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1. Introduction

Shell theory attempts to describe the mechanical behaviour of a thin three-dimen-
sional solid layer — the shell — by a finite number. of fields defined over its reference
(usually middle) surface. Since this is not possible, in general, the shell theory is an
approximate one virtually by definition. It cannot provide a complete and exact
information about all three-dimensional fields describing the mechanical behaviour
of the shell. However, the results which follow from such a two-dimensional
approximate description of the shell are usually sufficiently accurate for the majority
of applications in science and technology. At the same time, the two-dimensional
problem resulting from an appropriate shell theory is much easier to handle than the
original three-dimensional one.

This report deals with one of the simplest formulations of the shell theory: the
geometrically nonlinear first-approximation theory of thin elastic shells. This theory
1s applicable when:

a) the shell is made of a homogeneous, isotropic and elastic material;

b) the shell is thin, i.e. h/R < 1, where h is the constant thickness of the undeformed
shell and R is the smallest radius of curvature of its reference surface .#;

c¢) the undeformed reference surface is smooth, i.e. (h/))*> < 1, where [ is the smallest
wave length of geometric patterns of ./,

d) the shell deformation is smooth, i.e. (h/L)2 <1, where L is the smallest wave
length of deformation patterns on .#;

e) the strains are small everywhere, i.e. § < 1, where 7 is the 1argest strain in the shell
space.

Under an additional restriction of rotations of material fibres to be also small
everywhere, the geometrically nonlinear theory reduces to the classical linear
first-approximation theory of shells, which was discussed in detail in many papers
and books, for example [135, 296, 79, 83, 175, 275, 75, 39, 158, 85, 228, 26].

Within the assumptions given above, the behaviour of an interior domain of the
shell can be described with sufficient accuracy by the behaviour of the shell reference
surface. Already Aron [13] approximated the shell strain energy density by a sum of
two quadratic functions describing the stretching and the bending of the -shell
reference surface. Love [135] came to the same conclusion by the application of two
well known constraints, analogous to those used by Kirchhoff [111, 112] in the plate
theory (cf. Novozhilov [175]). The accuracy of such a so-called Kirchhoff-Love shell
theory was examined in a number of papers [177, 79, 80, 113, 118, 50, 123, 212, 26].
In particular, Novozhilov and Finkelshtein [177] and Koiter [113] pointed out
explicitly that within the basic assumptions the quadratic expression of Love [135]
for the shell strain energy is a consistent first approximation. Moreover [113],
various versions of the shell theory, which differ from the version given by Love
[135] only by terms of the order of /R in the definition of the two-dimensional

measure of change of curvature, should be regarded as equivalent from the point of
view of the first approximation to the shell strain energy. Since the consistently
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approximated strain energy of the shell is expressed entirely in terms of
two-dimensional strain measures of the reference surface, the conclusions are valid
both for the linear and for the geometrically nonlinear theory of shells.
Although some geometric results about nonlinear deformation of the shell space
had been given already by Love [135, Ch. 247, Donnell [54, 55] and Mushtari [146,
147] seem to be the first who proposed the simplest nonlinear theory for stability
analysis of cylindrical shells. Marguerre [144], Mushtari [148, 1491 and Vlasov
[295] developed the nonlinear theory of shallow shells which was applied with great
success to a number of problems of flexible shells analysed for strength, deformability
and the loss of stability. In particular, by applying Marguerre’s theory Karman and
Tsien [107] discovered that the axial compressive forces applied to-a cylindrical shell
drop considerably in the post-buckling range of deformation. This differed qualitati-
vely from the behaviour of compresséd bars and plates, but was in good agreement
with the experimental results for cylindrical shells. Many results obtained with the
help of the nonlinear theory of shallow shells have been summarized in the books of
Vlasov [296], Volmir [297, 298], Mushtari and Galimov [157], Kornishin [121],
Brush and Almroth [35] and Kantor [105] where further references may be found.
The foundations for the general geometrically nonlinear theory of elastic shells
were laid down by Chien [44]. He expanded all three-dimensional fields into series of
the normal coordinate and applied order-of-magnitude estimates valid under the
assumption of small strafns. As a result, three equilibrium equations and three
compatibility conditions were derived in [44] in an invariant tensor notation, which
were then expressed in the intrinsic form, in terms of two-dimensional strains and
changes of curvatures of the shell reference surface. Under additional assumptions
about the thinness of the shell and the smallness of its curvature, 27 types of
approximate versions of intrinsic shell equations were given. It was assumed in [44]
that when h—0 the limits of some functions do not change their order upon the
surface differentiation. This assumption was criticized in [77, 85] as to be applicable
only to a limited class of shell problems. It was also recognized that only special
problems can be formulated and solved directly in the intrinsic form. As a result, the
very general approach of [44] has gained little attention in the following papers.
Alternative two-dimensional formulations of the nonlinear theory of shells were
given in an invariant tensor notation in the series of papers by Mushtari [150-154],
Galimov [62-70] and Alumie [4-8]. It was assumed there from the outset that the
behaviour of the shell can be described with sufficient accuracy by the behaviour of
its middle surface. While Mushtari and Galimov presented several forms of shell
relations in the natural bases of the undeformed and deformed surface, Alumaie
derived his nonlinear shell relations in the intermediate non-holonomic basis, which
was obtained from the undeformed basis by its rigid-body rotation. Unfortunately,
some of these original results were published in the local journals which even today
are hardly available outside the Soviet Union. The monograph by Mushtari and
Galimov [157] was written in the classical notation, using the initially orthogonal
system of coordinates coinciding with lines of principal curvatures of the undeformed
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surface. It provided well documented sets of shell relations for the simplified
nonlinear theory of medium bending and for the one of shallow shells. However, not
all of the general results published in the original works of the authors were
presented in their monograph with sufficient generality and accuracy. In the classical
notation some intermediate formulae became extremely complex and had to be
simplified by omitting some terms which were supposed to be small. This raised
some doubts about the consistency and the range of applicability of the final
relations of the geometrically nonlinear theory of shell, cf. [115].

Various equivalent forms of nonlinear relations for thin shells were independently
rederived and developed further by Riidiger [211], Leonard [128], Sanders [215],
Naghdi and Nordgren [162], Koiter [115, 116], Wozniak [299], Budiansky [36],
Simmonds and Danielson [247, 248], Reissner [208] and Pietraszkiewicz [182-185].
In particular, concrete error estimates given by John [101, 103] and Berger [30] for
the two-dimensional differential equations of the geometrically nonlinear theory of
elastic shells strengthened the foundations of the theory and established more precise
bounds of its applicability. Danielson [49] and Koiter and Simmonds [120] worked
out the refined intrinsic shell equations which were expressed in terms of internal
stress resultants and changes of curvatures as independent field variables (cf. also
(185, 1907). Simmonds and Danielson [247, 248] proposed the set of nonlinear shell
equations in terms of finite rotation and stress function vectors as independent
variables and constructed an appropriate variational principle. Pietraszkiewicz and
Szwabowicz [201] derived entirely Lagrangian nonlinear shell equations in terms of
displacements as independent variables. In case of dead surface and boundary
loadings these equations were derivable as stationarity conditions of the
Hu-Washizu functional (cf. also [197]). The theory of finite rotations in shells
developed by Pietraszkiewicz [184, 185, 190] allowed then to work out a consistent
classification of approximate versions of displacement equations for shells under-
going restricted rotations [195, 197].

Various general theoretical aspects of the nonlinear theory of thin shells are
discussed also in the books by Kilchevskii [110], Teregulov [273], Naghdi [159],
Galimov [71], Pietraszkiewicz [185, 190], Grigolyuk and Kabanov [89], Mason
[145], Wozniak [300], Wempner [291], Dikmen [53], Zubov [304], Berdichevskir
[28], Basar and Kritzig [26], Galimov and Paimushin [73], Chernykh [42] and
Axelrad [15, 17] as well as in the reviews or extensive papers by Goldenveizer [78],
Koiter [117], Mushtari [155, 156], Novozhilov [176], Basar [20], Langhaar [127],
Pietraszkiewicz [187, 191, 193], Koiter and Simmonds [120], Wozniak [301],
Simmonds [2437, Naghdi [160, 1617, Schmidt and Pietraszkiewicz [224], Atluri [14],
Libai and Simmonds [133], Schmidt [222], Stumpf [263] and Szwabowicz [271],
where further references may be found. One-dimensional problems of the nonlinear
theory of elastic shells are extensively treated by Shilkrut [237], Shilkrut and Vyrlan
[238], Valishvili [286], Antman [10] and, in particular, by Libai and Simmonds
[134].

The behaviour of the shell near its lateral boundaries, i.e. in an edge zone of depth
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of the order of the shell thickness, is nearly always essentially three-dimensional. The
physical explanation of this statement is quite simple The external (or reactive)
stresses applied to the shell lateral boundary surface are statically equivalent to the
external force and moment resultants on the reference boundary contour plus some
self-equilibrated part of the stress distribution over the lateral boundary surface. The
resultants enter into the boundary conditions of the basic boundary-value problem
which describes correctly the shell behaviour in its interior domain, far from its
lateral boundary surfaces. The self-equilibrated part generates additional stresses in
the shell space, which are localized in the edge zone. Within the linear shell theory,
these additional stresses may be calculated approximately as some linear com-
binations of solutions of the plane and anti-plane problems for a semi-infinite strip
[82, 83] and then may be added to the basic stress state associated with the
resultants, (cf. also-[91]). An extension of this approximate method, based on
a superposition of elementary stress states, to the nonlinear range of deformation
may not always be correct, in particular near the stress states associated with the
bifurcation or limit points of solutions of the basic boundary value problem.
Additionally, the exact stress distribution over the shell lateral boundary surface is
rarely known in the majority of engineering problems, except in the case of a free
edge. As a result, within the geometrically nonlinear theory of shells, little has been
achieved in a better two-dimensional description of the shell behaviour in the edge
zone. Some approximate results have been given by K01ter and Simmonds [120] and
Novotny [172].

