et al' 1252,253), Eckstein [59]'

Arbocz [11], Nolte 1164,1651, Schmidt and Stumprl225land Pietraszkiewiczll97),

where further references are given.
It is not the aim of this report to review recent achievements in the large-strain

nonlinear theory ôf thin shells. Suffrce it to point out that many two-dimensional

relations collected here are applicabie also to this more general case of shell

deformation, provided that the behaviour of the shell is still approximated only by
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the behaviour of its reference surface. Such simple versions of the large-strain K-L
type theories of shells have been proposed recentiy by Chernykh [40, 42], Simmonds
1246) as well as by Stumpf and Makowski 12641. However, the change of shell
thickness during deformation should then be taken explicitly into account not only
in the approximate form of the strain energy density but also in definitions of the
external force and couple resultants applied to the shell reference surface and on its
boundary contour. Besides this review there are also the more advanced models of
shells in which the behaviour of the shell is described not only by the behaviour of its
reference surface but also by additional higher-order independent parameters. We
share the view expressed by Koiter and Simmonds [120] that the rapid development
of numerical techniques in three-dimensional problems, in particular the fînite
element technique, may obviate the need of (complicated) refined shell theories in the
near future.

2. Notation and geometric relations

The notation which wiil be used in this report follows that of Koiter [115] and
Pietraszkiewicz [185, 190, 193, 197f.In order to make the paper self-contained, we
review here the notation and some basic seometric relations of the surface and its
nonlinear deformation.

Let I be the region of the three-dimensional Euclidean space d occupied by the
shell in its undeformed conhguration. In I we introduce the normal system of
curvilinear coordinates (01, 0t, O such that -hl2 < ( < hlTis the distance from the
middle surface ./,/ of I and à is the undeformed shell thickness assumed here to be
constant and small as compared to the smallest radius of curvature R of // and to
the linear dimensions of 9.

The surface ,// is described by the position vector r : xu(O")iu,
k : 1 , ) , 3 , d :  1 , 2 ,  w h e r e  i o  i s  a n  o r t h o n o r m a l  b a s i s  a t t a c h e d  t o  a  p o i n t  O e  E .
V/ith each point M e ll we associate the natural covariant base vectors
ao: ôrlô0o = r,o, the covariant components aofr: ào'aB of the surface metric tensor
a with the determinant a : laopl, the contravariant components eol of the per-

mutat ion tensor such that Er2 :  -Ê21 : I l$,€11 : Ê22 :0, the unit  normal vector
1
t  n Rn:;ro 'Ldxap and the covar iant  components bop -  -aa' lp of  the curvature tensor
z-

b. Contravariant components a"Ê of a, satisfying the relatiens' a"v eo, : 6f, where
ôl : ôtr : l, ôt : 6?. :0, are used to raise indices of the surface vectors and tensors
for example ao - o"Êup, bi = a"vbrB, etc.

The boundary contour G of // consists of the finite set of piecewise smooth
curves given by r(s): r[O"(s)], where s is the arc length along G.With each regular
point M e V we associate the unit tangent vector t: drlds: r' : toao and the
ou tward  un i t  no rma l  vec to r  v :  ô r l ôsu l€  =  r , n :  t xn :  voao ,  vo  :  Eo f l f r ,  where  sn  i s

!1
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the arc length of the coordinate line on ,// which is orthogonai to Ç. The curvature

properties-of G are described by the normal curvature o'r  ̂ b"pt"tÊ, the geodesic

torrio.r rt: -bo.y fl and,the geodesic curvature z, - tor. lp_/P, where ( )1, denotes

the covaiiant suiface derivative on ,//. For other geometric dehnitions and relations

on _,t// and Ç we refer to Pietraszkiewicz [185, 190, 193].

The deformed configura tion ,V/ of the surface til is described by the position

vector relative to the same Cartesian frame

i : i k ( o " ) i r : t ( r )  : f * u ,

where 0" are the same surface curviiinear convected (material) coordinates and

rr : Ltdao * wn is the displacement field. Geometric quantities and relations, which

may be ànalogously dehne d, on t7/ and Ç on a point .M with the same values of 0o or

s, will be marked by an additional overbar; ao, dop, â, 8"0 , fi, îop,E, d"0 , ( )tt", i t, tu, t,

"' 
?;i'irl'Jli; vectors on .tu the rollowing relations hold

âo :  Gao :  l l oa t *  eo r t ,
(2.2)

where

(2.3)

n : G n - n ^ a t + n n ,

(2.r)

(2.4)

(2.s)
H e r e  G = ô 7 1 ô r i s
tensor product.

The Lagrangian surface strain
curvature x ate defrned by

I o F  :  a o f  *  T o p - @ o p ,  Q o :  W , o * b l u ^ ,

i  1 /  \
9of : 

,(uat 
* up1") - boprf ,  (Ùafl 

l l t tOV- 
LtoW),

1 1 ,
f l o :  

â f f i o ,  
n  :  

A ^ ,  
C I  :

f f iu :  'oo Eurqr l lp ,
1
-  - R  t )  t t r

m  :  = E * ' E y l ' . o | i 6 ,
L

G :  â o 6 a " + n @ n ,  ç - t  -  a o 8 à " a n @ 1 .

the deformation gradient tensor of the surface '// while @ is the

tensor y and the tensor of change of surface

r=
l a
l - t

\ 4

t  : l tc 'G-t)  :  rooao@ar,

x  -  - (Gî6G-b)  :  I toua"@aP,
(2.6)

(2.1)
.l

I

; (d "s -  ao i � )
z

: ) r r , " ' t ,p -  aop)  :  
f ; { , : , , ^u*  e ,e  p -  aop) ,

I d p
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xot t  -  (6"p-b"p)  :  a ,o ' f r 'Pt '  b"o -  - îo '0 'n+ boP'

:  l ; o (nÀ l r -  b in )  +  E" (n ,p+  b in , )  +  boo ,

:  -  n(<pow+ b i l^ " ) -  n^( l lap-  b iç)a bon,

59

(2 8)

(2.e)

(2 .10 )

(2.rr)

where 1: ao8a'+n@n is the metr ic tensor of the Eucl idean space d.
According to [64], the strain-displacement relations (2.7) and (2.10) were given

first by Mushtari [150]. They were applied, among others, in the paperS 164,275,
1 1 5, 1 83, 1 85, 291, 36, 11, 72f . The importance of an equivalent representation (2.9)

for xop was recognized'only recently by Pietraszkiewicz and Szwabowicz [201] and
was applied, for example, in 1197, 198, 267, 27I, 218-222, 225, 164, 165, 262, 2631.

Nôte thatyou are quadratic polynomials of uo, w and their first surface derivatives
while xos àla non-rational functions of ud, w and their hrst as weil as the second
surface derivatives. The non-rationality is caused by the presence of the invariant
d in the definitions of no and n appearing in Eqs. (2.9) and (2.10) where

n
d2 - 

- : 1 * 2yi+2(yiyqp -yiyq")
n

The components of the Lagrangian surface strain measures should satisfy the
compatibility conditions originally derived by Chien [44] and rederived by Galimov

[63,65] (with the sign error) and Koiter [115]. We present them in the form given in

[18s]
Eof  t r \ lnp^tu+ A""(b,^-x* t )y , f lp ]  :  0 ,

Ky i+ to |  ÊÀPUot  lBt . -boux pt+\ { r ,u ,o^*  d '^y ,ot r l ,p t ) f  :  0 ,

(2.r4)

which are subjected to

(2.1s)

,'

(2.r2)

where K:lbi l :  detb is the Gaussian curvature of . / /  and

(2-13) lnlr,  
-- 

TvBlp*Tur, l f  -Tpplu'

An alternative form of Eq. (2.L2)z is given in [270].
The deformation of the sheil lateral boundary element may be described by two

vectors:

U : i - r - u u v * u r t * w n ,

F  :  n - n  -  n , v  * n r t * ( n -  1 ) n ,

two geometric constraints:

É .F '  :  0 , In ' n : l

These constraints imply that among six components of r"(or u) and n (ot F) on 6,

only four are independent: three components of i (or u), which determine the

translation of the boundary contour 6,and a scalar function rp which describes the

rotational deformation of the shell lateral bôundary element. Since the rotationai

2

'f

J
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deformation may be described by various means, also various definitions of E may
be used in the noniinear theory of shells.

If E is identified with n": i l 'V, then n can be expressed entirely in terms of u, u'
and nu, [201]

(2.r6)

where

_ 1 r _
i : - - ; - r l r " a , x ( v x â , ) *

c t  + c - -

1
à": J,(dv,t  + a"rt f l )

(2.r7)
d r :  î '  :  t * u '  :  c u V  * c r t * c n ,  c u : 1 1 t " * r r w - x r u s ,

c ,  :  7  +u l r+xJ )y -o tw ,  c  :  w '  *6 tu t -T rL ru t

d , : l â , 1  :  r f  l + 2 y , , ,  2 y u : 2 y o p t " t Ê : ( r ' ) 2 .

The' relation (2.16) is valid when the rotation of the boundary element does not
exceed + nl2. For larger rotations the sign in front of the square root is not uniqua
and may change.

An equivalent description of n in terms of displacement derivatives at V is given
by

(2.18) _ 1
n : ; r ' u x l "

1
F,n :  v*u,u :  âovo :  

i r {OO 
+2y" i ) ,

1 1  z -  r a z - r r a  / -  - r r f

ct -  :  ( r , " ) - ( r ' ) -  - ( r , " . r ' ) " ,

2y" ,  :  2yof lvo t f  :  i , " ' i ' .

(2.re)

Note that i," is not orthogonal to G due to the shear distortion of the surface during
deformation.

In what follows we shall use the foliowins transformation

(2.20)

which holdsat the deformed boundary contour 6.

3. Basic forms of shell equations

The two.dimensional equilibrium equations and the appropriate natural static
boundary conditions for the nonlinear K-L type theory of shells may.be derived in
severai ways. The usual way is to integrate the corresponding three-dimensional
relations of a continua over the shell thickness. This leads to six equilibrium

- n ï - c j v x 4 , ] ,
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equations and six static boundary conditions, expressed in terms of two-dimensional
non-symmetric internal force and couple resultants and the shearing forces.
Additional transformations allow then to reduce the relations to three equilibrium
equations and four static boundary conditions, which are expressed in terms of
two-dimensional symmetric internal force and couple resuitants. An alternative
direct way is to postulate the two-dimensional virtual work principle compatible
with the basic assumptions of the shell theory, from which follow at once the same
three equilibrium equations and four static boundary conditions. Internal force and
couple resultants are symmetric here by dehnition, since they appear as coefficients of
the symmetric virtual surface strain measures in the invariant virtual work
expression. In this report we shall apply the second direct approach, since it leads
directly to the final shell equations.

A clear distinction should be made between the set of shell equations written in
the Eulerian description and the one written in the Lagrangian description. In the
Lagrangian description, all quantities and equations are referred to the known,
naturai basis of the undeformed reference surface. In the Eulerian description, they
are referred to the natural basis of the deformed surface, the geometry of which is not
known in advance. If transformation formulae between the deformed and undefor-
med surface are used to express components of the Eulerian quantities in terms of
corresponding Lagrangian ones, then the Eulerian sheil equations can be presented
in the so called mixed form.

3.1. Eulerian shell equations

Let lV be the reference surface of a thin shell in an equilibrium state, under the
surface force p: p"aotpn and the surface static moment fr: E"ao+En, both per unit
area of ,l/,as well as under the boundary force T: X,t +\1+ 7n and the boundary
static moment Fi:IT"v+,8,T+.8n, both per unit length of G-. For an additional
virtual displacement fleld ôù : 6t"â" + ôwR, which is subjected to geometric const-
raints, the internal virtual work, performed by the internal stress and couple
resultants on virtual strain measures, is equal to the external virtual work, performed
by the external surface and boundary loads on appropriate virtuai displacement
parameters:

( 3 .1 ) Jj C. ô? + N\. ôx; dÂ : J (p. ôt + E' 6-p) dÂ + J tr' ôn + tr' ôF) ds,
Q €1ttl

where N : N"Éâ o@îp, M : M"F a"@ao are symmetric (Cauchy type) internal stress
and couple resultant tenscirs and

(3 2)

f-r I
6I = 

lituo"x 
p * 6ù p y") - F"pôlr] à"O âe,

[  - ôw, aF -bl aa ̂, o - 6! ôa ̂u, - Fl, p ôu t + ElF ̂u a*1âo 6l àP,

I

ô x :

ôF : -(ôw," +F:ôu^)^"
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After elementary transformations, Eq. (3.1) takes the form

- Jj  tX, l lB+p; '  6udÂ+ J ftp-P*) 'ôt+ (M - Iu1*)6P"lds +
"lt

I J . J , '
€ y

(3 4)

(3.6)

alternative form

(3.7)

I F; - Fil 'ôù, : e,
j

Np : (N,p _ 6ivI^o1a"i(ti1"o ll"+î\n,

P : Np ip+lsr. ,  P* :  r+4^r '- ,

IvI  :  nl ."Ê v oi o, FI* :  E u,

F  :  M"Ê io tpn ,  F*  :  F ,n ,

F,  :  F(*+0)-F1sr-0 ; ,  6F" :ôF ' t ,  ôùr :  ô t (s j ) .

For arbitrary ôt on -V/ and ôù, ôp-" and ôt, on G, from Eq. (3.3) follow Eulerian

equilibrium equations and corresponding static boundary conditions for the free

edge 11911

P/ l l r *F :o  i n  - f u ,

( 3 . 5 )  P : P * ,  M : \ f r *  o n G r ,
F;: Ff at each corner FI,rGt.

The virtual rotation ôF, on qr appearing in the boundary iine integral of
Eq. (3.3), may also be given in alternative but equivalent forms

ô F , :  t ' ô n  :  - n ' ô v ,

:  - (ôw. "  +6 :M)n"  :  - (R 'ô t ) ,0  +n , r 'ôù ,

-  - n . ( ô ù ) , 0 .

Here ( ),0 = ô( )lôi"1e such that l,ç : v on Ç, wherc xn

coordinate l ine of "7 which is orthogonal to Ç.
Using Eq. (3.6)r, the l ine integral of Eq. (3.3) may also

the

the

[(P, -Pi) ôù -(M -Fr*;1n.ôr),, ]ds,

À
P, :  Ni ' r ,  +;F + ù7R, ' ,

tls

d
PT :  T+| -F*  +t l *n l ,

AS

which leads to a modihed static boundary condition P, : PT on Ç, in Eq. (3.5)r.
The tensor form of the Eulerian equiiibrium equations, but expressed in terms of

non-symmetric stress and coupie resultant tensors, was Iirst given independently by
Lurie [l 36] and by Synge and Chien t2661 while Galimov [63] derived static

is the arc length of

be transformed into

J
QJ

(3.8)
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boundary conditions for the smooth 
?, h.te.rms of symmetric stress and coupleresultant tensors and for smooth ,zr, the relations. Eqs. 1:.s;1,2 w€re first given byGalimov [6a] (cf. also [71]). The.quilibrium equatiotrr i:.s;r'ï.r. rederived also bysanders [215] and Koiter [115]- The final formof Eqs. i:.si'witirout [-was given bythe author [185]' The modiÏied static boundary conditions on Ç, rcsulting from therelation (3'7) were given fîrst by Koiter t1151 and rederived by}uao, t3041. It wasnoted already by Lurie t136] that the structure of Eulerian ,rr.n equations (3.5) isexactly the same as the one of the classical linear theory of sheils, only ali thequantities are referred now to the geometry of the deformed reference surface lll andof its boundary contour 6-.

As it has been mentioned above, the geometry of -V( and,.Z is usually not knownin advance and should be determined as àn outcome of the solution of the nonlinearshell probiem' As a result, the simple Eulerian shell equations (3.5) can not be useddirectly to analyse the sheil problems, but they can serve as the basis for deriving ofother mixed forms of shell equations. TLe virtual displacement parameters
ô?": â" 'ôù, 6w : n- 'ôù and 6F,: v 'ôB should not be identi f ied here with variat ionsof displacement and rotation components, since the respective bases ào, n and v, t,n of tV and Ç are themselves subjected to the variation. In partic ular, ôpnshould notbe identified with the variation of v'p. This is the.ruror, rhy rro work-conjugategeometric boundary conditions expressed in terms of displacement parameters canbe associated with the Eulerian sheil equations (3.5).

3.2. Lagrangian shell equations

usually only the undeformed configuration of the shell is the one which is knowrrinadvance' while the deformed configuration is the one which should be determined inthe process of solution. Therefore it is desirable to construct the equilibriumequations and corresponding boundary and corner conditions which are expressedentirely in the geometry or -// and '€. Such Lagrangian sheil equations can be derivedwith the help of transformation rules between deformed and undeformed surfacegeometr ies [185]

l=

dA: l iaa.
\ a

(3.e) vpds :
r-

I U

|  - v  R d . s ,
v r J '

dS : ards,

t ods :  ( 6 i+2y f i ) t " ds ,

-R r  -
Y ' C I S  :

Let us introduce the
couple resultant tensois

t;
J argl-2eo^ePuyl)v"ds, / cls : tP ds.

symmetric (2nd Piola-Kirchhoff type) irtternal stress and
N : .fy'"Éa o@^p, M : M"Ê ao@au, iÀ. Lagrangian surface
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force p: p"îo*pn and the surface static moment h: haoi-hn, both per unit area of
u//, as well as the Lagrangian boundary force T : 4,v + TJ* Tn and the boundary

static moment H: Iluv +HJ]-Hn, both per unit length of €, by the following

relat ions

i
I
t-
il
il
' i l  '
41
?1
i l'1 

.

i\ : jcxc', Nd : )evrc',
(3.10)

(3 .14)

( 3 . 1 5 )

where

(3 .16)

now

_ 1  1 - 1  1
P : ; P ,  [ : , h ,  T : i T ,  Ë : ; H '^ d ' d . Q t a t

also note that the virtual strain measures in Eq. (3.1) are transformed
to

Let us
according

(3 . I  1 ) ô1  :  G-  rôTG-  1 ,  6ù  :  G-  ÎôxG-  1 .

With the help of Eqs. (3.9), (3.10) and (3.11), the principle of virtual work (3.1) is

transformed into the Lagrangian principle of virtual displacements:

(3. r2)  JJtx.ôy+M.ôx)dA: iJb.ôu+h'ôp)dA+ J t r 'ôu*H'ôp)ds,
"il

where now

(3.13)

G7

ôu :  6uoa"  *ôwn,  ôF :  ônnv* 6nr t*ônn,

6T  :  6yoga"@a9,  6x :  6xoBa"@a1,

1
6yop  :  

r@;ôu . ,  *  â r ' ôu , . ) ,

-  1  . _
ôxo.  :  ;  {n , " 'a  t .o*  n ,o 'ôu,o *  â , '6n,p+ âÉ'ôn, , )

L

are variations of the displacement and strain measures, since the bases ao, n and

v, t, n are fixed and not subjected to the variation during shell deformation.

After involved transformations given in [197] and taking into account that

ôF: ôn: -(âB@ôu,p)n in -, / / ,  the principle (3.12) can be transformed into

- JJ tr' le + p) -6udA+
-41

+ J t tp-P*) 'ôu* (M - M*)ôn"lds+ |  (F;-Ff) 'ôu, :  Q,
'6 

1 j

P * :  T + F * ' ,

M - l to*  d,o) .a,Mo\vp,
at)

TÉ :  T^f l  a t*  Tp n+(h.àp)R :  N"Ê oo+ M"P n,"+ l (M"nâ,) ln .âp]  n  +f t  .âB)n,

p :  T É v u * F ' ,

F -  -1f to * â,) '  v)M'Pvoi,
a u

(3.r1)
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a n :  ( â ,  x  n ) . v ,

Here ào,

(3 .18 )

F* :  - f  t ,o x H) 'v lù,  M* : i ,o, .  H).à, ,
'F j :  F(sr*0) -F(sr -0) ,  ô" r :  ôu(sr )

n are understood to be expressed in terms of ao, n and u, fl,, what gives
T ;' p - l:"(l\t " P - *^ tw ̂  P) + n^ çM" 0 l, + ap " ç2y, tt r, _ ! ut,) M ̂  rl,

TP : E,(|,{"tt _�6inla0'1* nflt4"n l+ a0" ç2y*,tt,_y tuw) Mruf ,
F :  (g"R,u * ruRn)v * (g,R,, + r,R")t  * (gR,, * rR,)n,

F* :  (9,H,* r  "H)v * (g,H,+r,H)t + (gH,* r[)n,

NI  :  Ru,+/Rru+kRu,  M* :  H,+f  H,+kH,

inu :  v t l^oMoÊ v o,  Rru :  t l l ^o lu Iof l  v  o ,  Rn :  EoMop v p,

where gr, gp g, ru, rp r ate complex functions of u, nu given in [197].
An alternative representation for T^f , TP in Eq. (3.16)1 can also be derived l!97f:

T t p - U/'É + a" 0 (A t nt' + An)f Il" + M"P (n^ ro - b! n) +! r'g stu (AI uo - A, rp o),
(3 .21)  

d

TP : [À/"É + a"P (At"nt'+ An)f E"+ M"P (n,"+b!n^) +)e"o t^, Aul^o,
d

ao| - 
ir, * 2yi) a'Ê - 2y'of ,

(3.22)
Au :  (M"n l r , )G- M"a E,bun, A : (l\,[xe e,)1"* M"e ly*btr.