In this report basic relations of the nonlinear theory of thin elastic shells are

‘reviewed. Various consistent sets of nonlinear shell equations in terms of dis-

placements, in terms of rotations and some other field variables as well as in terms of
two-dimensional strain and/or stress measures as independent variables are discus-
sed. The final nonlinear relations are then consistently simplified under the
assumption that strains are small, while displacement equations are simplified
further under consistently restricted rotations. For some types of conservative
surface and boundary loadings, appropriate variational functionals are constructed
for displacement and rotational nonlinear shell equations.

During preparation of this report it became necessary to clarify some theoretical
problems which have not been fully treated in the literature. Among those new
results is a discussion of integrability of kinematic boundary conditions, the
construction of the general form of the work-conjugate static and geometric
boundary conditions for displacement shell equations, alternative derivation of
rotation shell equations in the rotated and undeformed basis, the construction of the
variational functional in terms of rotations, displacements and Lagrange multi-
pliers as well as an alternative derivation of the refined intrinsic shell equations.

The literature on various aspects of the nonlinear theory of shells is very
‘extensive and some kind of selection of references has to be made. The references in
this report are given primarily to those original papers and monographs which deal
with general aspects of the theory and are written in the invariant tensor notation.
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Other original papers and monographs, which are written in classical notation or
which deal with special shell geometries, are referred on the basis of their historical
or informative value. Although it is believed that the most important papers, which
concern the derivation of various invariant forms of nonlinear shell relations, are
included into the list of references, no attempt is made to provide the complete list of
such references. _ .

It is worthwhile to point out here once again that some of the two-dimensional
relations of the nonlinear theory of thin shells are derived by taking a difference
between two groups of terms of the same order associated with the deformed and
undeformed reference surface. In the derivation process it often happens that the
principal terms of those groups cancel out and the seemingly secondary terms are the
only ones which appear in the final shell relations. In the geometrically nonlinear
theory of shells, in which strains are assumed to be always small, it is quite
dangerous to simplify the intermediate relations by dropping terms of the order of
strains relative to the unity, since then the final relations may happen to be
‘nconsistent or even incorrect. This has actually been the case in several early papers
devoted to the derivation and simplification of the geometrically nonlinear theory of
shells. In this report all two-dimensional relations associated whith the reference
surface are derived for unrestricted strains. The small strain assumption is then used
at the end of the derivation process to simplify the final set of nonlinear shell
relations. : ‘ 4

Stability analysis of flexible shells is one of the most important possible
applications of the geometrically nonlinear theory of shells discussed in this report.
The literature on various approximate versions of the stability equations for thin
shells is extensive and has to be reviewed separately. The stability equations are
usually derived as a result of superposition of two or more nonlinear deformations of
the shell. Since different types of approximation may be used to describe the first
(basic) deformation and the following (superposed) deformations, a large variety of
types of shell stability equations for thin elastic shells may be constructed. We only
note here that problems of superposition of deformations and derivation of various
types of stability equations have been discussed, among others, by Novozhilov [173],
Koiter [114], Mushtari [153], Alumde [5, 6], Mushtari and Galimov [157],
Timoshenko and Gere [278], Darevskii [52], Volmir [298], Bolotin [32, 33], Koiter
[116], Budiansky [36], Danielson and Simmonds [51], Seide [229], Abé [1], Basar
[21], Brush and Almroth [35], Zubov [303], Grigolyuk and Kabanov [89],
Talaslidis [272], van der Heijden [92], Stumpf [257-263], Srubshchik [250], Basar
and Kritzig [22, 26], Kritzig et al. {124, 125], Stein et al. [252, 2531, Eckstein [59],
Arbocz [117, Nolte [164, 1657, Schmidt and Stumpf [225] and Pietraszkiewicz [197],
where further references are given.

It is not the aim of this report to review recent achievements in the large-strain
nonlinear theory of thin shells. Suffice it to point out that many two-dimensional
relations collected here are applicable also to this more general case of shell
deformation, provided that the behaviour of the shell is still approximated only by
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the behaviour of its reference surface. Such simple versions of the large-strain K~L
type theories of shells have been proposed recently by Chernykh [40, 42], Simmonds
[246] as well as by Stumpf and Makowsk:i [264]. However, the change of shell
thickness during deformation should then be taken explicitly into account not only
in the approximate form of the strain energy density but also in definitions of the
external force and couple resultants applied to the shell reference surface and on its
boundary contour. Besides this review there are also the more advanced models of
shells in which the behaviour of the shell is described not only by the behaviour of its
reference surface but also by additional higher-order independent parameters. We
share the view expressed by Koiter and Simmonds [120] that the rapid development
of numerical techniques in three-dimensional problems, in particular the finite
element technique, may obviate the need of (complicated) refined shell theories in the
near future.

2. Notation and geometric relations

The notation which will be used in this report follows that of Koiter [115] and
Pietraszkiewicz [185, 190, 193, 197]. In order to make the paper self-contained, we
review here the notation and some basic geometric relations of the surface and its
nonlinear deformation.

Let 2 be the region of the three-dimensional Euclidean space & occupied by the
shell in its undeformed configuration. In 2 we introduce the normal system of
curvilinear coordinates (0%, 62, {) such that —h/2 < { < h/2 is the distance from the
middle surface .# of 2 and h is the undeformed shell thickness assumed here to be
constant and small as compared to the smallest radius of curvature R of .4 and to
the linear dimensions of 2.

The surface .# 1s described by the position vector = x*(09i,,
k=1,2,3a = 1,2, where i, is an orthonormal basis attached to a point Oeé.
With each point Me.# we associate the natural covariant base vectors
a, = 0r/00" =r ,, the covariant components a,; = a,*a, of the surface metric tensor
a with the determinant a = |a,4|, the contravariant components & of the per-

mutation tensor such that ¢!'? = —g2?! = 1/\/5, gll = ¢22 = (, the unit normal vector

1 s .
n =&t xa and the covariant components b,s = —a,*n, of the curvature tensor

b Contravariant components a* of a, satisfying the relations a* ay, = J3, where

81 =63 =1, 61 = 82 =0, are used to raise indices of the surface vectors and tensors,
for example a* = a*a,, by = a*’b,, etc.

The boundary contour ¥ of .# consists of the finite set of piecewise smooth
curves given by r(s) = r[#*(s)], where s is the arc length along #. With each regular
point M €% we associate the unit tangent vector t =dr/ds=r1 = t*a_ and the
outward unit normal vector v = 0r/0s,j¢ =T, = txn = v*a , V* = s"‘ﬂtt,, where s, 1s
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the arc length of the coordinate line on .# which is orthogonal to ¥. The curvature
properties of € are described by the normal curvature o, = b,pt*t?, the geodesic
torsion T, = — bggV* t# and the geodesic curvature x, = tav“lﬁtﬂ, where (), denotes
the covariant surface derivative on .#. For other geometric definitions and relations
on # and € we refer to Pietraszkiewicz {185, 190, 193]. .

The deformed configuration .# of the surface .# is described by the position
vector relative to the same Cartesian frame

(2.1) = (09, = x0) =r+u,

where 6% are the same surface curvilinear convected (material) coordinates and
u = u*a_+wn is the displacement field. Geometric quantities and relations, which
may be analogously defined on .# and & on a point M with the same values of 6% or
s, will be marked by an additional overbar: a,, d,g, a, €%, i, by, b, a, ( Vw565V,
W G, T, % etc.

For the base vectors on .# the following relations ‘hold

a = Ga, = lLa,+¢,n,

(2.2)
i = Gn = n*a, +nn,
where
L= Qg+ Oeg—Wagy  Pa=W+bzu,,
(23) B' B B B A
1 1
Sap = S (Uap + Upia) = DapWs D = 7 (Upia—thajp),
1 1 7]
n,=-m,, n=-m, dz\/c-l-,
a
(2.4)
af A 1 af .}.T
m, =g EinPeliy, m= 58 el
(2.5) G =3a,@a*+a@n, G !'=a,®a*+n®if.

Here G = dy/0r is the deformation gradient tensor of the surface ./ while ® is the
tensor product.

The Lagrangian surface strain tensor y and the tensor of change of surface
curvature » are defined by

1
¥ ==(GTG—1) = y,,2°®a’,

2
(2.6)
% = —(GThG —b) = % za°®a’,
. Lo "
(27) '})aﬁ = .E(aaﬂ—aaﬂ) = E(r,a-r,ﬁ—aaﬁ) = —i(l'dliﬂ—*—(pa(pﬂ_aaﬁ)’
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(2.8) Hop = ——(Z_?_aﬂ—baﬁ) = a,'n g+ baﬁ =. —a, ,'n+ baﬂ,
(2.9) = 1, (n*];— bpn) + @ (n ;+ bin,)+ by,
(210) = - n(q)a[ﬂ + b[/} lla)_ nl(l}a]ﬂ_ bﬁ (,Da)-f- baﬂv

where 1 =a_ ®a*+n®n is the metric tensor of the Euclidean space &.