For arbitrary ôu jn 'l/ and ôu, ôn, and ôu, on G, from Eq. (3.15) follow now
entirely Lagrangian equilibrium equations and corresponding static boundary and
corner conditions:

(3.23)

T1 lo+p :0  i n  - t / / ,

P : P * ,  M : M *  o n V y ,

F;:  FT at each corner M,eGr.

Corresponding work-conjugate geometric boundary conditions are

(3.24)
u :  u * ,  h n  -  n f  o n  g r ,

u i :  u f  a t  each  co rne r  M i€G, .

The equivalent entirely Lagrangian shell equations (3.23) and (3.24) (without h)
were first derived by Pietraszkiewicz and Szwabor,vicz t201] using a modifie6 tensor
of change of curvature r"p which, by definition, is a ttiira-aeiree polynomial in

5

(3 .1e)

(3.20)
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dispiacements and their surface derivatives (see also 1267, 2111). Alternative
equivalent formulations, in terms of the modified tensor of change of curvature
proposed by Budiansky [36], were given in [218, 97).In terms of xop, the Lagrangian
sheli relations were derived by the author LI97, 198] and in 122t, 223, 96f.

Let us note that already Galimov [63] proposed a version of Lagrangian shell
equations by transforming the final Euleriart vector relations into the undeformed
configuration and resolving them in components with respect to the undeformed
basis. Under such a transformation, the fourth static boundary condition for the
couple still remained to be defined with respect to the tangent of the deformed
boundary contour G. In 167l it was shown that such a condition appears as
a multiplier of the kinematic paramèter v'ôn in the transformed principle of virtual
work (cf. Eqs. (3.3) and (3.6)r). In order to construct the corresponding geometlic
boundary conditions, the parameter called ,,rotation" was defined formally as
ç: I t 'ôn, such that ôo: v 'ôn, and was extensiveiy used in l7r,  72] for the
construction of variationai principles. But it is obvious that so-defîned (2 can not
describe the total rotation of the boundary for an arbitrary deformation of the shell
and Galimov himself was apparently aware that this representation is not consistent
(see discussion on p. 14 of t67]). Various forms of Lagrangian equilibrium equations,
but without boundary conditions, wers also proposed by Shrivastava and Glockner
12421, Sanders [215] and Budiansky i361. Pietraszkiewicz [183] clerived the
compiete set of Lagrangian sheil equations with the fourth static boundary condition
compatible with the kinematic parameter (n'ôu)," and in tl931 with the kinematic
parameter à,'ôfI,, where ôQ, was the virtual total rotation vector, but the
corresponding work-conjugate geometric boundary conditions were not constructed.
In the sect ion 4.4 below we shal l  prove that the kinematic parameters V.ôn, (n.ôu),"
and â,'ôf!, are not integrable, in general, i.e. there exists no scalar function such that
i ts variat ion would give us the kinematic paramerers t 'ôfr,  (n.ôu)," or â,.ôÇ1,, even
mult ipl ied by'another séàlar funct ion.

The Eulerian and Lagrangian shell equations are equivalent within the basic
assumptions of the K-L type theory of shells. However, the procedures allowing for
a reduction to four the number of independent boundary conditions are different
in both descriptions. As a resuit, numerical values of the Eulerian static boundary
parameters F, F, and Ifr may differ, in general, from the numerical values of the
corresponding Lagrangian slatic boundary parameters F, F, and M, see lL91l.

3.3. t\Iixed shell equations

For some problems it is convenient tâ express the component form of the Eulerian
shell equations (3.5), written in the basis âo, n and t, I n of the deformed reference
surface, in terms of components of vectors and tensors measured with respect to the
undeformed surfabe geometry.

Let us lntroduce the symmetric (Kirchhoff type) internal stress and couple
resultant tensors Nx: l{'pâ,@âd, Mx: M"1âo@â, related to the Eulerian and



. t
q

t

, :fr

A

,ia

Geometrically nonlinear theories 61

Lagrangian resultant tensors by

(3.25)
Nr : dN : Ghlcr,  Ma : dM.: GMGr,

llo1 : dN"P , Mof : dlVI"B .

l-lote that in the convected system of coorCinates used here components of the
Kirchhoff type resultant tensors NK, MK in the deformed basis à"8âr are exactly the
same as components of the 2nd Pioia-Kirchhoff type resultant tensors NI, M in the
undeformed basis aoOar.

Let p, h, T and H dehned by the relations (3.10) are supposeci to be given through
their components in the deformed basis

(3.26)
p : Q " â n * q n ,  h : f t o à o + k n .

T :  Q"t  + Q,t  + Qn, ÉI  :  Kuv + K,T+ Kn.

Then it follows from the reiations (3.25) and (3.10), that the virtual work principie
(3.1) can be transformed into

Gy-4t

we

(3.28)

where now

(3.2e)

(3.30)

M"P vov p,

M"f  do; t lv  u ,

G *  :  H ' V ,

1
H* :  - -H'T.

at

I

,l
R,

(3.21) JJN*.ôY+M(.ôE) dA -- JJtp-ôr+h.ôF)dA+ J (r.ôù,+H.ôp)rts.
-4t

After additional transformations obtain

JJ tx,le + p) -6ttdA - L@ i- Hilni- ôuj +
rtt i

+ j  { ix ,vr - (Hn) ' -T+( /1*n) '1"ôt+(G-  c* )v .ôn}ds :  0 ,
€ ç

Np : (N"É - o-i M ̂ 01 a, * (tr4" 0 lo + of " y * ̂ u M ̂ r) n + kP n,

1
G : =

at

1
r J _

â zq t

For arbitrary ôu, t'ôn and ôùr,from Eq. (3.28) follow the mixed equilibrium
equations and corresponding static boundary conditions for the free edge:

N P I , J - P : 0  i n  - / t / ,

N'u, -(Hn) '  -  T-(ËI*n) '  ,  G :  Gx on €1,

H;fr i :  HTi i  at  each corner MteÇt.

,l

Since the mixed shell equations (3.30) are referred to the deformed basis âo,
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their comPonent lorm is

(t{ 'P - o-i lvI"o)ru* a""1,).p(l/rp - 6t pyull-

( 3  31 )
-Fi,çt l^t l^* ae"y*^uM^')* q" -Fitk| :  0,

NI^Blos*(aa'y,^uM^') to+6,p(^ l "P -  o- i l "a1+ q+ kBlB :  0 '

The mixed shell equations (3.30) and their component form (3 
i1) 

were given first

by Galimov 164, à1, 701 und rederived by .Danielson [49]' Since only

two-dimensional stress and strain measures appear explicitly in the form (3'31)' these

equilibrium equations are particularry usefur-ii ttre sheil problems are solved in the

intr insic waY, cf.  [120, 185, 187] '

3."1. Constitutive equations

within the first-approximation theory of thin isotropic elastic shells the strain energy

density, per unit âi.u of "// , isgiven Uy tfte sum of two quadratic functions describing

the stretching and the bending energiêr or the shell reference surface. This conclusion

was arready given by Aron u3] anà Love t1351 within the crassicai l inear theory of

shells. The accuracy of such an approximation was discussed, among others, by

Basset 121),Lamb ll2lf,Novozhiloo utto Finkelshtein [177], Goldenveizer [79-81]'

Koiter [113, ii8], Danielson [50], Krâtzig u22l and Rychter l2l2f' within the

geometricaily nonlinear theory, a..-ording to John trot] and Koiter [115]' the strain

..r.rgy density of the she11 is given by

t - Lrn" o ̂' (, " o ", ̂ u *#, " o, ̂ ,) * o (Eht72 r'2),

ln h h F
o : rrâx(t, Z, 7, V R'

(3 .32)
E / ? ' r \

ualt^rt I aot a\p + aop a01 + : 
' 

aoa a^u l,r t  - { t + u ; \ .  
1 - v  /

where E is young,s moduius and v is poisson's ratio of the linearly-elastic material'

The error of f I, uny point of J/ is expressed in terms of the small parameter

0 def ined in  [101,  115,  119]  to  be

J't ),

where b is the distance of the point from the lateral shell boundary and other

quantit ies are defined in the Introduction'

The modified elasticity tens or Hoglp dehned by Eq' (3'32)' takes implicit ly into

account the change of the sheli thrckness during deformation according to the plane

stress state in the sheli, cf. [189]'
Differentiatinf Eq. ('3.321, witn respect to the strain measures' we obtain the

cons t i tu t i ve  equat ions
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^ ô2, Et
Nop : 

ffi: *t(1 
- v)y"f * va"PyX)+ o(8h402),

l a  a  À \
|  1  1 4 1\ - ' " ' r  

M ' t t  -  y  :  - :Y . .L (1-  v )xor  *vaorx r " f+o(Eh2, t1 t ) .
f ixa! 12(I -  v ')- '

Inversion of Eqs. (3.34) leads to

r _ .
Tog : 

#ttt 
* v)l{", -veaoll11+ o(qo'),

( 3 . 3 5 )  /  n ' \
1 2  . , 1  r  - . \  À . {  À ,  /  n U ' \

xar 
#t t t  

*v) lv I , r -Yaaf Ml l+O\t  
)
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In some variational principles it i, .o,lurrrient to apply the Legendre transfor-

mat ion

(3 .36)  fc lN ' r ,  M"P) :  N"0Top+M"Pxaf  I (y "p ,  nop) ,

from which foilows the complementary energy density of the shell

(3 .37 )

zc :!ru,o^u(t. 'Nrr'+ 
#*"u 

M^')* o(8h42 02),

l + v l '  2 v  \
E o p A r , :  

2 E  \ o o t a p r r *  
Q o r a p t  

| , , u a " p o ^ u  ) '

Now the inverse constitutive equations (3.35) may also be defîned in terms of fÇ by

ôzc ôzc
(3 .3 B) ToF:  

ôN"p '  
xof l :  

AM;F

It is worthwhile to note that while the equilibrium equations and compatibility

conditions are exact on the reference surface (although incomplete from the

three-dimensional point of view), the constitutive equations are always approximate.

In general, the energy densities f and Zc are inlinite series of the two-dimensional

strain and stress measures, respectively, and have to be consistentiy approximated

for any type of the two-dimensional theory of shells.

Within the error already introduced into Z in (3.32)r by the simplifying

assumptions of the first-approximation theory of shells, some alternative dehnitions

for the two-dimensional measure of change of curvature may be used, for exampie

Q "p -- xoo *)tub ^, i biy ̂ "),

K oF : - @6 "p - b "p) * b "pTi +l;ah ^a t biy ̂ "),(3.3e)

XoÊ : - @F"p - b"p) t b,pTi'
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E , a c h o f t h e m e a s u r e s ( 3 . 3 9 ) c a n b e e x p r e s s e d i n t e r m s o f d i s p l a c e m e n t s e i t h e r
using the formuia (2.9) or (2.10). The -.urui. -Q"Bwith Eq. (2.10) *ï *,111::::^9_I

Koiter [115]  ̂ na ùr.É in [183, 187, 190,97]. Without displacemental representatton'

the measure -8"p was 
-applied 

by Koiter and Simmonds [120] to derive the

canonical intrinsic shel1 equations t"r. tr87, 1901). The measure Ko, *ith-P-1 q:fO)

was introduced by Budianrt y t361, wnlt. with Eq. (2.9) it was applied in [218' 225)'

The measure ïdÉ with Eq. (2.9) wJs introduced bt Pietraszkiewicz and Szwabowicz

i 2 0 l l a n d t h e n a p p l i e d - i n 1 2 0 2 , 2 6 7 , 2 6 8 ' 2 7 I ' 1 6 4 ' 1 6 5 ' 2 6 2 7 '
The main advantage of "rirrg Kof and xof is ,!u1 'they. are third-degree

poiynomials in displacements andlh.ir'frrst and second derivatives while A"s and

Kop, when linearized, reduce to the measule of change of curvature Supposed to be

the best one for the linear theory of shells according to Budiansky and Sanders 137)'

The disadvantage of using the modified measures (3.39) in the general theory of shells

is that their definitions involve additional geometric parameters of the reference

configuration. with y and x we can always associate the equivalent Eulerian strain

measures ! and x dehned bY [185]

t  : lo- c- rc- 1),

which satisfv the following transformation rules:

1  :  GTTG, x : G r x G .

^t t ,  -  - (b -  G- rbc- t )
(3.40)

(3 .41 )

No equivalent exact dehnitions of the modified measures (3'39) in the Eulerian

description can be given which wourd satisfy the transformation rule (3'41)' This

becomes an importànt disadvantage of the modifred measures (3.39) when exact

superposition of two arbitrary defoàations is discussed, what is necessary in correct

incremental analysis of the highty nonlinear shell problems L14l,I97f' An alternative

symmetric measur c Qof for the change of curvature, which is free from such

disadvantages urra *t "n iinearized red,-,"es to the best measure of the linear shell

theory, was introduced by Atumâe [8] and will be used in the Chapters 5 and 6 of

this report.

4. Shell equations in terms of displacements

The majority of nonlinear shell problems discussed in the literature has been

formulated and solved in terms of clispracements as basic independent field variables'

The primary advantage of such dispracement nonrinear shell equations is that their

solution gives us the comprete soluiion of the probrem in terms of well-defined and

easily interpretable helds. when displacements in -t// and on % are determined tiom

the sheil equations, other field variables such as strain measures, rotations, stress

measures etc. are calculated by the prescribed algebraic and differential procedures.
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4.1. Lagrangian displacement strell equations

Since displacements and their surface derivatives appear explicitly in the definitions

(3.21), the set (3.23) and (3.24) of the Lagrangian shell equatrons can onry De solvecl 1n

terms of displacements as basic independent variables. The component form of Eq.

(3.23)1 in the undeformcd basis ac, n is given by

, tÊl r t -bf t f t  +p^+97 :  A,

7 r l a + b ^ o T ^ o + p + g : 0 ,
(4.r)

where

(4.2)
nt '  :  (ntBP) lu-bf tnB\,  g :  (nBl) lp+bln^80,

BP :  (h" lL*hE,)a"P,

and the relations (3.18) or (3.21) should be introduced.

The Lagrangian equilibrium equations (4.1) and the corresponding static

boundary conditions (3.23)23 are linear in .l{op, M"F b:ut are nonlinear non-rational

expressions in terms of displacements and their surface derivatives. When the

constitutive equations (3.34) together with the strain-displacement relations (2.7),

(2.9.\ are introduced into Eqs. (4.1) we obtain three extremely complex nonlinear

equations rvhich are non-rational in terms of displacements and their surface

derivatives. These.complex displacement shell equations are two-dimensionally exact

for the shell reference surface.
Within the geometrically nonlinear

with re.spect to the unitY, we have
theory of shells, when strains are omitted

d  x  l * y i x  1 ,  n  x  m ( L - Y i )  x  m ,  n r r x  m p ,

x or x I n(m^ | p - bftn) * cp,(m. p + blm ̂ ) + b,p(I * y!,),

1 -

o = 
iæln "^,x (v x  ̂ ,)  + tF -4 -clv x â,]  .

If the relation (a.2), is used in the left-hand side of Eq. (3.12), it generates the

followine reduced dehnitions of Eqs. (3.21), [201, I91f, and of g

T t B - l:,(l{ " P * a"F b * n M"n) + (m^ | "- b!m) Ma F L, 6a0 sttt (Al p" - A ug o),

Tp : E,(1,{"p I a"0 b,n M"r) * (m,, + blm ̂ ) MaF 1 s,af {'rt A,,l s.o,

E : e"f l  e^u l(h rE "- hl  u,) a  ̂ -  h ul  ̂ ,nf l  p.

Therefore, in the geometrically nonlinear theory of sheils the Lagrangian

equilibrium equations (4.1) with (4.3) are linear in M"f ,,1{"r and quadratic in uo,

w and their surface derivatives, while the Lagrangian static boundary conditions

(3.23)zs with the relations (3.17), (4.3) and (a.2), are linear in .l{oB, M"p but still

\ + .L )

(4.3)
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non-rational in u, trus since in the reduced expression for n in the relation $.2), there
still remains the square-root function of the dispiacement parameters.

It is interesting to note that when the reduced expression (4.2). for n is used in the
right-hand side of Eq. (3.12), then analytically derived expressions for the generalized
static boundary resultants P, M, F, will not exactly coincide with the ones which
could be constructed by omitting in Eqs. (3.17) some terms which are small with
respect to the unity. However, this discrepancy lies within the error margin of the
f,rrst-approximation theory described by the error of the strain energy density (3.32)r
As a result, both ways of deriving the reduced Lagrangian shell equations in terms of
displacements should be regarded as equivalent within the first-approximation
geometrically nonlinear theory of shells.

4.2. Yariational principles

In many cases of practical irnportance it is more convenient to formulate the
Lagrangian nonlinear theory of shells in the variational form, as the problem of
stationarity of some functional which may be free or subjected to additional
subsidiary conditions. Stationarity conditions of such a functional are then equiva-
lent to some set of basic shell equations.

The possibility of the construction of such a functional depends upon the type of
external surface and boundary loads. In general, the vector fields p, h, T and H may
be assumed to depend arbitrarily upon the shell deformation. Such loads may be
non-conservative, in general, i.e. they may not be derivable as gradients of some
potentials. However, in several special cases of practical importance the external
loads can be given in terms of the scalar fields ô[u, B(Vu)] and tr[u, B(u, u', n,)] by

(4.4)
ao

P :  - - . _ ,  n
ou

aa
: - -

âvtH: -fr.
ô F ' T: -ry,

otr

x u,p * !r"o 
u,"*

When all the external loads do not depend upon the shell deformation, i.e. they
are dead, they can be derived using the relations (4.4) from the following simple
potentials 120I, l97l

(4.5) A  -  - p ' u - h ' p , V  -  - T ' u - H ' F .

In case of a uniformly distributed surface load of the pressure-type, we may set
p(u) : pn, where P : const, but measured per unit area of -Z. Then the existence of
a potential depends upon the type of geometric boundary conditions. When the sheli
is closed [116] or when two of three displacement components are prescribed on 6,

[168,302], then the pressure load is derivable according to the relations (4.a), from
the potential

" , ) . " :- t(" +1,'P u"(.4.6) a -
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Potentiality of different displacement-dependent surface loads is discussed in
138,226,221,231,210] .  Potent ia i i ty  condi t ions for  the boundary couple K:  nxH
are discussed in 19, 245, 269, 21|f. General problems associated with potential loads,
treated as nonlinear operators acting from the spaces of geometric variables to the
conjugate force spaces, are discussed in [285, 231,2101.

If the external loads are derivable from potentials, then the principle of virtual
displacements (3.12) can be transformed into the variational principie ôI:0 for the
functional

1 :.Ji {t0, x)+ e [u, Bpu)]] dA+ J y[u, F(u, u' , nn)]ds,
Jr  Gr

where the strain-displacement relations (2.7) and (2.9) as well as the geometric
boundary conditions (3.2a) have to be imposed as subsidiary conditions. The
variational principle ô1 : 0 states that among all possible values of displacement and
strain fields, which are subjected to the subsidiary conditions, the actual solution
renders the functional (4.7) stationary.

Let us introduce the subsidiary conditions (2.7), (2.9) and (3.24) into the
functional (4.7) by using the method of Lagrange multipliers. Then we obtain the free
functional

1,  :  J I  { l (y ,  x )+Q[u ,  F(u) ]  I { . [ y -y (u) ] -M. [x -x (u) ] \ tdA+
i4

(4.1)

(4.8)

(4.e)

+ J V[o,  p(u,  n") ]ds-
€y

[P'(u - u*) * M (n,- nf ) ]  ds -

The functional 1, is delined on three types of independent fields: displacenrent
measures u, strain measures e and Lagrange multipliers o (stress measuros) defined bv

zr: {u in //; u, r?v on G; u, at each Mr},

r = {y, x in //},

o : [] l{, lv\ in .//; P ,, M on qt Fi at each M ,] .

The associated F{u-Washizu (within the nonlinear elasticity, for dead body and
surface forces, the principle was given by Teregulov 1273), extending the principles of
Hu [93] and Washizu [288] of the l inear elasticity) variational principle ô1, : g
states that among all possible values of displacement, strain and stress fields (tt, e, o),
which are not restricted by any subsidiary conditions, the actual solution renders the
functional (4.8) stationary. The stationarity conditions of I r are: equil ibrium
equations (4.I), strain-displacement relations (2.7) and (2.9), static boundary and
corner conditions (3.23)r,t, geometric boundary and corner conditions (3.24) and
additional relations which identify the Lagrange multipliers with the fields already
described by their symbols in the functionai (4.8). These additional relations are
constitutive equations (3.34), definitions of the effective generalized boundary force
and couple resultants (3.11)t., and definit ions of the effective corner forces (3.I7)4.