According to [64], the strain-displacement relations (2.7) and (2.10) were given
first by Mushtari [150]. They were applied, among others, in the papers [64, 215,
115, 183, 185, 291, 36, 71, 72]. The importance of an equivalent representation (2.9)
for »,, was recognized -only recently by Pietraszkiewicz and Szwabowicz [201] and
was applied, for example, in [197, 198, 267, 271, 218-222, 225, 164, 165, 262, 263].

Note that y,5 are quadratic polynomials of u,, w and their first surface derivatives
while x,; are non-rational functions of u,, w and their first as well as the second
surface derivatives. The non-rationality is caused by the presence of the invariant
d in the definitions of n, and n appearing in Egs. (2.9) and (2.10) where

(2.11) d* =

Q| Q

= 1 4+2y2+2(y595 —v375).

The components of the Lagrangian surface strain measures should satisfy the
compatibility conditions originally derived by Chien [44] and rederived by Galimov
[63, 65] (with the sign error) and Koiter [115]. We present them in the form given in
[185]

, e e (g1, + @ (byz— %) Vopud = 0,
(2.12) BAlu A AJPvBu

1 —3
Kyi+ e e [Yauips— baprpa+ 5(%# it 8 Yau¥upa)] = 0,

where K = |b5| = detb is the Gaussian curvature of / and

(2.13) Vv = Vvple T Vouls — Vpulv:

An alternati\./e form of Eq. (2.12), is given in [270].
The deformation of the shell lateral boundary element may be described by two
vectors:
u=f-r= u,v+ut+wn,

(2.14)
p=n—n=n,yv+nt+(n—1)n,

which are subjected to two geometric constraints:
(2.15) n-r=0, nn=1.

These constraints imply that among six components of T (or u) and i (or ) on %,
only four are independent: three components of T (or lf), which determine the
translation of the boundary contour %, and a scalar function ¢ which describes the
rotational deformation of the shell lateral boundary element. Since the rotational



60 W. Pietraszkiewicz

deformation may be described by various means, also various definitions of ¢ may
be used in the nonlinear theory of shells.

If ¢ is identified with n, = n-v, then n can be expressed entirely in terms of u, w’
and n,, [201]

1

cZ +c?

(2.16) i [n,d,x (vxa)+./a*(1—n?)—civxa,],

where
g - = r__ . o
a=r =t+u =c,v+ectt+cn, c,=u,+T,Ww—x1Uu,

(2.17) ¢, =14+uy+xu,—ow, c=w+ou—r1u

t7v?

a, == /142y, 2yp= 2yt th = (¥)*

The: relation (2.16) is valid when the rotation of the boundary element does not

exceed +m/2. For larger rotations the sign in front of the square root is not unique -

and may change. o . i
An equivalent description of i in terms of displacement derivatives at % is given

by "

1

(2.18) | i = —F., xF,
i I DU "
r,= v+u,v = aava = af'(dv—*_zyvtt)a T
t
(2.19) d* = ()’ (F)’ —(F, ),

29y = 2yV°tP =T ,°T.

Note that T, is not orthogonal to @ due to the shear distortion of the surface during -
deformation.

In what follows we shall use the following transformation

1
(2.20) A, = —(dv,V+d,, 1’0 -
al “-

which holds at the deformed boundary contour .

3. Basic forms of shell equations | :

The two-dimensional equilibrium equations and the appropriate natural static v
boundary conditions for the nonlinear K—L type theory of shells may .be derived in '
several ways. The usual way is to integrate the corresponding three-dimensional )
relations of a continua over the shell thickness. This leads to six equilibrium 3
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equations and six static boundary conditions, expressed in terms of two-dimensional
non-symmetric internal force and couple resultants and the shearing forces.
Additional transformations allow then to reduce the relations to three equilibrium
equations and four static boundary conditions, which are expressed in terms of
two-dimensional symmetric internal force and couple resultants. An alternative
direct way is to postulate the two-dimensional virtual work principle compatible
with the basic assumptions of the shell theory, from which follow at once the same
three equilibrium equations and four static boundary conditions. Internal force and
couple resultants are symmetric here by definition, since they appear as coefficients of
the symmetric virtual surface strain measures in the invariant virtual work
expression. In this report we shall apply the second direct approach, since it leads
directly to the final shell equations.

A clear distinction should be made between the set of shell equations written in
the Eulerian description and the one written in the Lagrangian description. In the
Lagrangian description, all quantities and equations are referred to the known,
natural basis of the undeformed reference surface. In the Eulerian description, they
are referred to the natural basis of the deformed surface, the geometry of which is not
known in advance. If transformation formulae between the deformed and undefor-
med surface are used to express components of the Eulerian quantities in terms of
corresponding Lagrangian ones, then the Eulerian shell equations can be presented
in the so called mixed form.

3.1. Eulerian shell equations

Let .# be the reference surface of a thin shell in an equilibrium state, under the
surface force p = p*a,+ pn and the surface static moment h = h*a_+ hn, both per unit
area of .4, as well as under the boundary force T = T,v+ T.t+ Th and the boundary
static moment. H = H v+ H, t+ Hn, both per unit length of . For an additional
virtual displacement field éu = dia,a*+ dwn, which is subjected to geometric const-
raints, the internal virtual work, performed by the internal stress and couple
resultants on virtual strain measures, is equal to the external virtual work, performed
by the external surface and boundary loads on appropriate virtual displacement
parameters:

(3.1) [J(N-6y+M-6%)dA = [ (p-ou+h-6p)dA+ [ (T-oa+H-5p)ds,
M 7 Er

where N = N3, @4, M = M*a,®3a, are symmetric (Cauchy type) internal stress
and couple resultant tensors and '

1 B
(3'? = I:E(éﬁanﬁ+5ﬁﬂ”a)—baﬂ5W}aa®aﬂ,

(3.2) 5% = [ — OW oy — D20 g — D20,y — bl 5O, + B2B,, 6w A* QP
op = — (6w, + b2 o1 )as.
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After elementary transformations, Eq. (3.1) takes the form

— ([ (NP, +p)-6adA+ | [(B—P*)-00+ (M —M*)3B,]ds+ 3 (F;— F})-08, = 0,

33 o
| N? = (N* — B M™)a, + (M|, + P,
_ _ d _ d
= Nfy,+—F, P*=T+—F*
P=N vﬂ+d§ , +d§
(3.4) M= M55, M*=A,

F,=FG,+0)—F(E,—0), 85, =0Bv, 0u,=3du().

j._

For arbitrary 6@ on .Z and 6§, 8B, and éu; on %, from Eq. (3.3) follow Eulerian
equilibrium equations and corresponding static boundary conditions for the free
edge [197]

N, +p=0 in &,
(3.5) / P=P* M=M* oné%,.
F,=F¥ at each corner M;e%,.

The virtual rotation 8§, on %, appearing in the boundary line integral of
Eq. (3.3), may also be given in alternative but equivalent forms

SB, = V-0 = —i6v,
(3.6) — (0w, + BESI) T = —(fi+ i), + 1501,
‘_ﬁ'(éﬁ)j.

I

Here ( ), =0d( )/0%,¢ such that T; =¥V on &, where x, is the arc length of the
coordinate line of .# which is orthogonal to %.

Using Eq. (3.6),, the line integral of Eq. (3.3) may also be transformed into the
alternative form

(3.7) _“ [(P,—P¥)-du—(M-—- V[*)(n-on) ;]dS,
%
_ .
=N VB+ES‘_F+MH v
(3.8) p
P¥ =T+ —=F*+M*n,
as

which leads to a modified static boundary condition P, = P¥ on %, in Eq. (3.5),.

The tensor form of the Eulerian equilibrium equations, but expressed in terms of
non-symmetric stress and couple resultant tensors, was first given independently by
Lurie [136] and by Synge and Chien [266] while Galimov [63] derived static
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boundary conditions for the smooth %, In terms of symmetric stress and couple
resultant tensors and for smooth ¢/, the relations Egs. (3.5), , were first given by
Galimov [64] (cf. also [71]). The equilibrium equations (3.5), were rederived also by
Sanders [215] and Koiter [115]. The final form of Egs. (3.5) without k was given by
the author [185]. The modified static boundary conditions on %, resulting from the
relation (3.7) were given first by Koiter [115] and rederived by Zubov [304]. 1t was
noted already by Lurie [136] that the structure of Eulerian shell equations (3.5) is
exactly the same as the one of the classical linear theory of shells, only all the
quantities are referred now to the geometry of the deformed reference surface .7 and
of its boundary contour &.

As it has been mentioned above, the geometry of .Z and 7 is usually not known
in advance and should be determined as an outcome of the solution of the nonlinear
shell problem. As a result, the simple Eulerian shell equations (3.5) can not be used
directly to analyse the shell problems, but they can serve as the basis for deriving of
other mixed forms of shell equations. The virtual displacement parameters
ou, = a5, Sw = n-5a and 0f, = v-6B should not be identified here with variations
of displacement and rotation components, since the respective bases a, nand v, t,
il of ./ and € are themselves subjected to the variation. In particular, 6B, should not
be identified with the variation of v- B. This is the reason why no work-conjugate
geometric boundary conditions expressed in terms of displacement parameters can
be associated with the Eulerian shell equations (3.5).