I
l)

i
J F, ' (u,  -  u,?*) .
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The free three_field functional /, was originalry construct.g uv pietraszkiewicz

and szwabow i":, fzor, zozl using the modiried tensor of change of curvature

x"p givenbv Eq.l:.îe;.'a.ro ior dead_load type externai surface and boundary loads.

I t w a s a l s o g i v e n i n [ 2 1 8 ] u s i n g r " u o g r ' " 3 o b , I E q { 3 . 3 9 ) 2 , i n [ 1 9 7 , | 9 8 , 2 2 | , 2 2 3 ]
using xop andin [g7] using q"p dehJed by Eq. (3.39i1. Each of those formulations of

1,, which are equivalent within the first-approximation theory' can be used as

a starting point fàr derivation of various free or constrained ̂variational 
functionals,

according to the general procedure discussed in [48' l '7g'289'2'2' �76'211)'  various

functionars crefined on different three and two rrelàs as welr as functionals def,rned on

the displacement freld alone were constructed by Szwabowicz 1267 ' 268) and

schmidt l2r1_2rgl for dead-load irn. external surfàce and boundary loads and by

Szwabow icz 1271] for conservative p' T and K : n x H'

Several variationar functionars weie also constructed by Galimov [67' 71,72f tn

terms of the formaliy defined geometric boundary parameter O.such that ôf2: v'ôn'

we shalt prove in Section 4.4 thatsuch a puru*.i.i do.r not exist since the kinematic

constraintn.ôR:0 is not integrable, in !.n.ral. As a result, the functionals given in

L67,1I,72)in terms of (2 are meaningless within the general geometricaily nonlinear

theory of thin elastic shells expressed-in terms of displacements as basic independent

variables.

4.3. Consistent classification of displacement equations

ibr shells undergoing restricted rotations

The set of Lagrangian nonlinear sherl equations expressed in displacements given in

Section 4.1 is extremely compiex even in tensor notation. This is causdd by the

generality of those reiations since no restrictions have been imposed on dis-

placements and/or rotations of the shell materiar erements. In many engineering

problems of frexible shells displacements and/or rotations cannot be arbitrary due to

implicit constraints imposed by the shell geometry' l imits of an elastic behaviour of

t h e m a t e r i a l , t y p e s o f e x t e r n a l l o a d i n g s , b o u n d a r y c o n d i t i o n s e t c .
Severa lapprox imat ionschemesleadi r rg tos impl i f iedsetsofd isp lacementshel l

equations were proposed in the literature' In itSZ, 7l' 128,' 215' tr'15' 186' 187]

restrictions of components of the rinearized rotation vector and of the displacement

gradients were or.à to derive several simplified versions of nonrinear shell equations'

Amo'g the best known simplirred versioni obtained in this way are displacement shell

equations of medium bending given by-Mljhtari and Galimov [157]' for moderately

smari rotations proposed by sînders [2r5] and with smarl finite defrections derived

b y K o i t e r [ 1 1 5 ] , t h e s p e c i a l c a s e o f * t , l " t ' a r e t h e n o n l i n e a r e q t r a t i o n s o f s h a i l o w
shells developed earlier in 1144, 148,295f' A variety of simplilied ver3ions proposed

by Duszek t56, 57] follow.d iro* restrictions of displacements and their surface

derivatives, while those given uy Nouotny [171] were obtained from three-dimen-

sional etluations by a formal asymptotic procedure'
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The deformation about a point of the sheli middle surface can be exactly

decomposed into a rigid-body translation, a pure stretch along principal directions

of strain and a rigid-body rotation 15,247, L84, 1851. V/ithin the first-approximation

theory discussed in this report, strains are already assumed to be small, what leads to

reduced shell relations (3.32)r, Q.34), (4.I) (a.3). Therefore, several consistently

approximated versions of the nonlinear dispiacement shell equations were construc-

teO in [185, 190] by imposing additional restrictions upon the hnite rotations of the

shell material elements.
A finite rotation in the shell may be described by the angle of rotation ro about an

axis of rotation described by the unit vector e. The rotations in [i85, 190] were

classified in terms of the small parameter 0 defineC in the expression (3.33) as

follows: a) ra ( O(0t) - small rotations,a) -- O(0) - moderate rotations (cf. [207]),
^ r  f Â t

a: O(^r/0) large rotat ions, a2 O(I) frni te rotat ions. This classif icat ion

restricts the magnitude of the rotation angle co. However, sheli structures are usuaily

quite rigid for in-surface deformation being flexible for out-of-surface deformation. In

order to take this into account, the finite rotation vector O : esina; may be defined.

Since for lcol <TEl2, O(lAl) : O(sina-r): O(cr;) the name ,,small, rnoderate, large or

finite rotation" may be associated with the particular component (): fl 'n or

Q p :  Q'up of  f l '

Within small strains (but not small rotations) the vector O is expressed in terms

of displacements by [185, 193]

(4.10) f ! =

For any restriction imposed on f,l estimates f.or qo and aop are given by the (4.10)

and estimates for 9o/ follow from the expression (2.1) with ToB: O(rù' Then

simplihed expressions for the strain measures l"B and xdp can be obtained taking into

account the accuracy of the strain energy density (3.32)r In the estimation procedure,

covariant surface derivatives are estimated by dividing their maximal value by

a large parameter ,i defined by

(4 .1  1)

Introducing such energetically consistent simplilîed expressions of the strain measu-

res into the Lagrangian principie of virtuai displacements (3.I2), one gets the
corresponding reduced expressions for the internal force vectot 70 and the
generalized static boundary parameters P, M and Fr, together with the consistently
simplified expression for the geometric boundary parameter n,.

Simplil ied versions of the Lagrangian shell equations proposed in [183] were
discussed in [185, 193]. Simplifications of the entirely Lagrangian shell equations
derived in [201] were given in detail in [195, 197). Let us remind here some of those
consistently approximated nonlinear shell equations.

, ,"[r.(, .)n) - lr^ $ ̂ .-,, .)] a o +le"p o)ofn
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Within smal l  rotat ions Qo: o(0 ' ) ,  0)aÊ o(0') ,  9o/ :  o(0 ' )  and the strain

measures are approximated by y"p- 9oÉ *O(402),  %oB -t ; t  ^o*Ept")+O(rt l l1) ,

which tjescribe the linear bending theory of shells treateJ extensively in many

monographs.
' Ù / i t h i n m o d e r a t e r o t a t i o n s ( P o : o ( 0 ) , ( Ù a f i o ( 0 ) , S o f : o ( 0 , ) a n d t h e c o n s i s t e n t -

ly simplif-red shell relations take the form [185, I93,224]

1 1 ,  1
^ /op :9op *  

) . r " ro+ )o^,a^o-  ;Q! '^p 
*  } f iuo^*)  +  oQ702) '

( 4 1 ) \

(4 .13 )

t l
+:(g'" ^{t t"-Sp"Nj) lu^ + (q,N"f l  + M'p l ,)n + f tpn,

2 l

n  -  -  e o t " l n + O @ 1 ,  n v :  - q v ,

F :  M , r n ,  M :  M u r .

If, additionally, rotations about the normal are assumed to be also small then also

(r)o.: O{0t; For such a moderate/small rotation theory of shells the relations (4.12)

u"â (+.13) may be considerably simplified by omitting there the underlined terms.

The set of nonlinear relations (3.23), (3.24) with Eqs. (4.13) and (4.12) describes the

consistentiy reduced Lagrangian nonlinear theory of shells undergoing moderate

rotations. The theory càntains as special cases various simpler versions of shell

equations proposed in the literature. Among them are the theory of medium bending

lfSzi, for moderarely small rotations l2I5f, with small finite deflections [115] and

the classical nonlinear theory of shallow shells. A detailed review of those simpler

versions was presented by Schmidt and Pietraszkiewicz 1224), where aiso a set of

sixteen basic free functionals and several functionals with subsidiary conditions was

constructed for conservative dead-type surface and boundary loadings, (cf- [216])'

These functionals and the variational principles associated with them extend to the

moderate rotation range of deforrnation earlier results on particular variationai

principles formulated for shallow shells 1296, 6, 157, 281,94, 74,255,3, 256, 67 '

14,24g,71] and for simplihed versions of the theory of shells undergoing moderate

rotations [25E, 25g,25ti. StaUltity equations for the moderate rotation theory of

shells ur. giu.n in [139, 260f, which extend various simpler versions of stabiiity

equations giu.n in the literature. More complex moderate-rotation shell equations

*.r. proposed in 123,26, 163), where the expression fot xop contains also some

nonlinear terms, *Àor. contribution to the strain energy density (3.32)r lies within

the indicated error of the frrst-approximation theory.
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Within large rotations eo: O(r/4, @of O(.,[0), ,9oÉ : O(0). Appropriately
simpiiÏred relations of the Lagrangian theory of [183] were discussed already in
[185, 193]. It was found in [193] that the consistentiy simplif ied (but sti l l  nonlinear)
expression for xap genelated the boundary integral which contained six (instead of

/ r i l \
four) independent variations: ôu and ô { = }. fnis did not allow for a variational

\ds",/
formulation of the shell problem even if the external boundary forces were
conservative. An explanation for this paradox was found in the dehnition of the
fourth geometric boundary parameter used in [183, 185], which was not entirely
Lagrangian. As a result, an entirely Lagrangian nonlinear theory of shells vvas
proposed in [201] where the new parameter nv was used on the sheli boundary.
Appropriately simplified relations of [201] within the large rotation range of
deformation were discussed in detail in [195], various alternative results, within the
prescribed accuracy of the strain energy density, were presented also in l21g-222,
r91 ,198 ,  165 ,  169 ,  l J j ,  r40 ,1411 .

I'he most interesting special case of the large rotation shell theory appears when
rotations about the norrnal are assumed to be always small, i.e. aoB: O(01. lf,
additionaliy, we allow for a greater error in the strain energy function (3.32)L to be
^ t ' - ,  a  ^  f : ,

O(Ehry'?t/O) instead of O(8hry202), then the set of shell equations for such
a simplified large/small rotation theory (without h) is described by the followins
relat ions [197, 198-l

1
I

)

n u :  - e , + O ( 0 ' . , [ q ,  n =

To0 : ,9,p * ) . r , ro*)nlstF ) tn:r^o+ 
slal)+ o(r10{e),

I t(ôj + St;),p ^t p + Gi * S'l) e t t*] + e 1 (e " e t1 p * e p rp tv) *

+ (bl S t p * bi I  ̂ ") + (bl q p + bî e ) E t- b o0 E^ ç )

7 )
_ _ / n -

2 t u

t \
L  ^ \-  
y a f  ) n ,

-  eur - r l r t+(t

r À 0 - (ôj +,ei) lg'r -)o* * ( + ao" r,t 1, -*rrul + E t l) M"u + (ry + qÊ | ) M' ̂ f ,

TP : eoN"F + t(ôf + Sq)M^\1.*(E^M^")t,rpo - e^1"ç^M"f -

- (b lM"P +bP"M"^)e ^+b,^Ei r  MoÀ,

Ruu :  (1  + 9"" )M, ,+ 9urMtn,  R,n :  SruMun+(1 + Su)Mru,

M - (1 +.9""  +81)M",*($,  *eue,)M,u,

(9, ,*  ene,)Muu+(1 + St t+E!)M,, .

(4.14) .'(+),

Rn :  euMuu l  (p rMru ,

F  :  F n ,  F :

1 4  1 s )
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The relations (4.14) and (4.15) have an important property: for conservative surface

and boundary loaclings they allow to construct the functional (4.8), whose stationarity

conditions lead exactly to all shell equations described by Eqs. (4.14) and (4.15).

Another such formulation was proposed in U9'7, 221f. Aiternative versions of sheli

relations of the simplified large/smal1 rotation theory discussed in Ii95,
220, 165, 170] are also energetically consistent, although some additionai transfor-

mations should be applied in order to derive the shell equations from the variational

functional (4.8). In paqticular, the version proposed by Noth and Stumpf' [170], in

which x,11 &r? quadratic polynomials in displacements and their surface derivatives, was

shown [165, L69, !40, 141,766, 161) to be numerical ly ef l ic ient and leading to good

results also far beyond the iarge rotation range of shell deformation.
In some engineàring applications the shell relations (4.14) and (4.15) may stil l be

simpli{ied at the expense of a larger loss in accuracy of the strain energy function

(3.32)t ro be O(Eha20). Within thÈ larger error the shell relations of such simplest

large/small rotation theory of shells ll97l are described again by Eqs. (4'14) and

(4.15), where the underlined terms should be omitted and the term Sly"p in Eq.
1

(4.15)1 should be replaced by its symmetric part 
,iSlll"'+9fl/"1). 

Alternative

energetically consistent versions were proposed in [193, 195, 196, 165, 1 70, 218,

2211. On the other hand, the comparative discussion given in [198] suggests that

some known versions [115, 23,]1,2351of the nonl inear theory of shel ls, which are

based on various quadratic expressions of xor, cannot be regarded as energetically

consistent within the large-rotation range of deformation since some energetically

important terms O{0J011) do not appear in the expressions for zo, used there.

Various simplified versions of the nonlinear shell relations were also proposed in

[99,  100,  58,  87,  88,  98,  45,46,230,3r f .
When only rotations about the normal are assurned to be small, whiie other ones

are unrestricted, then E" : O(1), o)ap O(7t), ,9oÉ : O(1) For such a finite/small

rotation theory of shelis only a few terms may be omitted in x"p within the error

O{8hry202) of the funct ion (3.32)1 or even rvi thin the greater error O(Ehq20l0)-h
seems, therefore, that considerably simplihed shell relations derived in [104, 236) fot

such a theory cannot be justifîed within the assumed error of the first-approximation
theory.

An extensive comparative numerical analysis, based on energetically consistent

simplified versions of nonlinear shell equations discussed above and on several other

simplified versions proposed in the literature, was carried out in the series of papers

[139-141 ,252,253,  165-169,35,59,  89,90,  86,  47f  for  a  large number  of  one-  and

two-dimensional problems of flexible shells. In order to provide a reliable reference

solution, the full version of entirely Lagrangian shell equations [201] and in [47]
also the refrned three-dimensional NONSAP numerical code were used. The results

of the numerical analysis showed that all energetically c-onsistent versions of

nonlinear shell equations led to results which, within the range of their applicability,
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weie always in good ugr-.*..tt with the reference solution. In some examples the
agieement was adequate also far beyorrd the range of applicability of those versions.
On the other hand, some of the simplified versions suggested in the literature, whictr-
were even more complex but sti l l  energetically inconsistent, led to load-dispiacement
paths which occasionally diverged from the reference path already on an early stage
oI the shel l  deforrnat ion.

4.4" Inûegrabitrity of kinernatic boundary constraints

In the entireiy Lagrangian nonlinear theory of shells d.iscussed in Section 3.2, the
component nu: n'v has been used as the fourth independent boundary parameter,
in terms of which ôn can be given [201,'191] by

This has allowed to reduce the principle (3.12) into the form (3.15) and to construct
four work-conjugate static (3.23)zs and geometric (3.24) boundary conditions.

In the derivation of the mixed shell equations in Section 3.3, an alternative
expression for ôn has been used:

(4.15)

(4.17)

(4 .18 )

(4.19)

ôn : 
f,G"Un,*v 

x n(n.ôr,)1.

ôn : t(t.ôn) _.ir'ro.ôFJ.

This has allowed to reduce the relation (3.27) into the form (3.2g).
Stil1 another expression for ôn results from a direct variation of Eq. (2.iS) to be

_  1 _
At - rY  ,

a

.  - R  r --  t  pz "  (n  .  d r ' ) ,

1 / _  1  \

a('- a""o )
v , �ao  :

When the expression (4.18)1
boundary integral transforms

.  - R

toa" :

is introduced into the relation (3.I2), the internal
into

l.{ fTo v o * (M ",n) ' l .ôr -  M nufr.  ôr,"} r /s+ I  (M,,n), .ôFj :
- i

The transformed line integral (4.19), was used in t1831 while the simpler integral
(4.19)r was not used in the literature.

Static boundary and corner conditions in (3.23) and (3.30) have been constructed
on çr by demanding that all the multipliers of ôi, ôF, and of ôn., or v.ôn in the
corresponding line integral identically vanish. Using tÉe transformation (4.18) and
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(4.19)1, we may construct alternative static boundary and corner conditions on Çt

again by demanding that all the multipliers of ôi, ôr, and 
l'ôr'",identically 

vanish'

It is implicitly assuÀed that the work-ionjugate geometric boundary conditions on

6gg, ,  should sat is fy  the k inemat ic  const ra in ts  ô i :0 ,  ô i , :0  and ô 'n :0 '  t 'ôn:0 or

n.ôi." :0, respectively. I t  is easy to note that from the kinematic constraints ôr:0'

ôn, :0 and ôF, : 0 follow the geometric boundary conditions.f : 1* ' fln - n{ on (6u

and r, : 1t at each M,eVo It is not apparent, however, what kind of a scalar

parameter should be assuÀed to be given on 6u^Ln order to.satisfy the fourth

kinematic constraints v'ôn:0 orn'di , ; :0 '  Thertfott '  the question arises whether

there exists a scalar parameter rp such that its variation on G,,would coincide with

the variational expressions t.ôR or n.ôr,u, possibly multiplied by some scaiar

function i.i. If such functions rp and ,,t exist, the question arises how to construct them'

This general problem has been solved only recently by Makowski and Pietrasz-

kiewicz 1142). Here we summ arize some of the results given there'

The variat ionai expressions v'ôR, n'ôi ,"  or ônu discussed above are part icular

caseso f the fo l l ow inggenera l va r ia t i ona lexp ress ion :

where A: A(i , , ,  i ' )  and B: B(r, , ,  f ' )  ale vector-valued funct ions of the vector

arguments.  . .  - r -  ̂. - . -  : *  r
Extending the method suggested in [304], it was shown in [1a2] that at each

point M e6 the variational expression (4.20) may be regarded as a differential

one_form on the six-dimensional manifold X wiitr ttre rocar coordinates (,ex,

i  :  1 , 2 ,  . . . ,  6  d e f i n e d  b Y

(4  ?0)

(4 .21 )

(4.24)

c L t :  A ' ô r . " + B ' ô r 1 ,

( ; :  ( v ' f , , ,  t ' i , u ,  i l ' i , u ,  v ' F ' ,  t ' i ' ,  n ' f ' ) '

A , :  ( v ' A ,  t ' 4 ,  n ' A ,  v ' 8 ,  t ' 8 ,  n ' B ) ,

is said to be exact if there exists a primitive scalar-valued

that cr.r :6ç. The necessary c,cnditions for ol to be exact are

A i , , -  A , . ; : 0

A,(Au. i -  A1,x)  *  A1(Ai , t  -  Au)*  A1,(Af  i -  At ' )  :  0

L e t a l s o t h e c o m p o n e n t s o f ( A , t s ) i n t h e b a s i s v , t , n b e d e | r n e d b y

(4.22)
6

so  t ha t  r :  I  A ,6 ( ,

The one-form (4'20)
funct ion E( i , , ,  i ' )  such

(4.23)

for any i ,  je(1,2,. . . ,6).  The one-iorm (420) is said to be integrable i f  there exist

scaiar-valued functions p(r,", r'), called the integrating factor' and E(r'"' r ') such that

LL():ôrp. The necessary'condit ions for ar to be integrable are

l o r  a n y  i ,  i ,  k e ( I , 2 , . . . , 6 ) .
Let us check the exactness and integrabiiity of the one-form co : t'ôn. for which
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A and

( 4  ) 5 \

B are given by

Differentiation of the

( 4  ) 7 \

I  1 1A -  - o , A  U : e i 2 " t " , n .

relations (4.25) with respect to f,, and i '  gives

(4.26)

ôA - )
-- 

- LLt

or ,,

1 1
1 -  I

; ^
U A

-or
:  

t  
r "  o  -  

Orr r '  " , ( tgn + R@t)  :

a t s  l _ ^ _  1 1 . - . . .  1 1
a.' 

: 
;7 o I o * u? F{''' ")t (v @ n + n I r') - 

æ A', ",(To n + n 8T)'

Since Eq. (4.26)3 is not symmetric, the conditions @.23) are not satisfied for
(i, j) : (4, 5), for exarnpie. Moreover, with the relations (4.25) and (4.26) the
integrability conditions (4.24) are not satisfied as well for (i, j, k): (r,4,5), for
example. As a result, the differential one-form v'ôn is neither exact nor integrable, in
general' The discussion given in more detail inlla2f provides the proof for the same
statement given by Zubov [305].

The variational expression v'ôn, which appeared originally in the paper by
Galimov 164f, may be presented in several different but equivalent forms. Xotl
that in terms of the difference vector p given in Eq. (2.14)2 ôn : ôF and
v'ôn: t 'ôF: ôB-", which was used in t185]. Here ô shoulcl  not be understood
as the variation of F" since so defined ôF"+ ô(v.p). The rotation of the boundary
may also be described [185, 188, 192] by the total rotation tensor
R,: v8v+TOt*n8n such that n: R,n. Then we can introduce axial vectors ôor.
and ôw, of the skew-symmetric tensors ôR.,R,r and R,rôR,, respectively, according to
[138 ,  l gg ,  200 ] .

r , _ ^
d 2 ( v a 9 n + n E ) v J ,

Ias l '
Lrr "-l '

ôR,R,r : ô{ù, x 1, R, ] "ôRr :  ôw,  x  1 , ô{ù,  :  Rrôw,.

since ôn : ôco, x n : R,(ôw, X tr), it follows that we have v.ôn : ôco,.T - ô*,.t. Here
again ô should not be understood as the symbol of variation of û), or w, iince the
symbols o)r or w, alone have no geometric meaning here. The expression ô<o,.T was
appl ied,  among others,  in 129r,214, l i )  whi le ôw,. t  was used in l27r l .

Accordin,s to the discussion given above and in the forms (3.6), the variational
express ions lôÉ-u ,  ô r , ' i  ôw, . t ,  -R .ô t ,  -6eu, -n .ôù , ,  wh ich  appeared in  the  l i te ra tu re
are all eqr"rivalent to the differential one-form v'ôn since they have all the same
representation (4.20) with (4.25) in terms of variations of f,, and F'. As a result, neither
of the one-forms is exact or integrabie as well. It is apparent from this discussion that
the variational principies given by Galimov [68, 71] in terms of g2 such that
6Q: v'ôn are not correct, in general, since such a function {.) does not exist.

In [1 42] i t  was conf i rmed that the di f ferent ia l  one-form cr:  v.ôn: ôn. is exact

6
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indeed and its primitive function is rp : nu. 
'It 

was also proved that the one-form

n.ôr," is neithei exact nor integrable since the conditions (4.24) are not satisfied.

Using the same method, many other variationai expressions of the type (4'20) may

be checked. On the other hand, a similar direct discussion of iniegrability of the

variational expressions (n'ôù),r or (n'ôr)," has to be performed with the help of

a nine-dimensional manifold with locai coordinates identified with the components

of l, i,u, F' in the basis v, t, n. However, such a discussion is not necessary since those

variational expressions can always be transformed further by taking the partial

derivative with respect to sv on %. Since ôi is exact on a three-dimensionai manifold

of positions i, the problem can always be reduced to the integrability of the one-form

of the type (4.20) on X.

4.5. Work-conjugate boundary conditions

Each of the variational expressions of the type (4.20)' which appears in the boundary

line integral and is connected with the boundary couple, may be transformed further

by multiplying (and dividing) it by a non-vanishing scaiar function 4(î,u, i') and by

uâdirrg (and subtracting) terms of the type c(i,", r') 'ôF' since terms with ôr' can always

be eliminated by integiation by parts. By suth a transformation, a non-integrable

one-form may be transformed to the exact one-form for which a primitive may be

constructed.
In ll42l the following simple differential one-form on the six-dimensional

manifold X has been discussed:

(4.28)

B  :  A+v  *  As t+  A6n  :  0 .

lt is easy to check that the one-form I is not integrable.Inll42l it has been proved

that an arbitrary funct ion Q(i ' ,  a),where d.:  '4t lAt:  nufn, is the primit ive of some

transformecl one-forrn r/ such that

6rp:  t  :  nd 'ôr , "+c 'ôr ' ,

4 -  - lc,r ,
i a3

^ ôE ôrP
L :  

6 t  
l :  i , o '

If we soive the problem (4.29),for d'ôF," and introduce it into Eq' (a'18)r' then we

(4.2e) c :  )u +l | rxa,
/1 3
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another general expression for ôn to be

ôn :  t "â" f  6E-eP { lvpfL+(vpo +tB)nl 'ôF'} ,
1 )

,  Qf l '

J )

C,X

The expression (4.30)1 is remarkable by the fact that it is given directly in terms of
variation of an arbitrary function q(i', a).If now the expression (4.30)1 for ôn is used
to transform the Lagrangian principle of virtuai displacements (3.12), then it can take
the form

obtain sti1l

(4.30)

-JJ t r r lB+p)  -6 rdA+

(4.31) 
u/ ' t

s:?:#(:*#*2v",)

I  F;-Fi) 'ôr i+
j

+ J [ ( rB vo*F'  -T-F* ' � ) .ôr ' �+ (M - IuI*)6Elds :  0,
€1

where

t4.32\  
F- - fM",L+(g lu I , , "+M", )n ,  M- . fMuu,

Ft  :  (H.an; j , , fL+(vpg +rp)n l  ,  Iv I * : . f  (H.a l )vp.

For arbitrary ôi, ôF, and ôrp, from the form (4.31) fol1ow the equilibrium equations
(3.23)r and static boundary conditions

l A . . \  T u r o - F F ' :  T + F * ' ,  M :  M x  o n  6 y ,
t + . J J  I

F; : FT at each corner M,e6r.

Corresponding work-conjugate geometric boundary conditions are

f  : F * ,  e  - E *  o n  q ,
(4.34)

i ; :  r i*  at each corner Mre6".

The arbitrariness of E allows for wide freedom in choosing the form of boundary
conditions to be used in the shell theory. This enables one to choose such a definition
of rp which would suit best to a particular shell problem. In particular, it was shown
inll42] that the parameters /7v,0" used in [178] and the total rotation angle co, of R,
are all special cases of q.

5. Shetrl relations in terms of rotations

Some shell problems are solved in a more convenient way if one uses finite rotations
together with other frelds as basic independent variables of the nonlinear shell
equations. Already Reissner 1206,207] proposed the set of nonlinear equations for
an axisymmetric deformation of shells of revoiution written in terms of a rotation
and a stress resultant (or a stress function) as independent variables. This
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formulation led to a number of papers on axisymmetric probiems of shells of
revo lut ion,  the resul ts  o f  which have been summar ized.  among others,  in  the books
by Shi lkrut and Vyrlan [238] and Libai and Simmonds [134].

Within the general nonlinear theory of thin shells, Alumâe t5] derived the
nonlinear equilibrium equations and compatibility conditions in the intermediate
rotated basis while Simmonds and Danielson 1247,248] proposed a set of nonlinear
shell equations in terms of a finite rotation vector and a stress function vector as
independent variables and constructed an appropriate variational principle. The
theory of f-rnite rotations in shells developed by Pietraszkiewicz [184, 185] led to
several alternative forms of nonlinear shell equations, boundary conditions, consis-
tently approximated shell relations and some new kinematic relations which have
been summarized in [186, 188, 190-194). Contributions to the nonlinear theory of
shells in terms of rotations were also made by Wempner L290-293), Shamina

1233.234), Valid 12S1-2841, Shkutin 1240). Reissner [208, 209]. Libai and Sim-
monds [133], At lur i  [14],  Makowski and Stumpf [143] and Badur and Pietrasz-
kiewicz [19] where further references are given.

The primary advantage of the nonlinear shell equations in terms of finite
rotations is that they contain, at the most, first derivatives of the independent field
variables. In the computerized analysis of shells, this makes it possible to use the
simplest shape functions or the simplest difference schemes which assure high
eff,rciency of the numerical analysis.

The nonlinear theory of sheils in terms of rotations is now in the process of
development and several questions are stii l open. Only few two-dimensional
problems have been analysed [60, 61] using this approach. Therefore, we found it
lvorthwhile to review here in more detail, in the unified notation, the most important
results of this field given in the literature and to supplement them with some new
resuits which are not available elsewhere. It is hoped that it will stimulate further
research in the field.

5.1. Additional geometric relations

Applying the polar decomposition theorem 1219,280, 138], the deformation gra-

dient tensor G dehned in the relat ions (2.5) can be represented [184, 185, 190] in the
form

( 5  1 ) G  :  R U  :  V R .  ç - t  -  u - 1 R r  :  f t r y - t

Here U and V are the right and left stretch tensors, respectively, while R is the finite

rotation tensor. The tensors U and V are symmetric and positive definite while R is

the  proper  o r thogona l ,  i .e .  de tR:  *1 .
By the relat ions (2.1) and (5.1),  the deformat ion of  a neighbourhood about

a particle of the shell middle surface has been decomposed into a rigid-body

translat ion,  a pure stretch along pr incipa. l  d i rect ions of  U (or V) and a r ig id-body
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i t  follows that there exist two
basis so, n and the rotated basis

s o  :  U a o  -  R T â o ,  s o - s p :  a o 1 j ,

r ,  :  R a ,  -  V -  t  à r .  l o . f  1 1  
:  o a l ) .

( 5  ) \

( 5  3 )

(5.4)

{5  6 )

Within the shell theory the rotated basis ro, fr was introduced frrst by Alumâe [5]and was used in f8,247,248,240, 133, 19].  The stretched basis sd, n was introduced
f i r 's t  by Novozhi lov and Shamina [178]  and used in  [184,  185,  1Sg,  t9O-t94,  l4 l . In
terms of the bases, the following expressions for U, V and R can be given [1g5, tô01:

s o @ a o * n @ n ,  U - 1  -  a o @ s o * n @ n ,

â o @ r " + n @ n ,  V - 1  :  r o @ â o + n € ) n ,

R  :  â * @ s ' + n @ n  :  r o @ a o * n g n .

U -

v -

Any rotation tensor R may be represented by

(5 .5)  R :  coS co7 *s inc l re  x  I  * (1  -coso- r )e@e,

where the unit vector e describes the axis of rotation of R and a-r is the angle of
rotat ion of  R about the axis of  rotat ion.

Sometimes it is more convenient to describe rotations by means of an equivalent
l lnite rotation vector, the direction of which is e and the l lngth is a function of cr.r.
For example, the finite rotation vector O : sincoe *ut used in 1247,24g,
7J8,43 ,184-186,  190-1941,  the  vecror  0 :2 rg î "  was  used in l24 l ,  133, rg lwh i le

-
oCI = @@e was applied in L2401. As it was pointed out in [199], each of the definitions
has some advantages: fl is particularly convenient tà U" expressed in terms of
displacements (cf. [185, 192]),0 leads to geometric relatio.r, *hi.h do not contain
trigonometric expressions whiie co is the single-valued function of co and can be
defined in terms of the natural logarithm of R, cf. [199]. In [10g, 109] the rotations
were described in terms of four Rodrigues parameters. In the following part of this
report we shall use primarily the finite rotation vector 0, in terms of which
transformation rules for the basic vectors are

_  1 ^  /  1  \  1â o : s a + l 0 x  ( r r + j e x s ,  ) ,  t :  l + ; e . 0 ,r  P  r  \ '  2  4

^^o )

("* jn.")

1 t l
rp :  àp *-0 x (" ,  +;e

I

n : R n : n * l 0 x
t
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Let us introduce the relative (symmetric) surface stretch tensots

(s.1)

(s.e)

(5 .10 )

r l  :  U - 1  -  
e p @ a l t ,  t { r p -  s p - à p  :  \ o p à o ,

s  :  V - 1  -  t u @ r 9 ,  a p  :  ù p - l p  :  4 o r t o ,

(5.8) e  :  R r l R r ,  t p :  R { p .

In terms of so defined 4o0 many useful geometric relations may be derived,

[185,  190,  193,  199,  19] .
The corresponding relative (unsymmetric) surface bending tensors are defrned by

p -  (Rtn,B -  n,p)O aÊ :  pr@ap

t :  (n,p -Rn,r)@ ro :  Lp@ra ,

.  11"

ro

:  L I - n T o .
|  - F

:  FoPro '

The relative surface strain measures 4aa, ltaÊ were introduced frrst by Alumâe [5]
They are related to the Lagrangian surface strain measures (2.1) and (2.8) by

1, : RlrRr, Ip : Rlrp.

r oa :Lop l . ) r l n ^u ,

xo. )ftu: + 4l) p tp + @i + rri) tr^") -)fu!n ̂ o + bi,t ̂").
(5 .1  1 )

Since RtR,p and R,uRr are skew-symmetric, they are expressible, according to

[199], by their respective axial vectors k, and lr, called also the vectôrs of change of

curvature of the coordinate lines L232, 190], by the relations

( 5 . 1 2 )  R t R , ,  :  k ,  x  1 ,  R , B R T  = l r x l ,  l r :  R k ,

Then, from Eqs. (5.6), (5.11) and (5.I2) we obtain

(5.13)  ILB :  k ,  x  n ,  Xp :  l ,  x  n ,

(5 .14 )

kp :  to7 t - ropa^+ko" :  
l ( t , ,  

* ) r ,0.  e) ,

tp :  to^ t toÊr t+ kpn:  
1( t , ,  

- ) , , r "  o) .



E

Geometricallv nonlinear theories 8 5

rotation. From the relations (2.2) and (5.1), it follows that there exist two
intermediate non-holonomic bases, the stretched basis so, n and the rotated basis
ro, fr, which are defirred by

s o  :  U a o  :  R r â o ,  s o . S p :  e o p ,

r r :  R a ,  -  V - ' â r .  1 o - 1 1 1  :  a a l t .

(5 2)

( 5  3 )

Within the shell theory the rotated basis
and was used in 18, 241 , 248, 240, 133, 19].
f i r"st by Novozhi lov and Shamina [178] and
terms of the bases, the following expressions

ro, n was introduced first by Alumâe [5]
The stretched basis sd, n was introduced
used  in  [184 ,  185 ,  188 ,  190-194 ,  141 .7n
for U, V and R can be given [185, 190].

U - r  -  a o @ s " * n @ n ,

Y - 1 :  r o @ â o + n 8 n ,

U :  s o @ a o + n @ n ,

Y :  â "8 r ' +  n8R ,

R  :  â o 8 s " + n @ n  :  r * @ a o * n 8 n .

Any rotation tensor R may be represented by

1 5  5 i R :  coS co1*  s incoe x  1  * (1  -coso. ) )e@e,

where the unit vector e describes the axis of rotation of R and a; is the anele of
rotat ion of R about the axis of rotat ion.

Sometirnes it is more convenient to describe rotations by means of an equivalent
frnite rotation vector, the direction of which is e and the length is a function of cr;.
For example, the hnite rotation vector fl : sincoe was used in 1247,248,

7J8, 43,184-186, 190-1941, the vector 0 : ztgle was used in 1241, 133, rgf while
L

oo = or.rle was applied in 12401. As it was pointed out in [199], each of the definitions
has some advantages: fl is particulariy convenient to be expressed in terms of
dispiacements (cf. [185, 192f),0 leads to geometric relations which do not contain
trigonometric expressions while co is the single-valued function of co and can be
dehned in terms of the natural logarithm of R, cf. [199]. In [108, 109] the rotations
were described in terms of four Rodrigues parameters. In the following part of this
report we shall use primarily the Iînite rotation vector e, in terms of which
transformation rules for the basic vectors are

(5 4)

âp : sp+]e . (r, *1r " ,r),

rp :  ap* i r .  ( " r * j r . "r) ,  
\

n  :  Rn  :  r * l t  "  ( "+ ]o  *
r \ 2

")

(5 6)
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In the components in the reference basis we have

0 : Eo| 0 oa,* 0 rD : e"f l  0 o,ro+ 03R,
( 5 " 1 5 )  

r p : r 1 p . à ^ + r o n ,  0 , p : ( / ! p ^ ^ + t B n ,

1 /  1  1  ^ , \t ' ^p  :  a ) . t r  ; l t ^o? r+  r0^0u+  ra^00 !  l ,
, \  L  L  

/

/ 5  r 6 )
1 /  r  \

,  o  :  
; \ o  o + ; t p " n "  0 ,  ) ,- \  /

(5 .17 )  t l p  :  6^ "0 , t f  -bâ7 r ,  , L  p :  0 i , 0 *b le7*0 " ,

1 /  1  \  l
( f . t a )  n 7 : - ; \ n ^ * t t " ^ n , r r ) ,  n - l - i r ^ n ^ .

- \  /

Using Eqs. (5.15)-(5 18) together with the relations (2.2), (5.7)r, (5 9), and (5.i4)r, the
relative symmetric surface strain rneasures may be expressed explicitly in terms of
components of u and 0 according to

\ o a : f n ' â p _ � a ' a : r o À l l p * r r Q p - a o p :  

j  T  1  1
(5 .19 )  :  uo tn -boer - - f  

: *  - .  l en "0z* ;0 "00+)a"003+
1 + ; (0^  0  ̂+  0 ï '

.t

Ir,,u"e,)w,o+ ulu^l],

indices.

*  ( ,^ "  u , * )a^0"+)  o^" f i )w^tp-b l ,w)-  ( r " *

The expression (5.19) should stil l be symmetrized in a{)

QoF :  
) { r " ^ t ru l .  

sp tk " ) -a r1 :  
} f r "o *  t t p )  :

: +l'"^(*:, *)u^ r ,) * Ep,(l',"*)'^ r ") --'1t t,"u + {t p")e.J :

_r-=: l t " ,o*0p1"*r"^(oir . - :n^02,p*Tn^,-u.)*z +)10^ o  ̂+  o2r)L
z

(5.20)

/ r 1 \ 1 1
* t  Bt  ( r*  r .  -  

;a 
I  0 r ,o *  

r r^  |  "0 3 
)  

-  b "p (0"  0,  + 0! ;  + 
)@ " t0 p *  b p z0 ")  0  ̂  

l .
Corresponding expressions for Hop and ko in terms of components of 0 follow directly
from the relations (5.14), and (5.15)1. In components of f, l the relations (5.20) were
given hrst by Simmonds and Danielson 1247f, while the reiations (5.19) by the
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author [184, 185].  Equivalent relat ionsfor 4ou, Fop and knin terms of  components of

oo were given by Shkutin [2a0]. Linearization of Q*B given by the relations (5.20) with

respect to displacements leads to the tensor of change of curvature which, according

to Budiansky and Sanders [37], is the best choice for the l inear theory of shells.

Rules of differentiation of the intermediate bases may be given with the help of

the relat ions (5.12) in the form [190, 199]

(5 .21 )

Since âo :

Sol l0 :  -kp *  s '*b=oBrt ,  f r ,P :  -kp *  n_�6f ts" ,

t o l ! : l u x r o + b d p n ,  f i , p :  I ,  x  n  - b i r r " .

ao*u,o,  we can solve Eqs. (5.6) and (5.14) for  u,o and 0,o,  what leadsto

u,o :  n"*1r .  ( r ,*1t . . , )  :  r ,+10.("  le"

u'r(u",,  *)*o* t ,)  :  o,

,', (,",, *It"* rr) : o.

, . ) ,

(5.22)

0 .o  :  u "  *  l 0  
x  k ,+  | t e ' r . J0  

:  \ - : 0  x  l o+  
| t e ' 1 " )0 .

The in tegrab i l i t y  cond i t ions  EoPLr ,op :0  and , " f  0 ,oB:0  o f  the  re la t ions  (5 .22)  g ive  us

the foilowing two sets of vector equations:

(5.23) e"o (l41olp * k, x So) : 0,

e " F ( E o t p * l u  x  r J : 0 ,(s.24)

These two sets of equations constitute two alternative vector forms of compatibility
conditions in the nonlinear theory of thin shells. The second equation of the set (5.23)
was derived independently by Chernykh and Shamina [43] and Pietraszkiewicz

t1841. The vector equations (5.24) were derived lïrsi by Shkutin 1239,2401 and
independently by Axelrad t16l and Libai and Simmonds [133]. In component form
the relations (5.24) were given already by Alumâe 15,11 and in orthogonal
coordinates by Reissner [208]. Since sp : Rrld and I, : Rkp, both sets of com-
patibility conditions are transformable to each other. Several other equivalent vector
or tensor forms of compatibility conditions may aiso be constructed from the ones
given by Pietraszkiewicz and Badur [199, 200] for the three-dimensional defor-
mation of a continuum. The three-dimensional compatibility conditions of

[199,200] should be written on the reference surfaces -,// or "V and KirchhofËl-ove
constraints should be taken into account.

Within the K-L type shel l  theory,  f in i te rotat ions are expressible in terms of

dispiacements by non-r f t ional  re lat ions [185, 190, 192] expressed in the stretched
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basis

R : âots'+ R@ n : a"P (6i + r l i )@"* u,,)@a, * (n"ao* izn)@n,

/ .  ^ . \  ^  7  ,  - \  I  - o - , -( ) . 1 ) )  ( l : 1 ( s ,  x  â ' i n  x  n )  :  j F ,  [ ( n . s "  - e " ) s p * ( u . " . s p ) n ]  :

a

: 
) t"o {ln" - alu @i + rti) e uJaP + ctL,' ei + rti) I( un} ,

or  in  the ro tated bas is

R :  ro@a'  +n@n :  ro@t(ô j  +  ry l ) r  t -u , " ]  +n@ lq"a"P @} +, t i ) ,  ̂ *  nn l ,

l l
{5 .26)  f l  :  l (ao  x  r "+n  x  n )  :  i - t "Ê  [ (u , " . r r )n+  (n" -n . r " ) r r ]  :

2 ' L

1
: 

i.u "o {ln" - n^u (ôi + rtï e,,)rP + a1 p (6i + ryïi!,, n } .