3.2. Lagrangian shell equations

Usually only the undeformed configuration of the shell is the one which is knownin
advance, while the deformed configuration is the one which should be determined in
the process of solution. Therefore it is desirable to construct the equilibrium
equations and corresponding boundary and corner conditions which are expressed
entirely in the geometry of .# and %. Such Lagrangian shell equations can be derived
with the help of transformation rules between deformed and undeformed surface

geometries [185]
_ a .
dA = \/:dA, ds = a,ds,
a

(3.9) Vﬂd§=\/§vﬂds, [543 = (35 + 2y%)1,ds,

vPds = \/2(554-28“8[3“‘)/;})\)“61& tPds = tPds.
a

Let us introduce the symmetric (2nd Piola-Kirchhoff type) internal stress and
couple resultant tensors N = N“ﬂaa®aﬁ, M= M“ﬂaa®aﬂ, the Lagrangian surface
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force p = p*a,+ pn and the surface static moment h = h*a,+hn, both per unit area of
M, as well as the Lagrangian boundary force T = T,v+ T;t+ Tn and the boundary
static moment H = H v+ H,t+ Hn, both per unit length of %, by the following
relations

1 N
N=-GNG', M=-7GMG",
(3.10)
L el sy opoly
p=54p A=50 Ta a

Let us also note that the virtual strain measures in Eq. (3.1) are transformed
according to

(3.11) 57 =G ToyG !, % =G ToxG ',

With the help of Egs. (3.9), (3.10) and (3.11), the principle of virtual work (3.1) is

transformed into the Lagrangian principle of virtual displacements:

(3.12) [{(N-6y+M-5x)dd = [[ (p-ou+h-op)dA+ | (T-ou+H-5B)ds,
M M €r

where now

(.13 ou = du,a*+own, OPp = on,v+ont+onn,
. 5y = Oy,pa°®a’,  Ox = Ix,a*®a’,

L _
0Yap = 5(3a'5“,ﬂ+ aztou,),
(3.14)

1
0%, = E(ﬁ,a.éu,ﬁ—}r ngdu,+a, 0f,+a,06n,)
are variations of the displacement and strain measures, since the bases a,, n and
v, t, n are fixed and not subjected to the variation during shell deformation.
After involved transformations given in [197] and taking into account that
op = of = —(a’®du x)h in #, the principle (3.12) can be transformed into
— [J(T#|;+p)-dudA+

M

(3.15) .
+ [ [(P—P*)-du+(M—M*)dn]ds+ 3 (F;~F})-du; =0,

Cr

where now
(3.16) T = T*a, + T?n+(h-2*)a = N*a,+ M**n +[(M*4,)|, a’]n+(h-a")n,
P=Tv,+F, P*=T+F¥,

1 } L
(3.17) F= —-zl—[(nxaa)-v]M“ﬂan, M= E;(nxaa)-a,M by,

v

ST
. '

e b o2

s :i‘."““'—’:
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1
| F* = ““a—[(ﬁXH)'V]fl, M* = a_(ﬁ xH)-4a, a,=(@xi)y

F;=F(5;+0)-F(s;—0), ou; = ou(s;).

Here a,, n are understood to be expressed in terms of a,, n and u, n, what gives

T = I (N = B3 MY) + n* [M* | 4+ @ (29,300 — Y aup) M*],

- TV = qoa(N“LEiM“”Hn[M“”Iﬁ5”"(2Mu—m;x)M“‘],
F = (nglv+rvRv)v+(gthv+rth)t+(gRtv+er)na
1) F* =(9,H,+r,H)v+(9,H,+r,H)t+(gH,+rH)n,
M =R,,+fR,+kR,, M*=H +fH +kH,
(3.20)

RW = Vll;_aMaBVﬂ; Rtv = tlllaj\/jaﬂvﬂ> Rv = QDaMaﬂvﬂ’
where g,, g,, g, 7., 7, r are complex functions of u, n, given in [197].

An alternative representation for T*, T# in Eq. (3.16), can also be derived [197]:

1
T = [N* 4 & (A n* + An)] 14 + M (n*|,— bin) +E-6aﬂ8’l“(Al
(3.21)

ua_quDa)’
1
TF — [N“ﬂ-i—d“ﬂ(Aun“'%-An)] gpa+M“B(n,a+binl)-f—zsaﬂe'“‘AﬂlM,

Q

1
P = L1+ 2y%)a*f — 2y,

(3.22)
A# = (ng lux)lg — M @xbue’ A= (ng QDx)Ig + M lyxbz»'

For arbitrary du in .4 and du, dn, and ou; on %, from Eq. (3.15) follow now

entirely Lagrangian equilibrium equations and corresponding static boundary and
corner conditions:

Tﬁlﬂ—{—p =0 in 4,
(3.23) P=P* M=M* on %,
F.=F} at each corner M;e%,.
Corresponding work-conjugate geometric boundary conditions are
u=u*, n =ny on %,

(3.24) - ’
u; =uf at each corner M;e%.

The equivalent entirely Lagrangian shell equations (3.23) and (3.24) (without h)
were first derived by Pietraszkiewicz and Szwabowicz [201] using a modified tensor

of change of curvature y,, which, by definition, is a third-degree polynomial in

3
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displacements and their surface derivatives (see also [267, 271]). Alternative
equivalent formulations, in terms of the modified tensor of change of curvature
proposed by Budiansky [36], were given in [218, 97]. In terms of ., the Lagrangian
shell relations were derived by the author [197, 198] and in [221, 223, 96].
Let us note that already Galimov [63] proposed a version of Lagrangian shell
equations by transforming the final Eulerian vector relations into the undeformed
configuration and resolving them in components with respect to the undeformed
basts. Under such a transformation, the fourth static boundary condition for the
couple still remained to be defined with respect to the tangent of the deformed
boundary contour %. In [67] it was shown that such a condition appears as
a multiplier of the kinematic parameter v-Jn in the transformed principle of virtual
work (cf. Egs. (3.3) and (3.6),). In order to construct the corresponding geometric
boundary conditions, the parameter called ,rotation” was defined formally as
Q = [v-on, such that 5Q = ¥-6n, and was extensively used in [71, 72] for the
construction of variational principles. But it is obvious that so-defined Q can not
describe the total rotation of the boundary for an arbitrary deformation of the shell
and Galimov himself was apparently aware that this representation is not consistent
(see discussion on p. 14 of [67]). Various forms of Lagrangian equilibrium equations,
but without boundary conditions, were also proposed by Shrivastava and Glockner
[242], Sanders [215] and Budiansky [36]. Pietraszkiewicz [183] derived the
complete set of Lagrangian shell equations with the fourth static boundary condition
compatible with the kinematic parameter (i-du), and in [193] with the kinematic
parameter a,-0f2, where 0€2, was the virtual total rotation vector, but the
corresponding work-conjugate geometric boundary conditions were not constructed.
In the section 4.4 below we shall prove that the kinematic parameters ¥-5, (i*du),,
and a,-0Q, are not integrable, in general, i.e. there exists no scalar function such that
its variation would give us the kinematic parameters ¥- 5n (i-Su),, or 4,°6Q,, even
multiplied by ‘another scalar function.
- The Eulerian and Lagrangian shell equations are equivalent within the basic
assumptions of the K-L type theory of shells. However, the procedures allowing for
a reduction to four the number of independent boundary conditions are different
in both descriptions. As a result, numerical values of the Eulerian static boundary
parameters F, F, and M may differ, in general, from the numerical values of the
corresponding Lagrangian static boundary parameters F, F, and M, see [197].

- 3.3. Mixed shell equations

For some problems it is convenient to express the component form of the Eulerian
shell equations (3.5), written in the basis 4_, o and v, t, i of the deformed reference
surface, in terms of components of vectors and tensors measured with respect to the
undeformed surface geometry.

Let us introduce the symmetric (Kirchhoff type) internal stress and couple
resultant tensors N = N“”ﬁa®ﬁﬂ, M, = M“”ﬁa@)ﬁﬂ related to the Eulerian and
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Lagrangian resultant tensors by
Ng =dN = GNG”, My =dM =GMG’,
N = dN** =~ M* =dM*.

Note that in the convected system of coordinates used here components of the
Kirchhoff type resultant tensors Ny, My in the deformed basis a,®4a, are exactly the
same as components of the 2nd Plola—Klrehhoff type resultant tensors N, M in the
undeformed basis a,®ay.

Letp,h, Tand H deﬁned by the relations (3.10) are supposed to be given through
their components in the deformed basis

p=g*a ,+gn, h=k*a,+kn.

(3.26) _ _
T=0,v+0,t+0n, H=K v+K,t+Kn.

Then it follows from the relations (3.25) and (3.10), that the virtual work principle
(3.1) can be transformed into

(327)  [[(Ng-67+Mg-o%)d4 = [[(p-6u+h-oB)dA+ | (T- ou+H- SP)ds

b5

After additional transformations we obtain

J

— [[(NPly+p)-50dA — ¥ (H;— H})Ri; 50, +

3.28
( ) + _f {[Nﬂvﬂ—(Hn) T+ (H*n)]- 5u—l—(G G*)v 5n}ds = 0,
\F
where now
NP = (N — B M), + (M), + 3,0, M) + K,
1 Ja -
(3.29) G=— —M“ﬁvavﬂ, G*=H-v,
a\ a ‘
1 A
H = —_—2M“ﬂaut Vg, H* = —TH t
a; a,

For arbitrary éu, v-on and du, from Eq. (3.28) follow the mixed equilibrium
equations and corresponding static boundary conditions for the free edge:

(3.30) Nv,—(Hn) = T—(H*n), G=G* on %,
H;n; = H¥n; at each corner M;e%,.

Since the mixed shell equations (3.30) are referred to the deformed basis a,, i
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their component form is
(N* — B2 M*P), + a5 (NM — b M) —
(3.31) ——5‘}‘,(M“3|1+éﬁ"yme“)—i-q“—Eﬁkﬁ =0,
NI“ﬂla,pL(a"“ymM“)lﬁ+E;ﬂ(N“f’—Ei;M"/’)+q+kf‘|B = 0.

The mixed shell equations (3.30) and their component form (3.31) were given first
by Galimov [64, 67, 70] and rederived by Danielson [49]. Since only
two-dimensional stress and strain measures appear explicitly in the form (3.31), these
equilibrium equations are particularly useful if the shell problems are solved in the
intrinsic way, cf. [120, 185, 187].

3.4. Constitutive equations

Within the first-approximation theory of thin isotropic elastic shells the strain energy
density, per unit area of .Z, is given by the sum of two quadratic functions describing
the stretching and the bending energies of the shell reference surface. This conclusion
was already given by Aron [13] and Love [135] within the classical linear theory of
shells. The accuracy of such an approximation was discussed, among others, by
Basset [27], Lamb [126], Novozhilov and Finkelshtein [177], Goldenveizer [79-81],
Koiter [113, 118], Danielson [50], Kritzig [122] and Rychter [212]. Within the
geometrically nonlinear theory, according to John [101] and Koiter [115], the strain
energy density of the shell is given by

h B o
2 = iHJB}-# <’)jaﬁy}~y +1_2‘%aﬂ %lu> + O(EhT]Z 0‘),
(3.32)

2v
Haﬁ/lu — (aalaﬂu +aau aﬂl + 1 aaB alu ,
—V

2(L+v)

where E is Young’s modulus and v is Poisson’s ratio of the linearly-elastic material.
The error of ¥ at any point of .4 1s expressed in terms of the small parameter
0 defined in [101, 115, 119] to be

h h h |[h
33 —max( 2 22 |
(33) | 9 aX(b’ La l’ \/—;a ﬁ>7

where b is the distance of the point from the lateral shell boundary and other
quantities are defined in the Introduction.

The modified elasticity tensor H** defined by Eq. (3.32) takes implicitly into
account the change of the shell thickness during deformation according to the plane
stress state in the shell, cf. [189]. _

Differentiating Eq. (3.32), with respect to the strain measures, we obtain the
constitutive equations
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02 Eh
N = o= = (L a ] + O(ER DY),
aff -

02 Eh®
M = £ = e (=P v )+ O(ER DY),
J aﬂ P —

(3.34)

Inversion of Egs. (3.34) leads to

1
g = L1+ ) Nog =8y N1 + 0 (167),

12 n6*
Hap = E—hj[(l + V)M —vas Mi]+ O<—h—>
. . /
In some variational principles it is convenient to apply the Legendre transfor-
mation .
(3.36) SCN, M*) = N y,5+ M x,5— 2 (7ap, #ap)s

from which follows the complementary energy density of the shell

1 12 ,
26 = zﬂﬁw(NﬂﬂNi#+ﬁM°‘BM“>+O(Ehn“92),
3.37
(337 1+v 2v
Eopsn = —2——E—— aalaﬂu-i-aa#a“——maaﬂal# .

Now the inverse constitutive eciuaﬁons (3.35) may also be defined in terms of 2¢ by

oz¢ 02¢
(3.38) Yap = 57\]75, Hap = W-

It is worthwhile to note that while the equilibrium equations and compatibility
conditions are exact on the reference surface (although incomplete from the
three-dimensional point of view), the constitutive equations are always approximate.
In general, the energy densities 2 and ¢ are infinite series of the two-dimensional
strain and stress measures, respectively, and have to be consistently approximated
for any type of the two-dimensional theory of shells.

Within the error already introduced into X in (3.32); by the simplifying
assumptions of the first-approximation theory of shells, some alternative definitions
for the two-dimensional measure of change of curvature may be used, for example

i 1
Oap = Xap +§(bi?’xﬁf+ bﬁ?xa),

— 1
(3.39) K. = "'(dbaﬂ_baﬂ)_*_ba/}y;_’_z(bi‘ylﬂ_‘_bé})la):

Kap = _(db—aﬂ - ba[}) + baﬁ Yﬁ
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Each of the measures (3.39) can be expressed in terms of displacements either
using the formula (2.9) or (2.10). The measure —4,; with Eq. (2.10) was introduced by
Koiter [115] and used in [133, 187, 190, 97]. Without displacemental representation,
the measure —g,5 Was applied by Koiter and Simmonds [120] to derive the
canonical intrinsic shell equations (cf. [187, 190]). The measure K,z with Eq. (2.10)
was introduced by Budiansky [36], while with Eq. (2.9) it was applied in [218, 225].
The measure y,; with Eq. (2.9) was introduced by Pietraszkiewicz and Szwabowicz
[201] and then applied in [202, 267, 268, 271, 164, 165, 262].

The main advantage of using Kgg and  yup is that they are third-degree
polynomials in displacements and their first and second derivatives while .4 and
K5, when linearized, reduce to the measure of change of curvature supposed to be
the best one for the linear theory of shells according to Budiansky and Sanders [37].
The disadvantage of using the modified measures (3.39) in the general theory of shells
is that their definitions involve additional geometric parameters of the reference
configuration. With y and » we can always associate the equivalent Fulerian strain-
measures ¥ and % defined by [185]

1

(3.40) 7=51-6G""G™, %= —(b-G TbG™

I

which satisfy the following transformétion rules:
(3.41) y=GT7G, =x»=GT%G.

No equivalent exact definitions of the modified measures (3.39) in the Eulerian
description can be given which would satisfy the transformation rule (3.41). This
becomes an important disadvantage of the modified measures (3.39) when exact
superposition of two arbitrary deformations is discussed, what is necessary in correct
incremental analysis of the highly nonlinear shell problems [141, 197]. An alternative
symmetric measure Qag for the change of curvature, which is free from such
disadvantages and when linearized reduces to the best measure of the linear shell
theory, was introduced by Alumae [8] and will be used in the Chapters 5 and 6 of

this report.

4. Shell equations in terms of displacements

The majority of nonlinear shell problems discussed in the literature has been
formulated and solved in terms of displacements as basic independent field variables.
The primary advantage of such displacement nonlinear shell equations is that their
solution gives us the complete solution of the problem in terms of well-defined and
easily interpretable fields. When displacements in .# and on ¢ are determined from
the shell equations, other field variables such as strain measures, rotations, stress
measures etc. are calculated by the prescribed algebraic and differential procedures.
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4.1. Lagrangian displacement shell equations

Since displacements and their surface derivatives appear explicitly in the definitions
(3.21), the set (3.23) and (3.24) of the Lagrangian shell equations can oniy pe solved 1n
terms of displacements as basic independent variables. The component form of Eq.
(3.23), in the undeformed basis a,, n is given by

T#|,—byT'+p*+g* =0,

(4.1) 1
T#ly+ by TH+p+g =0,
where
42 gt = (nlBﬁ)]ﬂ——bj}nBﬂ, g= (nBﬁ)lﬂ—i—bﬁnlB’”,

B = (h % +ho, )a",

and the relations (3.18) or (3.21) should be introduced.

The Lagrangian equilibrium equations (4.1) and the corresponding static
boundary conditions (3.23),, 5 are linear in N M* but are nonlinear non-rational
expressions in terms of displacements and their surface derivatives. When the
constitutive equations (3.34) together with the strain-displacement relations (2.7),
(2.9) are introduced into Egs. (4.1) we obtain three extremely complex nonlinear
equations which are non-rational in terms of displacements and their surface
derivatives. These complex displacement shell equations are two-dimensionally exact
for the shell reference surface. ]

Within the geometrically nonlinear theory of shells, when strains are omitted
with respect to the unity, we have

dx1+y2x=1, nam(l—-y)=m, n, z“m“,

(4.2) Yap = Lia(m? |y —bjm) + @, (m g+ bim,) + bag(1+77),

=]}

1
~ i——z[nvﬁtx(vxﬁt)—i—,/1—n3—c§vxﬁt].
.—Cv

If the relation (4.2), is used in the left-hand side of Eq. (3.12), it generates the
following reduced definitions of Egs. (3.21), [201, 197], and of g

T = [2(N* + a** b,, M) + (m*|,— bim)M* + P e (Al — A, 0,),
(4.3) T? = @ (N +a" b, M) +(m .+ bim )M + e e 4 1,
g = Eaﬁ Elu [(h# (pa - hl#a)al - h# l}_an:”ﬁ.
Therefore, in the  geometrically nonlinear theory of shells the Lagrangian
equilibrium equations (4.1) with (4.3) are linear in M*, N*/ and quadratic in u,

w and their surface derivatives, while the Lagrangian static boundary conditions
(3.23),; with the relations (3.17), (4.3) and (4.2); are linear in N, M* but still
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non-rational in u, n,, since in the reduced expression for 0 in the relation (4.2), there
still remains the square-root function of the displacement parameters.

It is interesting to note that when the reduced expression (4.2), for n is used in the
right-hand side of Eq. (3.12), then analytically derived expressions for the generalized
static boundary resultants P, M, F; will not exactly coincide with the ones which
could be constructed by omitting in Egs. (3.17) some terms which are small with
respect to the unity. However, this discrepancy lies within the error margin of the
first-approximation theory described by the error of the strain energy density (3.32),.
- As a result, both ways of deriving the reduced Lagrangian shell equations in terms of
displacements should be regarded as equivalent within the first-approximation
geometrically nonlinear theory of shells.