The dependence of rotations upon displacements can aiso be expressed implicit ly,
in the form of three constraint conditions [19]:

n ' I p  :  n ' e ,  :  ( R n ) . ( u p * u , p )  :  n , " l ! p + n e p : 0 ,

'18 :  toq ro ' tÉ :  so l (Ra") ' (ap*u,p-Rar)  :  e"Ê ( rn l lp  + r , rp  ù :  0 ,

are given in terms of rotation components by Eqs. (5.16) and (5.17)
expressed in terms of displacement components by the relations

5.2. Decornposition of deforrnation at the boundary

During the shell deformation the orthoffial triad v, t, n of 6 transforms into the
orthogofhai tr iad â,,  â,,  R of q, where âu: â,xfr.  According to the polar
decomposit ion (5.1), we obtain

(5.28)
â ,  :  âo fo  :  Rs ,  -  V r , ,  s r  :  U t ,  t t :  t o to  :  R t ,

â n :  R s u  -  V a n ,  s r :  [ J v ,  f u :  r o y " :  R v .

Since v and t do not coincide, in general, with the principal directions of U, the
action of U on v and t consists of an extension by a facto r a, and a finite rotation
about n. This rotation may be described by the proper orthogonal tensor Q6,.
Simi lar iy,  the act ion of  V on r ,  and r ,  consists of  an extension by a factor a,  and the
finite rotation performed with the help of the proper orthogonal tensor Q,,. Both

(s.27)
t R  d n

t - '44 :  t * 'à- r

where n7, n, T to, ro
t 1

wnlle I.'p, (Pp are
(2.3) , .



It is convenient
R and Qn, by one

(5.30)

(s.32)

where in components in

(5.33)
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rotations are defined b'l

1̂ t

Q u  : ; ( s " 8 v + s , 8 t ) * n @ n ,
"ot

1
Qv :  =(â,@ru *  â ,8r , )  +  n@n.

at

to replace two subsequent rotations performed by Qu and R, or

total rotation performed by the proper orthogonai tensor

1
R,  :  RQu :  Q 'R  :  = (4 "@v+âr@t ) *n@n,

âu :  ârRrv,  â ,  :  a- rRr t ,  n  :  Rrn '

Since RIR; and RlR,r are skew-symmetric along 6,they are expressible in terms

of their respective axial vectors k, and 1,, calied the vectors of change of curvature of

the boundary contour [178, 185], by the relations (cf. [199])

( 5 . 3 1 ) R,tR; :  k, x 1, R;RI :  l ,  x l ,  l ,  :  R,k,.

Now derivatives of â, and n along V can be given by

l - r  I
ai : a,R,l - l i '  t  + (8, -F k,) x t l ,

Lut J

i '  : R, [(9, + k,) x n],

the reference basis

Q ,  :  d r V  * t r t * x r n ,

k ,  :  - k , r v *  k u r t - k n r n .

Exact expressions for components of k, in Eq. (5.33)2 were given by Novozhilov

and Shaminà [lZA] and the author [184, 185]. In terms of physical components of

the Lagrangian strain measures on V these expressions are [193]

k,, : !!o,(d,- l) + x,,f ,
at

x*) * !,r, ",ro,- ,r] - ,, ,

(s.2e)

(5.34) t ,  _
N v t  -

I

t r
I
I

kn,:r,(r- hfr)-#
'fulu,n,*

T

l lzr',,(r,,+2x,yn,) *
v d

r:
+ l l lZy ' " , -  (y , , ) , ,  - l2xu1tu, l2N,(y" , -  7 ,J ]  .

\ r ]
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Using Eqs. (5.11) it is easy to express the components of k, aiso in terms of physical
components of the relative surface strain measures 4oB and Lr"p on €.

During the shell deformation compatible with the K-L constraints, the
shell boundary surface p(s, 0 : r(s)+ (n(s) deforms itself into the surface
p(s,0:  t (s)+(n(s).  According to the discussion presented in Sect ion 4.5,  the
boundary surface p(s, () may be entirely described by assuming i : r* and e = e*
along (€,. These conditions constitute the basic (displacernent) version of geometric
boundary conditions for the nonlinear theory of shelis.

The deformed boundary surface may also be described by the following
ditferential equations [178]:

F,,  :  r '+(n' ,  F,ç :  f r ,  r '  :  à, ,

F,r, : r" + (i", P,(, - fr', i" : â!r.

The set of equations (5.35) describes the surface F(s, 0 implicit ly, with accuraÇy
up to a transiation in the space. According to the relations (5.30)2, the right-hand
sides of Eqs. (5.35) are established if y,, and R, are given along €,. The geometric
conditionS 7rr : 7#, R, : Rf on g" are called the kinematic boundary conditions of
the nonlinear theory of shells.

Also the set of equations (5.36) describes the surface p(s, () implicitly, with
accuracy up to a translation and rotation in the space. According to (5.32) the
right-hand sides of Eqs. (5.36) are estabiistred if yu, k, and R, are given along G,.
Howevet, since R, can aiways be included into the description of an arbitrary
rotation in the space, it is enough to assume only y,, and k, to be given on G,. The
geonretric conditionS 7rr : 7#, k, - kI on G, are called the deformational boundary
conditions of the nonlinear theory of sheils.

In the case of the geometrically noniinear theory of shells, we can simplify the
components of k, given in the expressions (5.34) by omitting smali strains with
respect to the unity, what leads to [190, 192]

(s.37)

ku x Krr*  oryr r ,

ku,  x  xu,  *  2(o r -  xu)T u,  -  T tT u, ,

kn t  x  2y 'u r -T r t , u *2 rnyu r -  x r ( l u -  Ï un ) .

In terms of the relative strain measure.s, these approximate relations are

k r r x Q , , * ( r ,  * Q u , ) 4 u , ,

(5 .3  5)

(5.36)

(5.3 8)
1  3 .  1

À-ur  È Q u,  I  : r , (U, ,  -  4uu)  + 
1@,-  

Qu)v ln, - i@,-  Q uu)4u. ,
/. /.

knt x 2rt'", - 4 rt,n * 2n n4 r, - xr(ll u - 4 r).

v/ere extended recentiy [41] to the large-strain theory of sheils.These results
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5.3. Shell equations in the rotated basis

Let us introduce the expressions (5.11) into the principle of virtual displacements
(3.12), what gives

(5 .39)  JJ  (s" 'ôq"p*G"P 6q")dA :  I I  (p 'ôu+h 'ôB)d,4 + J  G'ôu*H'ôB)ds,
Â. <€1

.,t(

where the followine stress and strain measures have been used

I
t'

i

I

(5.40)

/ 5  4 r )

( 5  4 5 )

sop - t{or + )t r*^o +qqN^")+)Uu"^ -b"\Mq+,-,p^ -bl^)tutlf ,

GoP : III*P +lt iu^u +qqM^'),

QoÊ: ) t r "u *  l tBo ) ,  Q  :  t oo  L rop .

ôco : :(æ 
-lut. o),

1
I

L t o B  :  Q a p ï  n E a | Q ,z

Note that both surface stress measures 5"f , 6"0 and both surface strain measures rydp,

Qo8 aîe symrnetric here by definition. They have been introduced Iirst by Alumâe [8]
and independently by Simmonds and Danielson l24Sl.

Since ôRR.r is skew-symmetric, we express it in terms of its axial vector ôo by

[1ee .  r37 ]

which, to-eether with the relat ions (5.3)t and (5.6). leads to

(5.43) ôr,  :  ô{ù x ro, ôB : ôn :  ôo x n'

Taking variations of e, and 1", given in the reiations (5.1), and (5.9)t and using Eqs.
(2.1), (5.42) and (5.43), after transformations we aiso obtain

6r lop r " :  ôu ,p *â ,  x  ôco ,  6pop t " :ôo , / r  x  n .

(5.42) ô R R r :  - R ô R r : ô c ) x 1 ,

(5.44)

If we take variations of the constraint conditions (5.27) and use Eqs. (5.44), the

following relations for àor in the rotated basis are established:

. 1
rr.àur : 

ar", Ql + rtbn.ôu.,r,

I
n . d c o  :  

I  * * r q " r o . à u . 0 .

relations (5.43F(5.45), the principle of virtual displacementsWith the help of the



can be transformed into

- jJ (ru, lp + p) -ôudA +
J,T

(5.46)

where

(s.41)

(5.4e)

15 50')
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- F;o). ôu, *

+ J 
't(P - P*).ôu - (M - u\n ôu.,1 r/s :

, / , f

l€ ,
l

n

1

QP : 
ito' tlt +,tble,^(G""1, + h.rf - Gik*1,

Ê:  I iPvr+F ' ,  P*  :  T+Ê* ' ,

(5.4s)  F: ju ' (ô ' ;+ql ) r^*G'Pvoi ,  Ê* :  
I , ( " , - ) r r " ,u, )o,

tîI : -)rfal+,11)t^,G*Pvp, Iû* : u,Io,.

For arbitrary ôu, ôu, and n'ôu," from the form (5.46) follow the equilibrium equations
and corresponding static boundary conditions

t
I
I

I
I

I

Nr : (s.o +ir"rt) r,+ eP n,

)
S :  ; i ;  tn lq lsa"-  (b l -  pt ln1Gn*7,

_  |  , t d

i ,  n ,N P l r , * P : 0  i n  - t / / ,

P : P*, IÇI : IîI* on G1,

Fr: ÊI at each corner M,eGr.

It was shown in [142f that n'ôu,u is not integrable in terms of displacement
derivatives on(6, i.e. there exists no displacement bor-rndary conditions which would
be work-conjugate to the relations (5.50). In this chapter we shall use the relations to
derive the set of shell equations in terms of rotations and other fielci variables as
independent variables. Therefore, there wil l be no need to use displacement
bor-rndary conditions. However, if one would l ike to discuss such work-conjugate
static and geometric (displacement) boundary conditions, one should apply the
general formula (4.30) to transform the corresponding boundary terms in the
principle (5.39). Then some modified static boundary parameters Ê, A4,F could be
calcuiated to which there would correspond some work-conjugate displacement
parameters u, A. In this way one could construct an alternative fonn of the
Lagrangian shell equations written in terms of ,Sop, G"F,4op, l-Lop, kp as given functions
of displacements and their derivatives. Here we are not interested in such alternative
displacement shei l  equat ions.
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(s.54)

-l-he enrri l ihriurn equations (5.49) can be presented in component form in thea  r r v  v Y  u r r r  v r  r

rotated basis r-. n. whal gives

(5.51)  
r "p l r  e"^s\k,+\u 'Ps,B* f ,o"  

s t  o-nt(oU-a"p- lo '^r^ ,n)*  îo :0,

1

S"B (b"p -  Q "ù- ; tn  + QP lp+ q :  0 ,

where p" --p.ro and S, QP are functions of 5o0, 6o9 given in Eqs. (5.47).
The ciependence of rotations upon displacements has been explicitly taken here

into account by applying the relations (5.45) in the transformation of the principle
(5.39) into the form (5.46) and using in the form (5.46) the variat ional expression
n.du.". However, when we intend to use rotations as independent variables, the
dependence of R upon u should be implicitly taken into account. According to [19]
this implicit dependence can be given by three constrainteonditions (5.27) for the
relative stretch vector Es : 4apro. In terms of variations these constraints in '// ate

(5.s2) E o o r o ' 6 q 1 p r ^  : 0 , n ' 6 r . , o p r " : 0 .

I
I-et iS and QP be Lagrange multipliers associated with the respective constraints

L

(5.21) and (5.52). Then the left-hand side of Eq. (5.39) can be presented in an
alternative form

r 5  s 3 )
#ry {[(r', 

+Lr,"as),, + a'of-6,t ^Br^ + Gop ae "o\at,

where ô4o6 and 6poo- are given by Eqs. (5.44) in terms of now independent ôu and ôrrr.

Similar constraint conditions (5.52) should also be applied at the sheli bouridary,
only then the constraint (5.52)2 should be multiplied by tP,what corresponds to the

constraint (2.15)1. If now A and B are Lagrange multipliers associated with the

respective constraints (5.52) on 6, then we should add to the right-hand side of Eq.
(5.39) the lollowing l ine integral:

(Ae"p r o' ô4 lprt + Bn' 61,1 oBr" f) d s .

l

J
G1

Now the principle of virtual displacements (5.39),
side of Eq. (5.39) and the integral (5.54) added to
be transformed with the help of the relations

- IJ ttx' lp + p)'ôu * gÇap lB * â, x i lp + n x
-tt

with the forrn (5.53) as the left-hand
the right-hand side of Eq. (5.39), can
(5.44) into

h) 'ôco l  dA+

. f+ J
ç

X â ,

{ tNP, p-T *(Ar"+ Bn) ' l 'ôu *  [ lûru,  -n x H+ Bâ"-

-r ,  X ât,r l ) f 'ôco *,4r, 'ôu,")ds + |  ( ,4r" *3n); 'ôu, :  0,

I

I

( 5  5 5 )

-  A(r ,
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where NP is given by Eq. (5.47)L in terms of S"P, S and eB usindependent variables
and  N{P :  nxG"Êr - .

It follows from the form (5.55) that for an arbitrary rr.ôu," on V, we always
have A: 0, i-e. the constraint condition (5.27). is always satisfred on G. Takins this
into account the line integral of the form (5.55) is reduced to

(5.56) J { tF{rur-T+(Bn) '1.ôu* l f rPro-n x H + Bâ,1 .ôor] ds + I (Bn)j..tuj.
;Ey

Since ôu and ôol x n are now
vector equi i ibr ium equat ions

(5 .57)

(5.58)

(5.5e)

i5  6n)

(5 .61 )

The second of the solutions (5.60) is
rnuitipiied by tP and (5.27)r. Therefore,
oniy one scalar conditicn.

In components in the rotated

independent, from the relations (5.55) and (5.56) follow
and corresponding static boundary conditions:

Corresponding work-conjugate geometric boundary conditions follow from the
k i n e m a t i c  c o n s t r a i n t s  ô u : 0 ,  ô o r x n : ô n : 0  o n  € " a n d  ô u , : û  o n  M r e v " . F o r
independent displacements and rotations these constraints have the solutions

pp l r+F  :  0 ,  f / l t t l o+aox l tp *pxh  :  0  j n  J l ,

N ' r r -T+(Bn ; ' :  g ,  G"Provo -H-Bâ , :  g  on  Gy ,

(Bn)r :6  a t  each corner  M,eÇr.

l - I  :  [ I* ,  Rn :  R*n on q,

ûi : u,t at each corner M ie 6r.

stil l subjected to the two constraints: (5.27),
in fact the solution (5.60), describes implicitly

basis Eq. (5.57), takes the form

/  1 \
S l  t + l n i l -

\  2 ' � " 1\ /
' while the boundary conditio

6"P la- to lG\^ks-@i+ry i le |  +Ê"  :  g ,

*,r,ru, + qi') Goo , o- Kr - Ba, : g ,

!,* rur+ ry))e,^Gou , u- Ku : o.

e,t"7iStP - e"'G"P (bfi- ah)-iciq : o,
L

ns (5.58), written relative to v, T are

Note that only two components appear in the cond.itions (5.63), since ,4 has been
el iminated.

The equilibrium equations (5.51) and (5.62) were derived by Alumâe tgl.Equivalent forms of equilibrium equations are given in [5, 24g,240,19]. Bound-ar:y
and corner conditions were not discussed in [5, B], while the four static boundary
conditions derived in 1248,19] would follow from our relation (5.58) after elimina-

(s.62)

(5.63)
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t ion of the Lagran-qe mult ipl ier B with the help of the condit ion (5.631, eut then i t  is
not apparent how to construct the work-conjugate geometr ic boundary condit ion
corresponding to  the const ra in t  V 'ôn:0 on6"  used in  12481and to  the equiva lent
constraint î 'ôo:0 used in [19].  Therefore, the work-conjugate geometr ic boun-
dary conditions were not discussed in 1248, 19]. On the other hand, the kinematic
parameter ô[T'(re)] used by Shkutin p4}l cannot be regarded as to be equivalent to
the one which would appear during the elimination of B from the relation (5.58)r. It
seems that the choice of such a parameter in 12401resulted from an identiJïcation of
the axial vector ôco defined by the relations (5.42) with the variation of the finite
rotation vector cr;e. what is correct onlv for infinitesimal rotations.

5.4. Alternative sheltr equations in the undeformed basis

Sometimes i t  may be more convenient to use an alternative forrn of nonl inear shel l
equations discussed in Section 5.3, which is referred entirely to the undeformed basis
of -l/. Having this in mind, let us introdrice the axial vector ôrv of the
skerv-symmetric tensor RrôR in analogy to the relations (5.42) by [199]

(5.64) RrôR :  -ôRrR :  ô rv  x  1 ,  ôw  :

terms of which variations of the relative strain measures (5.7), and (5.9), are given

: ( , '+]ae " e)

1n

by

(5.65)

(_s.66)

ôqp :  ù1"pa '  :  ùv ,p ' f  k ,  x  ôv  *  s ,  x  ôw,

r )p l i  :  ôp , ra"  :  ôw. t  x  n* (kn  "  ôw)  x  n ,

ôw : R.rô<,r, ôv  :  R rôu .

If the rotations are to be regarded as independent variables then the constraint
condi t ions (5.52) are replaced by

(s .67)
E FA" 'ôqp  :  0 ,  n ' dq ,  :  Q  i n  l / / ,

t " f  z " ' ô t1 r  :  0 ,  n ' ô In  tF  :  0  on  6  .

1
I

Let again iS, ç0 be Lagrange multipliers associated with the respective
.1_

constraints (5.67), in .// and A, B be Lagrange multipliers associated with the
respective constraints (5.67), on (6. The constraint condit ions (5.67), mult ipl ied by
I

, 
S and 0p, respectively, may be introduced into the surface integral of the ieft-hand

side of Eq. (5.39). Similarly, the constraint conditions (5.67), multiplied by A and B,
respectively, may be introduced into the line integral of the ri-eht-hand side of Eq.
(5.39). Then, the so modilied principle of virtual displacements can be transformed

il-
r
I
I
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wjth the help of  Eqs. (5.65) and (5.66) into

-J j  t t r t , l r+k ,  x  NIB+Rtp) 'ôv* ( lV{B lp*k ,  x  N{ / '+s ,  x  NP*n x  R 'h )  'ôwfdA+

(5.68) + i  t .R'vr-R-,rT*(Bn) ' -Bnxkrt l f 'ôvds*
€y

+ j  fNa 'v t t -DxRfH-Bn xso t l l ' ôw,ds+ f  ( rn ; r 'ôv r :  g ,
v1  j

where now

Nrp : (s"r+'r*,  t)s,+e\n : RrN/,

N , I P : n x G o É a o : R T N I É ,

1
ôw, = Rf ôor,  :  ] . t  x (ôv '  +kotÎ  x ôv)+(t 'ôw,) t .

In the transformations leading to the principle (5.68) we have taken into account that

A =0 on6rfor an arbi t rary t .ôv,u,  in analogy to the reduct ion of  the reiat ions (5.55)

to  (5 .56) .

Since ôv and ôw are independent, from the form (5.68) follow vector equilibrium

equations and corresponding static boundary conditions:

N P l p + k r x N P * R r p : 9 ,

ç7Pla*k, x NIP +s, x NP *n x Rrh :

N 'u r -R I r * (Bn) ' -Bn  x  k r rp  :  o ,

(5.6e)

(5 70) in -'//,
0 ,

on G7,(5 .71 )

(s.12)

G"P aov o- R,tH - Bs, : 6,

(Bn) , :  g  a t  each corner  Mte6t .

The component form of the relations (5.70) in the undeformed basis ao, n coincides
with Eqs. (5.51) and (5.62) while the components of the relations (5.71) in the basis v,

t are equivalent to those given in the conditions (5.63).
Alternative forms of equilibrium equations written in the stretched basis sd, n are

given by the author [185, 190, 193] and in the rotated basis by Kayuk and

Sakhatzki i  [109].

5.5. Static-geometric analogy

Between the equilibrium equations (5.57) and the compatibility conditions (5.24) (or,
equivalently, between the relations (5.70) and (5.23)) an interesting static-geometric
analogy can be established. In order to show this anaiogy, let us express the

'7
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compatibil i ty conditions (5.24) in component form in the rotated basis, what gives

eog 4 totp + E"P (6: * 4!) e,^\ : 0,

/  1 \

\t 
+ 1n: ) 

- {f rt i@,' - Q,p) : a,

(s.73) 1 1
^a [  ̂) " x^  | '  . "F  Q .p_  Ë"Ê  k " (b i_  A ,ù  +  :a " "  k ,Q  :  Aô  r t  ! l a p r l o  g , p - o  N d � \ u p - U f t  t  

r *  
, " r z y  v '

/  1  \  r ,
Eof l  t ^ ' (b^ , - ;e  ^ " l q , r - )e '+  e "P  ko ,u  :  g .

\ z / +

Let us introduce modified measures by the formal relations

ë " f l  :  - u o o t f l t Q o " ,  4 " 0  :  + E o o E P t 4 o '  E " :  * t o o k o ,  0 :  - Q ,

(5.74)
Q n f r :  - t o . t p t | o ' ,  4 o 0 :  a E o o i p r f i o t ,  k * :  - E o o F ,  I  :  - 0 .

In terms of those modified measures the compatibility conditions (5.73) can be
written in the form

, ,  - (uu.)ru)w:0,

-E"4og(or)'t)-)"n : o'

- n R  t

4^ "  l o - l\r"^i'^ko
,

/ r \ 1

o( r + )rz)-Iu,^qip^o
\ T / L

( 5 . 7 5 )  1  1  1  _ /  1  1  \
Q'u l, - 1t"^ d\k u + 1t'P o,p + 

oo"u Or o- Ê' ( bi - 
)q"o 

- 
oo"^ 

t ̂ o n 
) 

: 0,
L

/  1 \ 1
u'u \b",- tn"o )- iAn + Eo 1o :  s-

\ /

If we compare Eqs. (5.75) with the equilibrium equations (5.62) and (5.51), we note
that the homogeneous equilibrium equations can be transformed into the modified
compatibility conditions (5.75) if S"P, G0, Q0, S are replaced by d"P,Â"e, Ëf , A,
respectively, and all nonlinear (quadratic) terms are multiplied by 112. This
static-geometric analogy was noted by Alumâe [7, 8]. It extends to the nonlinear
theory of shells the static-geometric analogy of the linear theory of shells which was
formulated in tensor form by Goldenveizer U6).

The compatibility conditions (5.73)t,2 can always be solved for fto and g, what
gives 

.
ko: -  l1t ' "(ô1+ rt ! )r t tnt" ,

v 4
(5.76)

n : j- e'P rt!(b ^p- Q tp).
I+1a7
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Similarly, the equil ibrium equations (5.62) can be solved îor QP, S what gives the
formulae (5.41)2s. Then ko,.Q, QP and S may be eliminated from the remaining
equii ibrium equations (5.51) and the compatibil i ty conditions (5.73)r,o, which then
are expressed entirely in terms of symmetric measures 5"0, G"P and 7afi, QoB.
Unfortunately, for such a transformed set of 3 + 3 equations the static-seometric
analosv formulated above does not hold.

5.6. Shell equations in terrns of rotations, displacements
and Lagrange multipiiers

Various nonlinear shell relations discussed in the preceding sections allow for some
freedom in choosing independent held variables of an appropriate boundary value
probiem.

An interesting version of the nonlinear theory of shells can be given in terms of
finite rotations 0, displacements u and Lagrange multipliers S, QP as independent
field variables [19].

In terms of corresponding stress and strain measures SoB, G"F and 4op, Qop, the
strain energy density (3.32)r and the constitutive equations (3.34) are

(5.77)

99

â f
sop :  

t :  
C[(1-  v)r ] " f  *va"Êqi l*o(Ehr102),  C -

Eh
|  _  1 , -

(5 .78)
â\ -

G"a : !1
oQ"Ê

Let the constitutive equations (-5.78) together with (5.16\ be introduced into the
equilibrium equations (5.5 D, é.62) and then 4ap, Qap be expressed in terms of u, 0 with
the help of the geometric relations (5.19) and (5.20). As a result, the problem is
reduced to nine partial differential equations: six equilibrium equations (5.19), (5.20)
expressed in terms of 0, u, S, Qfl and three constraint conditions (5.27) containing
only 0, u. Corresponding work-conjugate static and geometric boundary and corner
conditions are given by the relations (5.58), (5.60) and (5.59), (5.61), respectiveiy,
together with one constraint condition (5.27), multipiied by t8.

The struclure of such final set of nine equations is relativelv simple. The
equilibrium equations (5.5D,6.62) are linear in S, Qf ano, their hrst derivatives, are
quadratic in u,p bui iinear in u,op while rotations appear in them as polynomials
which are quadratic in 0,p but again only linear in 0,"p. The constraint conditions
(5.27) are polynomials in rotations but linear in u,B.

This system of nine nonlinear equations may be considerably simplified in the
case of small strains, when additionally we assume that the strains caused by
stretching and bending of the reference surface are of comparable order, i.e,
UoB - hg"p. Within the accuracy of the {irst-approximation theory from the com-

: D [(1 -v)Q"P *va"f aI)+ o(Eh2 q0'), ^ Eh3
u  :  

n \ - v \

I
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patibility conditions (5.73) we obtain the estimates

/ . nz \  / , â2 \
(s.ze) kp :  o(alL),  Q :  o\ î  

) ,  
QZrp- p"pr":  o\^ 

)

which, introduced together with Eqs. (5.78) into Eqs. (5.51) and (5.62),
following consistently approximated equilibrium equations

ct( l  -v)4! lo+v4f fp)*ûo :  o(nnÇ),
\ /

c (bi - a )l(t - r)rt:" + v6!ûl + QP I o + Q : o ( u^'4\,
( 5 . g 0 )  

\ " P  s p l L \ -  / t 4  s t ^ r  u , ' '  

\  
L t / '

Dsp ' l -e+Ê" :  o ( " r ' 4 ) ,
\  ^ ) '

S-eu t {Cq l t (1 -  r ) r t "a  *va "P7 i l -D (b : -ab t (1 -  v )Q 'P  *va " f  e \ f  :  O(Eh2r t ' 0 ' ) .

:  o(nt 'g)
\  ^ - /

into Eqs. (5.80)1 and (5.81),
then we obtain

c t"l:O- v) (r.r, lln + r tn l!, + r o tp n * r n w )l u + v (r tpl! r + r u,er ) 1"] * p o : t ("rff),

' {;["' (', " *ln ̂r .) -\r,"',]}[ .

Within this approximation S apears only in the last algebraic equation (5.80)4
and can be evaluated separately. Equation (5.80)3 can also be soived for Q" and
introduced into Eq. (5.80)r, which then takes the form

(5 .81 ) opîl1p + C(bi - a"ùt(1 - v)rtq" + v6[rti,] + q + h:"1"

If now the expressions (5.19) and (5.20) are introduced

(5.82)\ - ' - - l  
f  t  T  /  I  \  /  i  \  1 . ,  ^ l l

+ c I bi - ;n"l u", ( tlp + ;0' rl, o ) * t rrl,l,:" + ;0',1,, ) 
- 

;(rlt "t * rlt p,)0. I i *( . -  t r  L ' \  z  " /  
\  / .  /  / .  ) )

x [(1 - v) 6Fe ? ̂ J!n *, "E r) + vôP"a" (r  ̂* l !n + r,pn)] + q + û. ' lo : o( u^try\
\  ^ - /

Equations (5.82) together with the conditions (5.21) give us six partial differential
equations for six components of 0, u to be solved.

Simplihed static boundary and corner conditions on gr follow from the
corresponding reduction of the relations (5.58) and (5.59), with the help of Eqs. (5.78),
(5.32) and (5.38). in the right-hand sides only the principal terms, which have the
same structure as those in the approximate left-hand sides, are taken into account.
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As a result. we obtain on (€,
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C (1 -  r )4 u,  :  Q, *  O (Ehr102) ,

- v )x , (Q ,n -q , , ) ]  +ûu :

D(Q""  *  vQ, , )  :  Ku + o(Eh2 q02)
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where the relative strain measures sti l l  have to be expressed in terms of components
of 0, u by the expressions (5.19) and (520) Corresponcling work-conjugate geometric
bournditry and corner conditions are given in the solutions (5.60) ana fS.O1), witfr tne
condition (5.27)1 multiplied by se as the constraint.

Let us assume that the external loads p, h, T and H are derivable from thepotential fr-rnctions @[u, B@)] and p[u, p(R)] bv the relations (4.4). Note thar now
u and R may be treated as independent variables, what allows for some flexibiiity in
the dehnition of the conservative loads. If the external loads are conservative, the
total potential energy of the shell is given by the functional

+ J
€1

t

T

i

ll.

t
I

a

1:  [ [  l z ln -^ (u .  R) ,  a "p(R) ]  + \e"PS,1"p(u ,  R)*epnRrer (u ,  R)*@[u,  B(R) ] \OO*i i ,  | 2 
Lr cP\u' r\; - l- v/ Lu' '  - 

I

(5 .85)

{Y[o, p(R)] --BnRrer(u, R)rp]ds

with the geometric boundary (5.60) and corner (5.61) conditions and the constraints
(5'21) on E, as subsidiary congitions. The variational principle ô1 : 0 states tharamong all possible values of independent fieids u, R, S, ei and,b, which are subjected
to the conditions (5.60), (5.61) and, (5.27) on 4, the actual solution renders theÏ'unctional 1 stationary. The stationarity .o.rditions of 1 are: the equilibrium
equations (5.57) in ' '/ '/, the constraint conditions (5.21) in -/./, the static boundary andcorner condit ions (5.58), (5.59) on6, and the constraint condit ion n.e, tu :O r"-à,

Note that the functional 1 defined by Eq. (5.g5) is linear in S, ep,,B and is rationaiin u, R and their oniy first surface derivatives. The latter propJty is important forthe computerized numerical analysis of the flexible shells ùur.â on direct disc-retization of tlie functional (5.85). It allows to apply the simplest shape functions inthe ilnite-element analysis or the simplest differènce ,.h.*., in the finite-difïerence
analysis, which assure high efficiency of numerical algorithms and betrer convergence
to the accurate final results.

In some applications it may be convenient to apply the more general free

$-c

- t
I

a
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functional

, ,  :  
[ ) ,{r  

rr"o, Q op) *)*o Sq"p * QP n',  p -

-SoP Lrt ,p_�4on(u,  R) l  -  G"PlQ"p-A,eB) l  *  @[u,  P(R)]  la,++
(s.86)

+ J  y [u ,  B@)]ds-  Jrnnr .er (u ,  R)rBds-  I ( rn) , . (u , -u f ) -
'€1 

, 
* i

-  J  t t | {pv,  +(Bn) ' l ' (u -u*)  + lG"f  rov o-Bâ,1 ' (Rn-R*n))  ds.
q u

This free functional follows from the functional (5.85) if we introduce into it the
strain-displacement-rotation relations (5.19), (5.20), the geometric boundary con-
ditions (5.60) and the geometric corner conditions (5.61) multiplied by the respective
Lagrange multipliets P"fl, Kf,P, K, S,.Then some stationarity conditions of so
defined 1, allow to identify the Lagrange multipliers to be 5"a,6fl, N'ur+(Bn)',
G"Frovu-Ba, and (Bn),, respectively, which have already been used in Eq. (5.86). The
functional 1, in Eq. (5.86) is defined on the following free Iields subject to variation: u,
Rin, , / / ,  u ,  R on G,a i  a t  each Mre6" , ,4ap,  Qap,5"û,6" f r ,  S,  QP in  " l / ,5"Ê,  çoB,  S,  QP,
B on q, ts onG, and B, on MreG,.The variational principie ô1, :0 is equivalent to
the complete set of nonlinear shell equations: (5.57), (5.58), (5.59), (5.27), (5.19), (5.20),
(5.60), (5.61) and (5.78).

5.7. Shell equations in terms of rotations and stress functions

If all the external forces are functions of the finite rotations a1one, the set of nonlinear
shell equations can be expressed in terms of the finite rotation vector 0 and the stress
function vector F. Such equations were first proposed by Simmonds and Danielson

1241, 248f.
When rotations are taken as independent variables, the rotational compatibility

conditions (5.24), or (5.73)3,4 are identically satisfied. The force equilibrium
equations (5.57)1 can also be satisfied if we introduce the stress function vector
F :  F"ro+Fn such that

I tÉ :  ! o "F ,o+pP, PP :  P"F ro+ PP i ,

I

(5 .87 )

i'
I
I

I
I

. F
I

l.
l

r

I

I

where PB is a particular solution of Eq. (5.57). Now it follows from Eqs. (5.87), and
(5.47)r that S"É, S and QP are prescribed functions of e, F. It remains to satisty the
moment equilibrium equations (5.57)r, the tangential compatibility conditions (5.24)l
(since here u will not be regarded as an independent variable) and to eliminate u and
B from the boundary conditions.

Let conservative surface and boundary loads be defined in terms of potentials
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@[i, n(0)], v[r, n(0)] by

(5 .88 )  p
2 /h
U \ P

: - -
^ -  t
l )  |

ôa ô V
T : --;:-,

or

At:y
I J -r r  -  - - l l

on
h :

i -  )

on

Let us apply the Legendre transformation (3.36) only to the hrst pârT Eq of the
strain energy density given in'Eq. (5.71), which contains squares of 4"p. Let us aiso
introduce the tangential compatibiiity conditions (5.24)t into the functional (5.86)
with the help of the Lagrange multiplier F. If the relation (5.19) is also a priori
satisfied, then the functional (5.86) can be written in the form

(5.8e)

( 1
J t :  

$It"o,"o- 
r!(s"r; + E a(Q,ù + 

;se"P 4op * QF n'qopr" -

-  G"P lQ "p -q"p(0)l  + {f l  ( t"10*1, x r") 'F + @ [r,

+ J P [i, n(0)] dr - J (Ae"p ro-4 tpr^ + Bf
€ r  q

J {r ' ( i - r*)  + M' tn(O) -n(0*) l }  ds -

where A, Bfr and L, VI, Ki are corresponding Lagrange multipliers associated with the

constraints (5.27) onV and with the geometric boundary and corner conditions (5.60)

and (5.61).
The variational principle ôJ1 : 0 allows us to find vaiious stationarity con-

ditions of J r, among which are relations that identify the Lagrange multipliers ,4,

Bu, L, M, K, to be

A  : 0 , B u : 0 ,

L :  PÊ v,  *  F '+ (Brn) ' ,  M :  G"P rov u- Btà, ,

Ki : Fr + ('8, n)t '

In order to eliminate the free field variables qop, GoP , g oB, Sof , S, QÊ in .// , i on G,

and F, at each Mi€6,,let us assume that the following stationarity conditions of ./,
are a priori satisfied:

NIP : e\"F.o+pf in -r// ,

l
n (0) l  ldA+

\  ' J  I

)

n .41pr^)  ds -

I K' '(. '
i

- Fr),

(5.e0)

(5 .e1)

: \.C
U L S  

n o Ê  _
4of : 

ôsfp, 
(t*

i : i x

* ,  
Q o F : Q " B ( o ) ,

on ç" ,  f ; :  F f  a t  each MteG, .
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If now the reiations (5.90) and (5.91) are used, then the functional (5.89) is reduced to

J z :  JJ  t ( r r "F, "+PB).eu(F,  0) - tg(F,  0)+tp(0)+
- t t

ts.e2)
+e"Plt ," ,of f ,  e)+lp(0) x r"(0) l 'F+Pplo' t+7 tn(0) l)  dA+

+ J  { -T. r+etn(e) l }  d t -  [  B,n(e) 'er (F,  0) t0ds-
Ç 1  g

I  lc 'o (0)r"(0) v o- B,tx ' l ' tn(0)- n(0x) l  ds,
ç u

where Q :PÊlo ' r+f  tn(0) l  and V -  -T ' r+g[n(e) ]  have been used.
Since u"t, J l, x ro +b,pn*taL in ril, the second line of Eq' (5'92) can be

transformed further to the form

(5.93)  jJ  t - ( rÉ"F,o+PB) '^p+f fdA+ i  (p"  p ' l -F 'F ' � )ds*  J  P"  p ' t *  - t ' tx ' )ds.
t4 €1 gu

It follows from the relations (5.92) and (5.93) that on6, we stil l have to eliminate

F from the following line integral:

J  F ,  v  n . i  -F .F ' -T ' r )ds  :

(5.94) 
Ç 7

:  J  (Prv ,  *F ' -T) ' i -  I  [F(sr .+  r  -0) 'F ;+r  -F(s ;+0) ' i i ] ' .
€ r  i

It is easy to see that the values of F on each ,// ,eÇ, are not known, in general,

and the out-of-integral terms in (5.94), can not be evaluated only in terms of F and 0.

However, there are two special cases of the boundary conditions when those terms

are given. The hrst obvious case is when the boundary contout Ç has no corner

points. In this case those terms do not appear at all. The second special case is when

on Ç only (displacement) geometric boundary conditions are prescribed, i.e. çl = 6,,

or 6 is divided by the corner points into an even number m of intervals, on which

alternately only static (5.58)1 or only geometric F : i* boundary conditions are

prescribed. In the last case all the corner points belong simultaneousiy to 6t and to
gu  In te rva ls  (M; ,  M1+ , )e& t ,  (M ,  M, * , . )e  Ç , , ,  where  i :  I , 3 ,  5 , '  " ,m- I ,  i : i  +1 '

Since deformatioï of G is éontinuous and i, : iI on each M, eÇ, we indeed obtain

i; : rf- r for anY M.'e6t.
Let us assume that G'is divided indeed into an even number of intervals on which

alternately only respective static or geometric quantities are prescribed, as discussed

above. Then, in order to eliminate i from the line integral of (5.94)r the following

functions are introduced on Vr:

Gr(s)  :  i t t  -PPvo)ds,  T -Pouo: (G;*C;) ' ,
sj

(5.e5)
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where C, are constant vectors which should ensure F to approach G, continr-rously.
Taking further into account that  Gr(s) :0,  i (s;)  :  r f - r  :  r j -* ,  t (s;+r)  -  i , f  :  f f+ i  we
can transform (5.94), into

m -  1  s j *  r
t f

)_  j  J  [ (G;+C; -F) ' r ' ]ds - [G; (s ;+ , ) . r i - ,  *C; . ( iT - ,  - iT ) ] ]
" i = 1 , 3 , . .  s r

where l' on 7, is understood to be expressed in terms of F, 0 by the tensor (5.7)r, the
inverse of Eqs. (5.78)1, é.47)r and (5.87)r.Ar a result ,  the funct ional J, in Eq. (5.92)
can be transformed into the form

(5.e6)

(5.e1)

J ,(F , O, 8,, Cr) : j j  {;, (0) - tsF, 0)- (ta"F ,,+ pp).rr(0) +/ tn(0)l} dA +

m _ I  s j * r
.  t - t  /  |  ( / -+ L (  J  t (G;+C;-F) . r ' (F,  0)+stn(e) l ld ' -

j = t , 2 , . . .  s j

- [G;(s;+ t) ' iT*, * Cr'( i f+ r -Fi)]) - J a,n1e)'eB(F, Q)f ds -
g

J {n- f* '  -PB, p. i *  + [G.B(0)r , , (0)uB -  B, i* ' ] .  tn(0)  -  n(0x) l ]  ds.
q,,

The variational principle ôJ 2 :0 is equivalent to three tangential compatibil i ty
conditions (5.24), in -r//, three moment equilibrium equations (5.57), ir ,//, three
constraint conditions (5.21) in u//, three force static boundary conditions
G r + C r - F - B , n : 0  o n  e a c h  i n t e w a l  ( M , ,  M 1 * t ) e Ç 1 ,  j :  1 ,  3 , . . . , f f i - 1 ,  t w o  r e l a -
tions (5.63) on G, (the first identif ies B, and the second is the static boundary
condi t ion for  thé couple),  one constraint  condi t ion n.errp:0 on g and trà
geometric bor.rndary conditions (5.60), on Gu for the rotations.

If w'e compare the functional (5.97) with the anaio-qous functional given by
Srmmonds and Danielson 1248, f. (76)], we note that, apart frotn some unimportant
constant terms and the extended potentials / and g which are included into (5.97),
also the line integral over Ç and the iast term in the line integral over 6"in (5.97) do
not appear in the corresponding functional of [2a8]. Even if B, is eliminated from the
functional (5.91) with the help of the condition (5.63)r, those two line integrals do not
reduce themselves and have to be taken into account in the consistent nonlinear
theory of shells, which is expressed in terms of stress functions and finite rotations as
independent variables.