4.2. Variational principles

In many cases of practical importance it is more convenient to formulate the
Lagrangian nonlinear theory of shells in the variational form, as the problem of
stationarity of some functional which may be free or subjected to additional
subsidiary conditions. Stationarity conditions of such a functional are then equiva-
lent to some set of basic shell equations.

The possibility of the construction of such a functional depends upon the type of
external surface and boundary loads. In general, the vector fields p, h, T and H may
be assumed to depend arbitrarily upon the shell deformation. Such loads may be
non-conservative, in general, i.e. they may not be derivable as gradients of some
potentials. However, in several special cases of practical importance the external
loads can be given in terms of the scalar fields ®[u, §(Vu)] and ¥ [u, p(u, u, n,)] by
(4.4) p= —?-QE, h = —aj?, T = —?—qi, H= _6_?"

Ju 0P Ju Jp

When all the external loads do not depend upon the shell deformation, 1.e. they
are dead, they can be derived using the relations (4.4) from the following simple
potentials [201, 197] ’

(4.5) ¢ = —p-u—hp, ¥=-Tu-H:-p

In case of a uniformly distributed surface load of the pressure-type, we may set
p(u) = pn, where p = const, but measured per unit area of .#Z. Then the existence of
a potential depends upon the type of geometric boundary conditions. When the shell
is closed [116] or when two of three displacement components are prescribed on ¢,
(168, 302], then the pressure load is derivable according to the relations (4.4), from
the potential

1 1
(4.6) b = —p‘(n—l——z—saﬁaaxu,ﬂ+88“ﬁu,axu,ﬁ>-u.
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Potentiality of different displacement-dependent surface loads is discussed in
(38, 226, 227, 231, 210]. Potentiality conditions for the boundary couple K = ax H
are discussed in [9, 245, 269, 271]. General problems associated with potential loads,
treated as nonlinear operators acting from the spaces of geometric variables to the
conjugate force spaces, are discussed in [285, 231, 210].

If the external loads are derivable from potentials, then the principle of virtual
displacements (3.12) can be transformed into the variational principle 6] = 0 for the
functional

(4.7) I= “{Z (v, )+ @[u, BVwlldA+ [ P[u B(u, v, n)]ds,
s

where the strain-displacement relations (2.7) and (2.9) as well as the geometric
boundary conditions (3.24) have to be imposed as subsidiary conditions. The
variational principle 6/ = 0 states that among all possible values of displacement and
strain fields, which are subjected to the subsidiary conditions, the actual solution
renders the functional (4.7) stationary.

Let us introduce the subsidiary conditions (2.7), (2.9) and (3.24) into the

functional (4.7) by using the method of Lagrange multipliers. Then we obtain the free
functional

I ={[{Z(r, )+ @[y, p]—N-[y—y]—M-[x—x(u)]}d4 +
4.8 “
45 + | Y[u, B(u, n)]ds— | [P-(u—u*)+M(n,—n? ]ds—ZF (u;—u¥).

%5 %,

The functional I, is defined on three types of independent fields: displacement
measures u, strain measures ¢ and Lagrange multipliers o (stress measures) defined by

u={uin .4; u,n, on ¥ u; at each M,},
(4.9) e = {y, % in A},
=[N,Min .#; P,M on ¥,; F,ateach M,}.

The associated Hu-Washizu (within the nonlinear elasticity, for dead body and
surface forces, the principle was given by Teregulov [273], extending the principles of
Hu [93] and Washizu [288] of the linear elasticity) variational principle 61, = 0
states that among all possible values of displacement, strain and stress fields (u, ¢, o),
which are not restricted by any subsidiary conditions, the actual solution renders the
functional (4.8) stationary. The stationarity conditions of I, are: equilibrium
equations (4.1), strain-displacement relations (2.7) and (2.9), static boundary and
corner conditions (3.23); 3, geometric boundary and corner conditions (3.24) and
additional relations which identify the Lagrange multipliers with the fields already
described by their symbols in the functional (4.8). These additional relations are
constitutive equations (3.34), definitions of the effective generalized boundary force
and couple resultants (3.17); , and definitions of the effective corner forces (3.17) 4.
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The free three-field functional I; was originally constructed by Pietraszkiewicz
and Szwabowicz [201, 202] using the modified tensor of change of curvature
ap given by Eq. (3.39), and for dead-load type external surface and boundary loads.
It was also given in [218] using Kag defined by Eq. (3.39),, in [197, 198, 221, 223]
using %, and in [97] using §.4 defined by Eq. (3.39),. Each of those formulations of
I,, which are equivalent within the first-approximation theory, can be used as
a starting point for derivation of various free or constrained variational functionals,
according to the general procedure discussed in [48, 179, 289, 2, 276, 277]. Various
functionals defined on different three and two fields as well as functionals defined on
the displacement field alone were constructed by Szwabowicz [267, 268] and
Schmidt [217-219] for dead-load type external surface and boundary loads and by
Szwabowicz [271] for conservative p, T and K =1fxH. ,

Qeveral variational functionals were also constructed by Galimov [67, 71, 72] in
terms of the formally defined geometric boundary parameter Q such that 6Q = v-In.
We shall prove in Section 4.4 that such a parameter does not exist since the kinematic
constraint v-on = 0 1s not integrable, in general. As a result, the functionals given in
[67, 71, 72] in terms of O are meaningless within the general geometrically nonlinear
theory of thin elastic shells expressed in terms of displacements as basic independent
variables.

4.3. Consistent classification of displacement equations
for shells undergoing restricted rotations

The set of Lagrangian nonlinear shell equations expressed 1n displacements given in
Section 4.1 is extremely complex even in tensor notation. This is caused by the
generality of those relations since no restrictions have been imposed on dis-
placements and/or rotations of the shell material elements. In many engineering
problems of flexible shells displacements and/or rotations cannot be arbitrary due to
implicit constraints imposed by the shell geometry, limits of an elastic behaviour of
the material, types of external loadings, boundary conditions etc.

Several approximation schemes Jeading to simplified sets of displacement shell
equations were proposed 1n the literature. In [157, 71, 128, 215, 115, 186, 187]
restrictions of components of the linearized rotation vector and of the displacement
gradients were used to derive several simplified versions of nonlinear shell equations.
Among the best known simplified versions obtained in this way are displacement shell
equations of medium bending given by Mushtari and Galimov [157], for moderately
small rotations proposed by Sanders [215] and with small finite deflections derived
by Koiter [115], the special case of which are the nonlinear equations of shallow
shells developed earlier in [144, 148, 295]. A variety of simplified versions proposed
by Duszek [56, 57] followed from restrictions of displacements and their surface
derivatives, while those given by Novotny [171] were obtained from three-dimen-
sional equations by a formal asymptotic procedure.
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The deformation about a point of the shell middle surface can be exactly
decomposed into a rigid-body translation, a pure stretch along principal directions
of strain and a rigid-body rotation [5, 247, 184, 185]. Within the first-approximation
theory discussed in this report, strains are already assumed to be small, what leads to
reduced shell relations (3.32),, (3.34), (4.1) — (4.3). Therefore, several consistently
approximated versions of the nonlinear displacement shell equations were construc-
ted in [185, 190] by imposing additional restrictions upon the finite rotations of the
shell material elements.

A finite rotation in the shell may be described by the angle of rotation w about an
axis of rotation described by the unit vector e. The rotations in [185, 190] were

. classified in terms of the small parameter 6 defined in the expression (3.33) as

follows: a) @ < 0(f?) — small rotations, w = O(f) — moderate rotations (cf. [207]),

W = O(\/@) — large rotations, w > 0\1) — finite rotations. This classification
restricts the magnitude of the rotation angle . However, shell structures are usually
quite rigid for in-surface deformation being flexible for out-of-surface deformation. In
order to take this into account, the finite rotation vector £ = esinw may be defined.
Since for |w| < /2, O(/]) = O(sinw) = O(w) the name ,small, moderate, large or
finite rotation” may be associated with the particular component Q = Q-n or
Qy = Q-a, of Q.

Wlthm small strains (but not small rotations) the vector £ is expressed in terms
of displacements by [185, 193]

| 1\ 1 1
(4.10) Q= sﬁ“[qoa<1 +§9§>—5@1(\91“——0010()]3!;—I—isaﬂwaﬁn.

For any restriction imposed on Q estimates for ¢, and w,; are given by the (4.10)
and estimates for 9,, follow from the expression (2.7) with y,, = O(n). Then
simplified expressions for the strain measures y,; and x,,; can be obtained taking into
account the accuracy of the strain energy density (3.32),. In the estimation procedure,
covariant surface derivatives are estimated by dividing their maximal value by
a large parameter 1 defined by

(4.11) A ='l=min<b, L1, /AR, L)

@ 7
Introducing such energetically consistent simplified expressions of the strain measu-
res into the Lagrangian principle of virtual displacements (3.12), one gets the
corresponding reduced expressions for the internal force vector T? and the
generalized static boundary parameters P, M and F, together with the consistently
simplified expression for the geometric boundary parameter n,.