Several functionals in terms of finite rotations were discussed also by Atluri [14]
who used the undeformed as i,vell as the rotatecl basis as a reference basis. In the
reduced forms of the functionals of [14] also the force static boundary conditions

were supposed to be a priori satisfied. This means that corresponding C, should be

constructed separately outside the variational problem, what makes the solution

even more difficr-rlt. A term analogous to the last one in the functional(5.97) is taken

into account in fl4f, but the l ine integral over 6 of (5.97) sti l l  does not appear in,the
corresponding functional of [1a]. In the functional proposed recently by Baçar

I
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124, 25f, the rotation vector has been defined as (D : n x n, cf. [23]. The so-defined
vector has different geometric meaning than the finite rotation vector used here and,
therefore, the functional of l25l can,not be compared with the functionals discussed
here. If the rotation vector is expressed through displacements, i.e. crr : eoqnoa,t, the
functional of l25l becomes a particular case of the functional (4.8) of the
displacement shei l  theory developed in 1201,191).

In the literature on Çomputerized FE analysis of flexible shells, rotations are
utiiized explicitly and implicitly, exactly and approximately, on the level of an
element and in the globai matrices. As a result, it is not apparent how to compare the
theoretical shell model discussed here with the numerical shell models. Let us only
note that rota'uions were used in the numerical shell models proposed, among others,
by Ramm [203], Argyris et al .  U2), Parisch [181], Hughes and Liu [95],  Surana

1265f, Oliver and Ofrate [180], Bergan and l{ygard 129f, Recke and Wunderlich

12041 and Recke [205] where further references are given.

6. Intrinsic shell equations

In some special problems of flexible shells, under particular types of boundary
conditions, the basic set of nonlinear sheil equations may be expressed entirely in
terms of two-dimensional strain and/or stress measures. Such intrinsic shel1
equations and their approximate versions for the geometricaliy nonlinear bending
theory of thin elastic shells were derived already by Chien [aa] in terms of the strain
measures. Alternative sets of intrinsic shel1 equations and/or aiternative schemes of
their approximation rvere proposed by Mushtari [152], Alumae [S], Koiter Ii15],
John [101-103], Westbrook l2g4f, Àxelrad U5, 17) and Valid t2831. Intrinsic
formulations of thin shell dynamics were discussed in [84, 130, 131, 304]. Danielson

[49] selected stress. resultants and changes of curvatures as basic independent
variables, what allowed him to derive the rehned set of intrinsic sheil equations.
Those equations were then modified siightly by Koiter an Simmonds [120] with the
help of John's [101] error estimates. Alternative formulations and special cases of the
rehned intrinsic shell equations were discussed by Pietraszkiewicz [185, 190],
Simmonds 1244f, Libai and Simmonds [133] and Koiter [ i19].

The simplicity of the intrinsic shell equations is remarkable. Their solution leads
directly to the determination of stress and strain measures in the shell, without
necessity to calculate dispiacements. However, displacements and/or rotations may
be calculated, if necessary, by an additional integration of the kinematic reiations
(2.1), (2.10) or (5.19), (s.20) and {5.27).

6.1" Intrinsic bending shell equations

Let us note that the component form (3.31) of the mixed shell equations (3.30)1 in the
deformed basis âo, I is already expressed entirely in terms of two-dimensional strain
and stress measures. Corresoondine four static boundarv and three corner con-



Geometrically nonlinear theories l0l

ditions (3.30)2,3, when written in compcnents along t, l n, are also expressed in terms
of the strain and stress measures. Appropriate boundary conditions on (6u can also be
expressed entirely in terms of the strain rneasures by assuming functions (5.34) and y,, to

be given on q.Therefore, the equil ibrium equatibns (3.31) and the compatibil i ty
conditions (2.12) constitute the basic set of six nonlinear equations with respect to
arbitrarily chosen six components of strain andfor stress measures which are
connected by the constitutive equations (3.34) and (3.35).

Let us now assume that the smail strains in the shell caused by stretching and
bending of its reference surface are of comparable order in the whoie shell, i.e.

lofl - hxop. Then, within the error of the first approximation to the str:ain energy
density (3.32)r, the equilibrium equations (3.31) and the compatibiiity conditions
(2.I2) can be essentially reduced [185, 193] to the form

C [(1 - v)y|l s + vyqpp) * e,

nxi, l lp+ C(bi-  " i l t (1- v)yï"+vô"vl l*  q+ kl ,

(6 .1)

:o(nn$),

:o(nr,'#),

+ft . ,+ o(ur ' { \ :'  - v ' - \ - ' -  

) ,  ) -\ /

xÊ"tB -,fplo : '(#)

(6.2)

while at each corner

(6.3)

vlli - yil:p - (btni - birlp) +)t ïx'fi - xix\p) : t (#)

Corresponding static boundary conditions on €, rcduce to [i93]

C (y "" * vy u) + O (Eha?t) : Q,,,

C0 -v)7", * O(Ehq?2) :  Q,,

D {* un,, * v)rr,,, + 2(1 - v) x',, +

Corresponding deformational quantities (5.34) can
r,vith the error already introduced into the reduced

+ ( 1 - v)lx,(x", - xo) * 2x "x,,]j

D (4,,, * vx,,) + O (Ehz n0') : Ku,

point kI,eG, we should assume

D (1 -v) (r",),n, + O (Eh2 402)

Q+ K' , ,

:  (Kr ) jn j . '

also be reduced in accordance
compatibil i ty conditions (6. 1).,o.
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This gives us the deformational boundary conditions [193]' on v,,:
(n02\ / nfr2\

x , , * o \ î  
) :  

k L  x v t * o \ î ) :

-,).'(+):
/ - *
ÂvI  r

(6.4)

16 5l

2y 'u,  -  T u,n *  2 ,  uy u,  *  x  r (y  n, I.*
Nnt  >

T t t :  T f  .

The resulting set of bending intrinsic shell relations (6.1)-(6.4) is very simple. Four
freld equations (6.1)t,. are iinear while two remaining ones (6.7)r,a arc quadratic in
terms of y"p and x,p. All boundary conditions are linear in the strain measures.

6.3. Refined intrinsic shell equations

In man'y problems of flexible shells the smali strains caused by membrane force
resultants may be of essentially different order (higher or smaller by the factor 02)
from those caused by the couple resultants. In those cases the reduced bending shell
equations (6'1)r,r should be approximated with a greater accuracy, since within the
accuracy indicated in Eqs. (6.1)t,. they contain only terms of one kind: membrane
strains or changes of curvatures, respectively.

The refinement of Eqs. (6.1)r,. may be performed by selecting membrane stress
resultants N"É and changes of curvatures x,dp as the basic independËnt variables of the
shell theory. The estimation procedure presented in detaii in 149, 120,185, 193]
ieads then to the following refined intrinsic shell equations

N h p + 2 A (N I t { P^) r B - | oL( 1 - v) rv } x p^+ vl/i .^{Él l" -

- D {(b!- x:)t( 1 - v) xP^ + v 6 \ xilj t B - (b p" - x!) (D xlt Ê + k B) +

+ 2A[(1 + v) I,{ P. q p - v N 7q"] * Qo : O (nnS),
\ /

/ nA-\
t n n  \- o l  * 1 ,
\ n ^  /

A^titnp * (ut -)"r) "u - (0, -)"r) xpo + A(1 + v) qp I p : t (#),

oxil|B + @a" - xÊ,)Ni + q + k, lo : o (r"#),

xltp - rrpt"- A(1 + y)l(b,È - " i l  I ,{p^v+ (bp" - x[)t{)1pf +

+ Av(bro- "Pùt{lv-2A(I + v)(bp"- xbqs

1^ _
r t  t
E n

D:#ô16.6)
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The refined intrinsic shell equations (6.5) expressed in terms of l{op, xa. as
independent variables and with all the external surface forces c1,, q taken into
account were ,eiven in [185]. F{ere r,ve have additionally supplemented them r,vith the
external surface moments ft,. Danieison [49] derived Eqs. (6.5) in terms of -xop and
a modiTled stress resriltant tensor n'P, with only 11 taken into account. Koiter anc
Simmonds [120] expressed. Eqs. (6.5) in terms of  n"P, -Q,r t  in the absence of  surface
[orces. whi le q, .  ( l  v , 'ere taken into account in [190].

The boundary and corner conditions associated with Eqs. (6.5) should also be
refined. Note that only the tangential static boundary conditions (6.2)t,, and the
tangential deformational boundary conditions (6.4), need to be relined, since the
other boundary conditions (6.2).,*, (6.3) and (6.4)r,, of the bending shell theory are
accurate enough for the use'with the intrinsic equations (6.5).

Let us multiply the conditions (3.30)2 by v or i appiy the transformation rules
(3.9) to express fo or r. in terms of vo or to, respectively, and use the constitutive
equations (3.34),. Then within the error O(Ehrl7a) the tangential static boundary
conditions (3.30), on 6, can be reduced to the consistently approximated form

l I  + A(N"" - vl/")]  Nnu - D (o " - %, u) (x nn * ttx,,) + 2D (1 - v) (t ,  * x,,) x yt :

Q" * k, * x,,) K, + O (Ehr1 0a),

l1 + A(N,,- vl{"") l  Nn, * 2A(I * v) l{" ,1{ u,* D(r,* N,,)(x,u*vx,,)-

-2D (1 -  v)(o,-  xàxvt  :  Q,-  @,- %,r)  K,  + O (Ehr10+).

Corresponding deformational boundary conditic,ns on Gu can be constructed by

/ n0a\
the consistent reduction, to within the error O\î 

), 
of the parameters ft,, and

k,, given by the expressions (5.3a),., r,vith the subsàquént elimination of yoB with the

help of  the const i tut ive equat ions (3.35)r .  As a resul t ,  we obtain the fo l lowing
consistently approximzrted deformzrtional boundary conditions:

(6.7)

x , r * 2 A ( I

(6.8)

2A(I * v). 'V' , '

x,,* A(o, - x,,)(l{* - vNn,) kI * O(ry\,
\ n  /

*  v) (o,  -  x , , )N n, -  A(r , *  2 , , ) ( l / " "  -  v l { , , )  :

-  1  (N, , . "  -  vNu, ,u)  + 2A(1 + v)  xu N , , ,  *

kr,+o(+),

+ A(I * v)2,(l/,, - l{,,)

/ (N , , - vNu , )  : , / l r .

/ nB3\:  kL*o\î),
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B(o)  -  Bo(o)+

NÉ, Il and G are given in Eqs. (3.2g)

The static boundary conditions (6.7) and (6.2\,4 are equivalent to
Danielson l49l in terms of n"p, -%a0.The redned foim (6.g) of
boundary conditions has not been discussed in the l iterature.

those given by
deformational

6.3. Work-conjugate static boundary conditions

The consistently simplilied static and deformational boundary conditions given inSections 6'1 and 6-2 are not work-conjugate to each other since the static parameters
in the line integral (3.28) work on virtual displacements and not on variations of thedeformational parameters krr, kur, kn,lrr. In oid., to derive work_conjugate bound,aryconditions, the line integral of (3.28) should be transformed as it was suggested i'
1192,1931.

According to the relat ions (2.17), and (5.30)2, âr:  t*u,:  ârRrt.  Taking thevariation of this expression with the help of rehtlons (4.27) and using the identityC /du'  :  (ôu) ' ,  we obtain

(ôu;' : 
#u,ur,,+ ôo, x â,,

where by ôt we understand the variation of .the displacement field on #, which isreferred then to the deformeci basis t, t, n, i.e. the virtuàl displacement field appearingin the principle (3.28).
Let c be an arbitrary constant vector and ô : R,c. Then ôe : ôcrr, x c andc' : I, x c, according to the rerati ons (4.27) and (5.31). since again (ôe;, : ô(e,) thisleads to

(6 e)

(6 .10)

(6 .1  1 )

(6.12)

(ôo , ) ' :  ô1 , -ôo r , x l , .

Using the relations (5.31) and (5.33)2, the relation (6.10) can also be presented in thet .arrernatlve lorm

(ôt,) ' : - 6k,,v + 6k",1- ôkn,n.

Let A and E(o) be the vectors of the total force and the total couple with respect
to the origin o e E of all the internal force and couple resultants acting on u puit of
the deformed boundary q. with the help of the transformation rule (3.9)1, these
vectors are defined by

A :  A o * P d s , P :  NÉ v  u - (HnI  ,J
sO

I r i
SO

and

x P* Gî1ds,

40, Bo(O) are initial values of A, B(O).

I
I
l -
:
i',
I
Ir
i

I

where
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t A  l : 1 )

(6. i 5)

(6 .16)

(6 . r7 )

L H ifr," ôù, :
j

: - 
J,[*.tr',)' 

*i^. -,ô.i,,] d,- Z[(H;n;+Aj).ôùj+8,.ôro,;]

- I {ftr i i- Hilni* A;-ait.ôuj+ (8, -Bf). ôco,;}

It is apparent from the form (6.16) that on Grcomponents of-B-B* in the basis
t,  I  n and the component - a;t(A-A*) 'Twork on variat ions of the deformational
parameters. Therefore, the static boundary conditions which are work-conjugate to
the deformational ones have the form

B :  B * ,  1 ^ " i : 1 4 * . ,
Qt Cl t

on Gr.

The total couple vector B: B(.42) with respect to a current point M of Ç is givenby

( 6 . 1 3 )  B : B ( t ) - r x A .

Differentiating A and B aiong V, we obtain

A' :  F, B' :  Gî-â, x A.

Dilferential relations (6.9), (6.11) and (6.14) can be used to transform the
boundary terms in the principle (3.28). Indeed, introducing A' for P into Eq. (3.28)
and integrating by parts, then again introducing B' for GT- â, x A, and again
integrating by parts, we obtain

J tP.ôù + GT.ôar,)ds -
€ 1

Exactly the same transformations hold for the analogous external force and
couple resultant vectors, only in this case T, H*, Gt and Hf appear in place of NÉvr,
H, G and H,, respectively, in anaiogous definitions of P*, A*, B*, AT and Bf. As
a result, with the help of Eqs. (6.11), (6.15) and an analogous transformed integral for
the starred quantities, the boundary terms of the principle (3.28) can be transformed
into

Itfollows from the form (6.16) that terms associated with the virtual work at the
corners M te$t are not expressed in the intrinsic form, since the static parameters
work there on ôù and ôo,, respectively, but not on variations of deformational
quantities. Therefore, in order to make a shell problem solvable in the intrinsic way,
entirely in terms of strain and/or stress measures, those out-of-integral terms should
identically vanish. It is easy to note that those terms vanish identically in the case of
the smooth boundary contour (i.e. without corners) or when only geometric.
displacement boundary conditions are assumed on the entire 6. Another special case
is when g is divided by corners into an even number of intervals, on which



r t 2 W Pietrctszlciewicz

alternately only static or only geometric (displacement) boundary conditions are
prescribed. ln such a case all the corners belong simultaneousiy to V, and to G, and.,
therefore, ôù and ôo, vanish identically at each corner MeG.

V/hen the work-conjugate static boundary conditions (6.17) are used in conjunc-
tion with the bending shell equations (6.1) or with the refined ones (6.5), all the
vectors A, B, Ax and B* should be calculated from the consistently reduced
components of P, G, P* and Gx given in the conditions (6.2) and (6.7), respectively.

6.4. Alternative forrn of re{ined intrinsic shell equations

An alternative set of intrinsic shell equations was derived in Chapter 5. Indeed, six
equilibrium equations (5.51), (5.62) and six compatibility conditions (5.73) are
expressed entirely in terms of the stress measures 5"0, 6"0, gP, S and the strain
measUfes  f l -n .  0 -n .  k , .  0 .p '  \

When strains are small everywhere, the equilibrium equations (5.62) and (5.51)
can be reduced within the error of the f,rrst approximation theory to the form

6"pla-e, +Ê" : o("*Y),

S - eo, q'ôS^o - EaAG"P (bi - ab : O (Ehq7a) ,(6 .18 )

(6.1e)

It should be noted that the
also between the reduced

5*p I o - e"^ Snt o +)r"es,É - Qtt @i - a"ù * Êo : o(nnff) ,

'(+)'
:o(+),

: o ( * \ ,
\ n ^  /

'(#)eo' EÀ'(o ̂ " -: t  -) Q ,p * to' ko,o :

I

S"Ê \b"p - Q "p) + QP I p * p :, (t*#)

Similarly, the compatibiiity conditions (5.73) can be reduced into

e"F q s"olp + kt :

Q - E"P tl ",(b'i - A'ïJ)

,l

t"! Er" Q ÀalB * 
tt"o n ,o - e"P k"(b'f - A'i)

static-geometric analogy formulated in Section 5.5 holds
sets of  Eqs. (6.18) and (6.19).

I
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Let us solve Eqs. (6.18)1,2 for  Q, S and Eqs. (6.19)1,2 for  ko,  Q, respect ively,  and
introduce the resul t  into the remaining equat ions (6.18) and (6.19),  what leac1s to

S t / J l ^ - t -  ç a À c x Q . . 3 Ê . ^  ,  I  z f i  r  v ou  tp - -o  o  , ) ) . t t p *1q ]_  
r t ' r t , r l r t i ,S^n  +G ' t (b i_ �p ) f tB -

s"P (b,p - Q "ù + G"Ê l"p * îP ls + p

-(GP^t^-rÊ\(ui- ai)* po : o(nn$),

of Eqs. (6.21) and

: o(r.t'ry\,
\  ^ - /

(6.20)

i

16.21)
I

,(TT\,
\ n ^  /

^ z p ^ j x ^  , 7  ^ ,e'P cn '  Q ; ,1p *  -e 'F Eo)1,1,n(b| -  q ï ] lp  + { f  e^n 4" t tn(bï  
. -  

A i )  :

Ê'o F.t'l ( o r,- 1n,") Q,o -, *,,07 :, (#)
L \ Z / J \

cing the transformations (5.14) into the left-hand sides
g signs, we obtain

1 r  l - r
Q'P l ,  + 

) { i  
e"a dT^n p, tn *  

. .u"o 
t , r l ln iek +

, lntrodu
' 1

;cnangln
i

I
I

;

/  1  \ l l  /  I  \' \6.22) +q"^(ut- ;p '^) l l  - ip^t^(ul_� ' "n"0) :0,
\  L  / i l p  \  / .  /

, / t \'  0 "o lb"u- ;P" , " l+4 'o l *p :  o -, r , L /

,When Eqs. (6.22) are compared with the homogeneous equations (6.20), it is seen that
the static-geometric analogy sti l i  holds between the reduced equations (6.20) and
(6'21), what was not the case for the exact sets 3*3 of the transformed intrinsic shell
equations (cf. Section 5.5).

The measures 4ap and G"0 can sti l l  be eliminated from Eqs. (6.20) and (6.21) with
the help of the constitutive equations

(6.23) 4oÊ: '4[(1 +v)S'p -vaaÊsl ]  + O(ry7t) '

G"B :  D [(1 -  v)  Q"P * va"Pa1] + o (Ehz qïr) ,

what, after transformations, gives us the following alternative form of the refined
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shell equations:

s pq 
e + A L0+ v) sl - v ô I s:l I p sÊ^ -l o ru+ v) s{ sl - vsl s ooll " -

I- 
)o U - v) (bl p\ - bI els I u - D @p" - eE) eh p + p, - (bp, - ep) Ê p : o (nnS),

\ /

oeZlfp + (bP,- af)si + p + Ê,l" : o( nn I!1\t  r , ' l a  -  v \ L r r  
r  ) ,

1
a'"rp- epnv+ieO + v)l(b!- a*)sf -(b1- aflsj lh -

- A(bf - ob Shp - A(1 + v)(br" - ap,) p p : o (#\,
\ h ^  ) '

"  /  1 " \  /  1  \  ^  / n Ê z \ASi l f r * luo"- ino"  )p"o- (  a f  - ipZ)a |n+ A(1 + v) l '1 , :  o(+\
\  z  /  \  z  /  \ 1 " /

we apply the identity [49, 185]

(s3s{ - sf sfl 6 : }tsisf - sf sl) t"

t two of the equilibrium equations (6.24), can be put into another equivalent

114

intrinsic

(6.24)

If

(6.2s)

the firs
forms:

s|q e + A L0- v) sj + vôi fil I e sP^ -* orrt- v) sl s{ + vsj sff I l" +

lru 
-ùo;Iel-uleille- D(bp,- qbplrp+

u"p o- sPpP,) + p"-(br"- ebÊe : o(nn{),

(6.26) -r

+ 2Av (S

s Pq e + A sà fsq - 
] a 1sl sÉ) l" +\ n g - u) (bÊ^ e! - b! sp^) | p -

(6.21)

- D(b!- eP")ûrp+ Av(sfpÊ- slf p")+ p"-(bp"- ailÊB : o(e,n(\.r  
\  l l

The relined intrinsic shell equations (6.24)are fully equivalent to those given by
Eqs. (6.5). This can be shown directly if we take into account the transformation rules

I



( 5 . 1 1 )  a n d

(6.28)

(5.40) rvritten here

1
:  x Ê - * : A ( t + v ) l - l b 1" q  

2  
' . t L \ " a .

R
n F
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in the appropriately approximated forrns:

- %:) I{ P^ + (bP^ - xil l,{ :l -

(6.2e)
: {ôn"- Al(1+ v)}rf -vôf I,t l l+ o(402)f}eu.

If now the rules (6.28) are introduced into Eqs. (6.26) and the effect of change of the
basis is taken into account according to the transformation (6.29), then, within the
indicated accuracy, the Eqs. (6.26) can be transformed into Eqs. (6.5)r. Applying the
same arguments, also the remaining equations of the set (6.24) can be transformed
into the corresponding equations of the set (6.5). Therefore, the sets of the rehned
intrinsic sheil equations (6.24) and (6.5) are fully equivalent indeed.

The corresponding set of refined static boundary conditions in terms of SoÉ,
Qop eân be derived from the relations (6.7) and (6.2)r,o if we apply there the reversed
transformation rules (6.28). Then, after appropriate estimates and transformations,
we obtain on G,

Suu -  A( l  +v)S3,+ D(I  -v)(r ,  *  Qu,)Qu, :  Qu*(r ,  *  Q"JK, *  O(Ehr17+),

- Dv (b! - xP") x),+ D ( 1 - v) xl x\ + o (Ehq 0o) : t{f + O (Ehq 02) .

Fo :  .  l : f ,  e ,^(6t+ryt )^p:  l6 t ' , - �y l+o(40\ lau:
v c ,

su, + ,4 (1 + v)S"" S", + 1l (1 - v)(o" - Q,n) Q,, -

-1o u - v)(o,- Q,,)Q u, +)n o- v)(t, * Q u,) Quo -

-)o rt- v) (r, * I ",) g,, : Q,, -(o, - g,,) t K, + O (Eht1 0+),

- Av (b! - xg) r{ ),. t (+) : xp^ *, (+),

sg : l/f + Al(1+ v)t{j - v6! I:,r Xl Ir PÀ-l. o tt - v)(b!x1 + b|,,xb -

In the comparison of Eqs. (6.24) and (6.5), one should also take into account that the
tangentiai equilibrium equations (6.24)r are derived here from the componenis (with
the subsequently lowered index a) of the vector equations (5.49), in the rotated basis
rn, whiie the corresponding equations (6.5), have been derived from the components
(again with the subsequently lowered index a) of the vector equations (3.30), in the
deformed basis ̂ o. Therefore, we should also take into account the following
transfbrmation of the bases

(6.30)
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D {g"u,"  * , /Qrr ,u +2(I  _�r)Q'n,+ (1 -  v)  [z- , (8""

D(g , . , , *vq ,J  -  Ku +O(Ehzr lg1 ,

while at each corner point Mi.€, we have

(6.3 1) D (1 - v)(q "J;fr ;  :  (K,),  fr ;  + O (Ehz 40') '

Similarly, the corresponding set of rehned deformational boundary conditions in

terms of SJÉ, Qap càn be derived from the conditions (6.8) again by applying the

reversed transfoimation rules (6.28). Then, after appropriate estimates and transfor-

mations we obtain on Gu

Quf-A(1 +v)(r ,*q"JS",  :  k** t (+) ,

Q ot - lo|* v)(o" - c",)su, * 
)^U* 

v)(o, - Q,,)su, -

(6.32) - :^(1 +v)( t , - { -sn,)(s""-S,J

2 A ( 1 *  v ) S i ,  -  A ( l u , " - v S u u , u )  + 2 A ( I *  v ) z n S , ,  +  A ( I *  v ) 2 , ( S " "  -  S " )

A(Su-vS,u)  :  Y l  +  O(q7 ' ) .

It should be noted that within the indicated error the homogeneous equations

(6.24) may be shown to be equivalent to the ones proposed by Koiter and Simmonds

tlZO]. In particular, when linearized, both sets of equations reduce to those of the

.besi'l inear theory of thin shells according to [37]. However, a) our equations (624)

ur. ."pr.ssed in terms of the measures S"Ê, Qop which appear naturally in the

nonlinear theory of sheils (cf. Chapter 5) while the corresponding equations of [120]

are expressed in terms of some modified measures for which no exact Eulerian

counterparts can be defined (cf. discussion in Section 3.a); b) our equations (6.24) take

into account all the surface loads û" - Ehql^, û - Ehz 4lÀ2 ' î" - Eh2 4lÀ' whtre" those

of [120] are given for the case of zero surface loads (the loads p' and p have been

inciudeà in [190, 119]); c) our equations (6.24) follow from the set of 3+3 reduced

sheil equations çO.ZO1,-ç'e .21) which obey the static-geometric analogy in the nonlineàr

range àf d.for1nation, white such an analogy cannot be established between the

initial relations of [120]; d) our equations (6.24) are supplemented by appropriately

simplified static unl d.fotmational boundary conditions, while no such boundary

conditions were given in [120].

- 8 , , )  * 2 x , g " r l ] -  * Ê , :

/  "Ft2\= o  +  K"+  o l  Eh '+  1 .
\  ^ /

/ n0o\:  k f ,  *o \ î  
) ,

: kL,.r(+),
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6.5. Soine special cases of intrinsic shell equations

n1

As it was noted in the Introduction, already Chien 144] proposed a formai
ciassification of approximate versions of his intrinsic equations under the assumption
of a slowly varying geometry and slowiy varying strain states of plates and shells.
Mushtari [152] applied a less formal qualitative analysis and constructed ap-
proximate versions of intrinsic equations for smali and medium bending of sheils and
piates. In [152] several sets of intrinsic equations of the boundary layer type were
also given. Alumâe [5] introduced the notion of waye length of deformation patterns
and discussed 12 cases of intrinsic equations for the buckling analysis of shells which
are shailow or almost shallow relative to deformation patterns. The solution of the
most complete set of such equations was then reduced to the solution of two
eqnations expressed in terms of stress and deformation functions F, I,Z Similar
assumptions were applied independently by Libai lI29l and Koiter [115] to derive
the equations for quasi-shallow shells. However, no corresponding intrinsic boun-
dary conditions were discussed in the papers referred to above.

The derivation of re{îned equations [49] provided new possibilities in the proper
formulation of intrinsic equations for various types of shell problems. As a starting
point for further discussion, three different but equivalent versions of the refined shell
equations may be used: the one proposed by Koiter and Simmonds [120] and
supplemented by the surface forces in [190], which is expressed in terms of some
modiÏied stress and strain measures, the one derived in terms of -fy'oÉ, xos by the
author [185, 19JJ and summarized here as Eqs. (6.5F(6.8), as well as the one derived
in terms of S"P, Q*p in this report, Eqs. (6.24), (6.30F(6.32). Referring to the discussion
after Eqs. (6.32), the thild version, as the most complete, seems to be preferable.

Let us look more caret'ully into the structure of Eqs. (6.24). Let 4oÊ - q and
hQ,p - hg be the maximum extensional and bending strains, respectively. Let also Ln
and ln be the wave,lengths of deformation patterns associated with the extensionai
and bending strains, such that r7"1y - r1f L, and QP"I, - QlLn, respectively. Then,
dividing Eqs. (6.24),,, by E and multiplying Eqs. (6.24h.4 by h,, we obtain the
foilowing order estimates for magnitudes of individual terms in the ref,rned intrinsic
shell equations (6.24):

(6  24 )1  ,  
f r ,

(6.24)3, 
L 

rn,

h  ,  h h ,
,  

' 4 - :  
l ' ; ' n Q ,

L, _t( I [wo' ,
h h

h q ,
R L n

(624)2,(+)
u r h

' h g ,  
* ' 4 ,  

r l ' h Q ,

h

, ' n ' h e  
'

, (hs)' .

( 6  i 3 r
h h h

t,4 '

(+)=,, *
R /

h h

o 1 ' '

(6.24)o: 'ho

' q ' h p
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Similar estimates can also be given for terms appearing in the static (6.30), (6.31) and
deformational (6.32) boundary conditions.

Various small parameters appearing in the estimations (6.33) describe quite
different phenomena. The parameters hlR and hll describe the initial geometry of the
shell and its spatiai variability, which is supposed to be known in advance. The
parameters 4, hg, hlL, and hfLn describe the respective predictions of orders of
magnitucies of the extensional and bending strains as weil as their predicted spatial
variability. These parameters are not known in advance, for they strongly depend on
the type of shell problem being soived, i.e. on the geometry, external suriace and
boundary loads, boundary conditions etc. 

'Within 
the accuracy of the Iirst-ap-

proximation theory of shells it is already assumed that terms of the order of hlR,
(hll)',(hlL)2,(hlL)2,11 andhp can be omitted with respect to the unity. This gives us
the upper bounds for estimates of various smail parameters. Howevet, in different
types of shell problems the reai magnitudes of some small terms may be far from
their upper bounds"

For sorne shell problems it is possible to predict in advance the type of solution
behaviour in the whole internal shell region. This prediction may then be used to
compare the orders of magnitudes of various terms appearing in the set of equations
(6.24), (6.30H6.32), what aliows us to omit some terms which are of the order of error
of the frrst-approximation theory. Then the predicted solution of the shell problem
may be obtained from a considerably simplified set of intrinsic shell equations.
However, it is always advisable to check at the end whether'the solution calculated
from the simplified equations represents indeed the predicted type of solution of the
shell problem. Noté that the type of shel1 problem is described in the estimates (6.33)
by a1l six smail parameters given above, whose orders of magnitude are entirely
independent. As a result, a large variety of special cases of intrinsic shell equations
may be generated from Eqs. (6.24). In what follows we shortly discttss only few
special cases which seem to be most important.

In the iimit bofr-O Eqs. (6.24) reduce to intrinsic equations of the geometrically
nonlinear theory of plates (less error terms):

{tr 
* '4 [(1 +

1
v.)sj - v6lsi)SP^-;AôP"[(1 + v) Si 51- vsl si] +

+ 1[ (1+v)S*p f  
- rsqpÊ, f  +  p ,+ QP"hp :  0 ,

nq1llp- aP"Si+ p + fr"lo: o,

1

at"rp - qrev - * ott+ v) (ql sr^ - op* si )l u +,+p2slre + A(l + v) QP" p p : 0,
/

.'r[('* -!rarrt)"]]1,

(6.34)

I

1 1
ASZIP1-;e'"q"t+;oielo+ ag *v)p" lo : 0.
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When the plate is loaded by edge forces only, Simmonds 1244, 133] managed tn

reduce the solution of an equivalent to Eqs. (6.34) set of piate equations of [120] into

trvô coupled equations for the stress and deformation functions F, W, except in the

case in which rotations arc O(1) and simultaneously the variabil ity ot'deformation is

very large. These extended von Kârmân equations are [133]

1
A(AAF +Wl iPp" )+ ;<w,  w)  :0 ,

( 6  1 5 )

-<w, (w, F) :  0,

where

*v )e "P  e ruF lYT :  AW AF I " ,
a

(6 36)
<w, F> :  to^| f l 'wl iFl i .

The (almost) inextensional bending theory of shells is usuaily defined as the one in

which the extensional strains 4apàrÊ much smaller than the bending strains hqop,i.e'

nlhp < 1. Here we assume additionaliy that the spatial variability of the bending

strains is lower than in the general theory, hlLn ( 1. Such slcwly variable bending

strain states are typical for the inextensional bending deformation of the shell. If also

Ln ( /, then within the error of the first-approximation theory Eqs. (6.24) reduce to

the following set of intrinsic equations of the geometricaly nonlinear inextensional

bending theory of shells (1ess error terms)

(6.31) - o

- 0 .

In comparison to our previous inextensional bending shell equations [185, i90]

derived from equivalent refïned intrinsic equations, the underlined terms in Eq.

(6.37)2 are taken here into account, what results from the additional requirement

hlLn 4 1 used here. The presence of those terms allows for a smooth transition to the

ineitensional bending theory of plates if the limit bofl- 0 is taken in Eqs. (6.37). The

set of equations {5.31) follows also quite formally from Eqs. (6.24) by taking the limit

,4 -- 0, cf. 1244, 119].
Note that the reduced compatibility conditions (6.37h,4 can be solved with

respect to Q oB independently of the stress state in the shell. In this sense the

*rfo*\-

''"]llr",*)o

( t ' )

I  sg--ntr -r)@lp\-blqi l l  -  n@f"- e}qirp+ p,
|  /  ) l P

n qllnn + (bg - ab Si + p + fr"lo : O,

l,z)'r
(pP"- lïqille

/ t \ /

I  ag- ;sn" lo "p- la ; -
\ L / \

( f t
nlddw+l;(awY
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inextensional bending problems of sheils are geometrically determined. When Qap àte

calculated, S"É follow from the reduced equilibrium equations (6.37)L,z and then the

constitutive equations (6.23) allow to recover r1op and G"P.

The (aimost) membrane theory of shells is usually dehned as the one in which the

bending strains are much smaller than the extensional strains, hgl1 ( 1. Here we

assume additionally that the spatial variability of the extensional strains is lower

than in the general theory, hlLn ( 1, what again is typical for the membrane stress

stares rn the shell. If also Ln ( /, then within the error of the first-approximation

theory Eqs. (6.24) reduce to the following set of intrinsic equations (1ess error terms):

S P . , t e + û o : 0 '

D q|llp + (bf - aD Si + p + fr"\" : o,

+ AbPp."Sl- A(r + v)b[ p p : 0,
p

Â d l  - o
f l d

In comparison to our previous membrane shel1 equations [185, 190], which followed

from equivalent refined intrinsic equations, the secondary nonlinear terms are

omitted in Eq. (6.38)1 and the underiined terms in Eqs. (6.38)2,4 are taken into

account, what again results from the additional requirement hlL, ( 1 used here. It

should be noted, in particular, that the equilibrium equations (6.38)1,2 cannot be

solved here independently for S"f since in E-q. (6.38), we have the underlined terms

whrcn provide the coupirng between the equilibrium equations and the compatibility

conditions. As it was noted in [119], this coupling removes from the nonlinear

membrane theory the degeneration prevalent in the linear theory, L254). In

particular, the geometrically nonlinear membrane theory of plates follows from Eqs.
(6.38) in the limit boa-0. At the same time, our equations (6.38) are considerably

simpler than those which would follow formally from Eqs. (6.24) by taking the limit

D -* 0, what was suggested in 1244, 119].
The ben-ding theory of-shèlls équivàlent to-fnë one discussed in Section (6.i)

follows from Eqs. (6.24) if

(6.3e)

1  " . l l- ôn"e\*;o(1 + vXbj sP^- bqsb - Ablsi 
)l

Asilnn + bP" sV - bi,ianp+ 1(1 + v)

"*.(?* ,'Ë*).+n """(; i''Ëi,'Z*)

AsitÊr* ( ot -i'r) e", - (ar -.irr) e.p + a o

Then Eqs. (6.24) can be reduced to the set of equations (less effor terms)

s f r p + û o : 0 ,

cqî]fr + (bl- aâ)si + P + Ê"lo : 0,

fuE-ôÊ"s\) lp :  o,
(6.40)

+v)P" l"  :  o.
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Let us introduce the stress function F and the deformation function W bv

s! : Eotsqa (F Ê + al KF) + PP,,
(6.41)

Qr. : + WlP"+ ô!KW, pttp+ îo : 0.

The equilibrium equations (6.40)r are approximately satisfied by Eq. (6.41)1 and the
compatibil i ty conditions (6.40)3 by Eqs. (6.41)2 provided

|wtÊ, < r, ?,*,r l  < r,(6.42)

respectively. Then the remaining equations (6.40)2.4 in terms of F, W take the form

D Â{ aw + 2K rry )  *  E ' )  tenb! . -  wlL,  -  6p" KW){Flg + aiKF) +

(6.43)
+ @p" - wl! - ôp" KW) Pi + p + * 1" : g,

+  ALAPT-(1 + ! )P! l i f  :0 .

These are the nonlinear bending equations for shells of slowly varying curvature, which
are equivaient to the ones proposed recently by Rychter l2l3l. Under a more restrictive
assumpt ion  lK lL2  <  1 ,  where  L  :  m in  (L r ,Ln ,  / ) ,  we can a lso  omi t  in  Eqs .  (6 .43)  a l l
terms with K, what leads to the nonlinear equations of quasi-shallow shells, given by
A lLrmâe [5 ]  anc i  Ko i te r  [115] .

The limited space of the paper does not permit to present here the explicit
reduced forms of intrinsic boundary conditions to be used with each of the reduced.
sets of intrinsic equations discussed above. For each particular case those boundary
conditions follow immediately from Eqs. (6.30)-(6.32) if corresponding estimates are
introduced and appropriate simplif ications are made. The reader can easily derive
them himself if necessary.

Other special cases of intrinsic shell equations and some of their applications are
discussed in [51.49, 790,244,119, 133, 18],  where further references are srven.

7. Closing remarks

In this report we have reviewed some achievements associated with the derivation,
classification and simplification of various sets of equations of the nonlinear
first-approximation theory of a thin shell, the deformation of which is expressible
entirely by deformation of its reference surface. Basic sets of shell equations, which
govern static problems of a thin shell made of a linearly-elastic homogeneous
isotropic material undergoing small strains but unrestricted rotations. and associted
variational principles have been formulated either in terms of displacements, or in
terms of rotations and other Iields or in terms of strain and/or stress measures as

A / (/ F + 2 K F) - ro ̂ u {, n (ur -)*,f - 
lu t " *) (w H + 6a$ w) +
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independent variables. References have been given primarily to those original papers
and monographs which cleal with general aspects of the nonlinear theory of thin
elastic shells and have been written in an invariant tensor notation. Apart from the
unification of various partial results which are available in the literature, the report
contains also som. oiigitrul results. which have not been pubiished elsewhere.

The subject of this report is quite narrow and many important aspects of the
nonlinear theory of sheils have not been discussed. Among those associated subjects
let us rnention, for exampie, stability analysis, dynamic behaviour. large-strain
theory, inelastic maierial behaviour, composite shells, intetaction problems, hig-
her-order sheii theories, Cosserat-type theories, existence and uniqueness of solutions
etc. Beyond the scope of this report there are also specific problems of shells with
definite geometries as well as various analytic and numerical methods of analysis of
the flexible shells.
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PE3IOME

feouerpurecKlr HeJluneftIrue reopn[ ToHKI{x yrlpyrlrx o6o.llo'leK

B pa6ore o6cyx4arcrcr ocHoBHbre 3ABI,iCLIMOCTH ne,'IllHeùHofi 
'reopl4l'l ToHKItx ynpyr[x o6oloqerc'

PaccvarpunaroTcr pa3J'rriqHbre BuÀbI ypanuenufi paBnoBecllt ra yc,ronufi coBMecTHOCTII 'qerpopuaquu'

a ra*xe coorBercrBeHuire onepreruuecxn corJ'racoBauuble crarrlrlecKlle u reoMerp]lqec(ne KpaeBble

yC,'lOBuc H yciIOBI{t B yr;toBltx Tgrrr<ax xpax O6o:rOlxu. ?ru oCHoBHbIe C}IcTeMbI 3aBucnMOCTeH

BbrpaxeHbr qepe3 nepeMexleHr4c cpeÂr,rHuoù nonepxnocrl o6oloqrtl unu qepe3 noBopoTbl I{ /'IpyrHe

napaMerpbl rrinr xe qepe3 ÀByMepHËIe Mcpbl 4edropvauufi uf unn HanptxeH'lii KaI<

He3âBncl4Mble nepeMeHH[,re. Parpelllaroulr.re cI4cTeMbI He,quHeùHstx ypaBHeHI4I'r TeOp]II4 O6O'rOqex co-

oTBeTCTBeHHO ynporqaloTct rrpH npeÀnonoxeHl{H qTO lesOpruaqnn BcroÀy ManLI. vpanuenrar o6o:roqex

B nepeMeulegr,rcx ÀononHITeJIbHo ynpoualoTct npl4 orpaHI{qeHHI'I BeJII{quH}'I noBOpoTOB, a ypaBHeHI4q

o$o:roqex B Mepax ;fetpopuaUrafi uf unu uanptxeurafi ÂOno;riil'rTeJlbHo ynpoqaloTcq npl4 npeÀno;ltoxeHlllr

pa3nnr{Hbrx coorHoueullù uev6paunoù n u:ruGsofi 4e$opvaqr'ru. B Cnyvae KoHcepBaTLBHofi no^

uep*rrocr*roù n rpaenofi Harpy3r(r{ cTpotTct cooTBeTCTByIoUIue BapnaquoHlllte rfyuxquoHalrbl À!'lc

,"Lp* o6oroqex ts nepeMeuleHr.r flx Htrr B noBoporax I{ Àpyrt4x napaMerpax. Kpove o6crosre:*noro

O6:opa ÀOcrHxeHr.rË s o6,'IaCrn [OcTpOeHI4t pa3nIIqHbIX BapI{aHTOB He'runeùnOù Teopût't nepBor.O

npu6.luxeHur ToHKr4X ynpyrux o6o,roqer, n pa6ore [peÀcTaBneH TaKXe psÀ HOBbIX pe3y.rlbTaToB

no-TyqeHHbIX aBTopoM s rrofi o6,'Iacru.
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