Simplified versions of the Lagrangian shell equations proposed in [183] were
discussed in [185, 193]. Simplifications of the entirely Lagrangian shell equations
derived in [201] were given in detail in [195, 197]. Let us remind here some of those
consistently approximated nonlinear shell equations.
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5

Within small rotations ¢, = 0(0%), w,5 = 0(0%), 3y = 0(0%) and the strain
1
measures are _approximated by Vup = 90,,;4—0(1192), Hap = —E(gaa]ﬂ+(p,;|a)+0(179/l),

" which describe the linear bending theory of shells treated extenmsively in many
monographs. ,

Within moderate rotations ¢, = O(0), 0,y = 0(0), 855 = O(6*) and the consistent-
ly simplified shell relations take the form [185, 193, 224]

1 1 1 _ )

’yaﬁ = ‘9&{] +_2_ (Paqu+ jfz'a)fxa)}.ﬁ_ E(Siwlﬂ + ‘gléwia) + 0(779 )7

(4.12)
1 ; i n6
Hap = T “2‘(<Paiﬁ+€9ﬁ|a—baww—bﬁwxoz)+O )
1 A A 1 A 1 A P
T = | N*¥ — a(baM"ﬂ—{— b8 M**) — = PNZ - 5(w *NE + wP*ND) +
1
+—2—(91"N§—SB“NQ)}aﬁ—(qoaN“ﬂ+M“”|a)n+h"n, )

(4.13)

n= —cpaa“-i—n—}-O((-)z), n,= —o,,

F=Mm M=M,,.

If, additionally, rotations about the normal are assumed to be also small then also |
w,; = 0(0%). For such a moderate/small rotation theory of shells the relations (4.12)
and (4.13) may be considerably simplified by omitting there the underlined terms. - \
The set of nonlinear relations (3.23), (3.24) with Egs. (4.13) and (4.12) describes the
consistently reduced Lagrangian nonlinear theory of shells undergoing moderate
rotations. The theory contains as special cases various simpler versions of shell
equations proposed in the literature. Among them are the theory of medium bending
[157], for moderately small rotations [215], with small finite deflections [115] and
the classical nonlinear theory of shallow shells. A detailed review of those simpler
versions was presented by Schmidt and Pietraszkiewicz [224], where also a set of
sixteen basic free functionals and several functionals with subsidiary conditions was
constructed for conservative dead-type surface and boundary loadings, (cf. [216]).
These functionals and the variational principles associated with them extend to the
moderate rotation range of deformation earlier results on particular variational r
principles formulated for shallow shells [296, 6, 157, 287, 94, 74, 255, 3, 256, 67, i
34, 249, 717 and for simplified versions of the theory of shells undergoing moderate
rotations [258, 259, 251]. Stability equations for the moderate rotation theory of
shells are given in [139, 260], which extend various simpler versions of stability
equations given in the literature. More complex moderate-rotation shell equations
were proposed in [23, 26, 163], where the expression for x,; contains also some
nonlinear terms, whose contribution to the strain energy density (3.32), lies within
the indicated error of the first-approximation theory.
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Within large rotations ¢_ = O(\/é), Wyp = O(\/é), 9.5 = O(0). Appropriately
simplified relations of the Lagrangian theory of [183] were discussed already in
(185, 193]. It was found in [193] that the consistently simplified (but still nonlinear)
expression for »x,, generated the boundary integral which contained six (instead of

S

v

0 . L
four) independent variations: du and 5<a—u> This did not allow for a variational

formulation of the shell problem even if the external boundary forces were
conservative. An explanation for this paradox was found in the definition of the
fourth geometric boundary parameter used in [183, 185], which was not entirely
Lagrangian. As a result, an entirely Lagrangian nonlinear theory of shells was
proposed in [201] where the new parameter n, was used on the shell boundary.
Appropriately simplified relations of [201] within the large rotation range of
deformation were discussed in detail in [195], various alternative results, within the
prescribed accuracy of the strain energy density, were presented also in [219-222,
197, 198, 165, 169, 170, 140, 1417.

1'he most interesting special case of the large rotation shell theory appears when
rotations about the normal are assumed to be always small, i.e. w.p = 0(0%). If,
additionally, we allow for a greater error in the strain energy function (3.32), to be

O(Ehnzﬁ\/é) instead of O(Ehn®0?%), then the set of shell equations for such

a simplified large/small rotation theory (without h) is described by the following
relations [197, 198]

1 1 1
Vap = 9aﬁ+§€0a%+§9i9m—§(9iww+9§@xa)+O(UQﬁ),
|
Hap = _5’{[(5§+%)(ﬁx|ﬁ+(5/;}+'9_f§)@/1|a]+€0)'((Pa§01|13+€0;;€011a)+
(4.14)
| A A 2 P i 77\/5
+ (b2 3+ 05%2) + bz s +b50,) 0, — b0 @,} +0 — )
, _ (1,1,
n,=—p,+0(0°/0), fix —@v—pt+ =501 =507 Jn,
) . 1 1
T4 = (5§+9;)N“ﬂ—§(a)“Nﬁf+w”“Ni)—E[(bi +ﬁgo*[a)M“ﬂ+(b£+goﬁla)M‘“],
TP = @, N + [(68+ 9 M™], + (0, M™), 0 — 0|0, M* —
—(ba M DI M), + b, 0 M,
(4.15) )99/1 19

va = (1 +'9vv)Mvv+'9vtMtva Rtv = Stvav+(1 +‘9tt)Mtv>
Rv = QDVMW'{‘QD,MW, M = (1 +9vv+(p\2))Mvv+('9vZ+q0v§0t)Mtvs
F:Fﬂ, F:(‘9vt+g0vq0t)Mvv+(l+‘9tt+(pt2)Mtw
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The relations (4.14) and (4.15) have an important property: for conservative surface
and boundary loadings they allow to construct the functional (4.8), whose stationarity
conditions lead exactly to all shell equations described by Egs. (4.14) and (4.15).
Another such formulation was proposed in [197, 221]. Alternative versions of shell
relations of the simplified large/small rotation theory discussed in [195,
220, 165, 1707 are also energetically consistent, although some additional transfor-
mations should be applied in order to derive the shell equations from the variational
functional (4.8). In particular, the version proposed by Notlle and Stumpt [170], n
which 5, are quadratic polynomials in displacements and their surface derivatives, was .
shown [163, 169, 140, 141, 166, 167] to be numerically efficient and leading to good
results also far beyond the large rotation range of shell deformation.

In some engineering applications the shell relations (4.14) and (4.15) may still be
simplified at the expense of a larger loss in accuracy of the strain energy function
(3.32), to be O(Ehn?6). Within this larger error the shell relations of such simplest
large/small rotation theory of shells [197] are described again by Egs. (4.14) and

(4.15), where the underlined terms should be omitted and the term 3AN* in Eq.
1
(4.15), should be replaced by its symmetric part E(SQN“"—J—SEN“). Alternative

energetically consistent versions were proposed in [193, 195, 196, 165, 170, 218,
2217]. On the other hand, the comparative discussion given in [198] suggests that
some known versions [115, 23, 71, 235] of the nonlinear theory of shells, which are
based on various quadratic expressions of x,g, cannot be regarded as energetically
consistent within the large-rotation range of deformation since some energetically

important terms 0(9\/5/},) do not appear in the expressions for x,, used there.
Various simplified versions of the nonlinear shell relations were also proposed in
[99, 100, 58, 87, 88, 98, 45, 46, 230, 31].

When only rotations about the normal are assumed to be small, while other ones
are unrestricted, then ¢, = O(1), @,z = 0(0%), 34 = O(1). For such a finite/small
rotation theory of shells only a few terms may be omitted in x,; within the error
O(Ehn?6?) of the function (3.32), or even within the greater error O(Ehnze\/é).'lt '
seems, therefore, that considerably simplified shell relations derived in [104, 236] for
such a theory cannot be justified within the assumed error of the first-approximation
theory. ,

An extensive comparative numerical analysis, based on energetically consistent
simplified versions of nonlinear shell equations discussed above and on several other
simplified versions proposed in the literature, was carried out in the series of papers
[139-141, 252, 253, 165-169, 35, 59, 89, 90, 86, 47] for a large number of one- and
two-dimensional problems of flexible shells. In order to provide a reliable reference
solution, the full version of entirely Lagrangian shell equations [201] and in [47]
also the refined three-dimensional NONSAP numerical code were-used. The results
of the numerical analysis showed that all energetically consistent versions of
nonlinear shell equations led to results which, within the range of their applicability,
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were always in good agreement with the reference solution. In some examples the
agreement was adequate also far beyond the range of applicability of those versions.
On the other hand, some of the simplified versions suggested in the literature, which,
were even more complex but still energetically inconsistent, led to load-displacement
paths which occasionally diverged from the reference path already on an early stage
of the shell deformation.

4.4. Integrability of kinematic boundary constraints

In the entirely Lagrangian nomnlinear theory of shells discussed in Section 3.2, the
component n, = n*v has been used as the fourth independent boundary parameter,
in terms of which éa can be given [201, 197] by

1
(4.16) O = —[A,dn,+v x B(A-F)].

v

This has allowed to reduce the principle (3.12) into the form (3.15) and to construct
four work-conjugate static (3.23), 3 and geometric (3.24) boundary conditions.

In the derivation of the mixed shell equations in Section 3.3, an alternative
expression for on has been used:

1
(4.17) Ofi = (v-60) — —F (- OF).
d

t

This has allowed to reduce the relation (3.27) into the form (3.28).
till another expression for éf results from .a direct variation of Eq. (2.18) to be

on = —v,a’(ii-6F ) — 13" (i~ OF),

1_ _ 1/~ 1 _
AL t,af = é—<t——32ywv>.

t

(4.18)

vﬁﬁﬁ = d,

When the expression (4.18), is introduced into the relation (3.12), the internal
boundary integral transforms into

JALT vy + (M, ) ]-6F— M, i+ 6F ) ds+ D (M, B 6F, =
4 J

(4.19)

= [T v+ MR, + (M, R)]67 — M, (8°38),} ds + ¥ (M,,5) 6,
& _ ;
The transformed line integral (4.19), was used in [183] while the simpler integral
(4.19), was not used in the literature.
Static boundary and corner conditions in (3.23) and (3.30) have been constructed
on %; by demanding that all the multipliers of §F, or; and of dn, or V-6 in the
corresponding line integral identically vanish. Using the transformation (4.18) and
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(4.19),, we may construct alternative static boundary and corner conditions on %
again by demanding that all the multipliers of 8F, 6F; and f-or, identically vanish.
It is implicitly assumed that the work-conjugate geometric boundary conditions on
%, should satisfy the Kinematic constraints 6t = 0, ot; = 0 and on, = 0, v-on =0 or
n-of , = 0, respectively. It is easy to note that from the kinematic constraints 6t = 0,
on, = 0 and or; = 0 follow the geometric boundary conditions T = t*, n, = ny on ¢,
and T, = F} at each M;e%,. It is not apparent, however, what kind of a scalar
parameter should be assumed to be given on %, in order to satisfy the fourth
kinematic constraints v+i = 0 or n-of,, = 0. Therefore, the question arises whether
there exists a scalar parameter ¢ such that its variation on %, would coincide with
the variational expressions v-om Of fi-6F ,, possibly multiplied by some scalar
function u. If such functions ¢ and p exist, the question arises how to construct them.
This general problem has been solved only recently by Makowski and Pietrasz-
kiewicz [142]. Here we summarize some of the results given there.

The variational expressions v-di, fi-of,, or on, discussed above are particular
cases of the following general variational expression:

(4.20) w = A-Of,, + B0,

where A = A(f,, ) and B = B(r,, T') are vector-valued functions of the vector
arguments. :

Extending the method suggested in [304], it was shown in [142] that at each
point Me®% the variational expression (4.20) may be regarded as a differential
one-form on the six-dimensional manifold X with the local coordinates ¢;€X,
= 1,2,...,6 defined by

= =/ =/

(421) ¢ = (viy, tF,, 0°F,, vE, CF, 7).
Let also the components of (A, B) in the basis v, t, n be defined by
(4.22) A= (v-A, t-A, n-A, v-B, t-B, n-B),

6
so that w = Y A;0¢;
i=1
The one-form (4.20) is said to be exact if there exists a primitive scalar-valued

function @(F,, ¥) such that w = S¢p. The necessary conditions for w to be exact are

(4.23) A —A;=0

i

for any i,je(l, 2,...,6). The one-form (4.20) is said to be integrable if there exist
scalar-valued functions p(t,,, I'), called the integrating factor, and ¢(T ., ') such that
pew = op. The necessary conditions for @ to be integrable are

(4.24) AfAr—Aj)+A;(Aix— A+ A (4;;—4,)=0

for any i,j, ke(1,2,...,6).
Let us check the exactness and integrability of the one-form w = v-dn, for which
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A and B are given by

1 11 _
(4.25) A= —a,h, B = "_,—(?2ywn
Differentiation of the relations (4.25) with respect to t, and F gives
0A 1
— =&/ (V®n+1®Y),
or, d
JA 1 _ 1 o 0B |7
(4.26) - =3t®n~3—22yv,(v®n+n®v)=[aij ,
oB 1. _ 11 S (N S
e d“tzn®v+d—lzg§(2%r)2("®“+H®V)“5t§g2?vz(t®ﬂ+ﬂ®t)-

Since Eq. (4.26); is not symmetric, the conditions (4.23) are not satisfied for
(1, /) =(4,5), for example. Moreover, with the relations (4.25) and (4.26) the
integrability conditions (4.24) are not satisfied as well for (i, J, k)= (1, 4, 5), for
example. As a result, the differential one-form v-4h is neither exact nor integrable, in
general. The discussion given in more detail in [142] provides the proof for the same
statement given by Zubov [305].

The variational expression v-6n, which appeared originally in the paper by
Galimov [64], may be presented in several different but equivalent forms. Note
that in terms of the difference vector P given in Eq. (2.14), én=6p and
v-on = v-6f = 5f,, which was used in [185]. Here § should not be understood
as the variation of 5, since so defined 6B, # §(v-B). The rotation of the boundary
may also be described [185,188,192] by the total rotation tensor
R, = V®v+t®t+n®n such that i = R,n. Then we can introduce axial vectors o,
and ow, of the skew-symmetric tensors SR, RT and R SR, respectively, according to
[138, 199, 200], ‘

(4.27) SRR =dw,x1, RTSR, =6éw,x1, o, =R,ow,.

Since ofi = dw, x i = R,(éw, x n), it follows that we have v-i = 00, t = dw,-t. Here
again ¢ should not be understood as the symbol of variation of ®, or W, since the
symbols ®, or w, alone have no geometric meaning here. The expression o, t was
applied, among others, in [291, 214, 17] while dw,-t was used in [271].
According to the discussion given above and in the forms (3.6), the variational
expressions 65, 6@, t, dw,-t, —ii-ov, —0¢,, —n+dou ; which appeared in the literature
are all equivalent to the differential one-form V-6 since they have all the same
representation (4.20) with (4.25) in terms of variations of t,and r'. As a result, neither
of the one-forms is exact or integrable as well. It is apparent from this discussion that
the variational principles given by Galimov [68, 71] in terms of Q such that
02 = v-on are not correct, in general, since such a function Q does not exist.
In [142] it was confirmed that the differential one-form o = v+8i = on, is exact




82 W. Pietraszkiewicz

indeed and its primitive function is @ =n,. It was also proved that the one-form
n-or, is neither exact nor integrable since the conditions (4.24) are not satisfied.
Using the same method, many other variational expressions of the type (4.20) may
be checked. On the other hand, a similar direct discussion of integrability of the
variational expressions (fi*di); or (fi-or), has to be performed with the help of
a nine-dimensional manifold with local coordinates identified with the components
of &, T ,, I in the basis v, t, n. However, such a discussion is not necessary since those
variational expressions can always be transformed further by taking the partial
derivative with respect to s, on 4. Since Jr is exact on a three-dimensional manifold
of positions T, the problem can always be reduced to the integrability of the one-form
of the type (4.20) on X.

4.5. Work-conjugate boundary conditions

Each of the variational expressions of the type (4.20), which appears in the boundary
line integral and is connected with the boundary couple, may be transformed further
by multiplying (and dividing) 1t by a non-vanishing scalar function #(¥,, ') and by
adding (and subtracting) terms of the type ¢(F ,, f')-OF since terms with 6F can always
be eliminated by integration by parts. By suth a transformation, a non-integrable
one-form may be transformed to the exact one-form for which a primitive may be
constructed. : ,
In [142] the following simple differential one-form on the six-dimensional
manifold X has been discussed: ‘

f=d-6r,, d=dn=71,xT,
(4.28) A= (88— 88V (L — 81t +(E1 85 —CaCa)m,
B=A,v+Ast+4,n=90.

It is easy to check that the one-form 6 is not integrable. In [142] it has been proved
that an arbitrary function ¢(F, @), where & = A4, /A5 = n,/n, is the primitive of some
transformed one-form ¥ such that

S =y = nd-6t ,+¢-or,

| 1 1
(4.29) n= ——A—%fsx, Cc = }.—i—zgfzxd,
dp dep
}\'1 = — Y = —.
or’ X o

If we solve the problem (4.29),for d+4T , and introduce it into Eq. (4.18),, then we
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obtain still another general expression for ém to be
on = v,8% 6 —a’ {[v, fh+(vyg+1,)0] 6F},

dn? & 1 [/len—cn
= — === — -—V—————E+2vt_
/ X I & oar <d ¢ ! )

The expression (4.30), is remarkable by the fact that it is given directly in terms of
variation of an arbitrary function ¢(t', «). If now the expression (4.30), for i is used
to transform the Lagrangian principle of virtual displacements (3.12), then it can take
the form

— [ (T?),+ p)-5FdA + Z —F¥)-0F, +

(4.30)

431 “
+ [ [Ty, +F —~T—F*)-6f + (M —M*)5¢]ds = 0
€
where
432 F =M, A+(@M,+M,)a, M=fM,,

F* = (H-a)[v, fh+(vyg +)R], M* =f(H-3"v,.

For arbitrary Jr, Jr; and d¢, from the form (4.31) follow the equilibrium equations
(3.23), and static boundary conditions
T’v,+F =T+F*, M=M* on %,

— 3k
Fj- ,Ej at each corner Mjefw”f.

Corresponding work-conjugate geometric boundary conditions are

I=r1% @=¢*on 4,

(4.34)
I, =TI at each corner M,e%.

The arbitrariness of ¢ allows for wide freedom in choosing the form of boundary
conditions to be used in the shell theory. This enables one to choose such a definition
of ¢ which would suit best to a particular shell problem. In particular, it was shown
in [142] that the parameters n,, 8, used in [178] and the total rotation angle w, of R,
are all special cases of o. -

5. Shell relations in terms of rotations

Some shell problems are solved in a more convenient way if one uses finite rotations
together with other fields as basic independent variables of the nonlinear shell
equations. Already Reissner [206, 207] proposed the set of nonlinear equations for
an axisymmetric deformation of shells of revolution written in terms of a rotation
and a stress resultant (or a stress function) as independent variables. This
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formulation led to a number of papers on axisymmetric problems of shells of
revolution, the results of which have been summarized. among others, in the books
by Shilkrut and Vyrlan [238] and Libai and Simmonds [134].

Within the general nonlinear theory of thin shells, Alumde [5] derived the
nonlinear equilibrium equations and compatibility conditions in the intermediate
rotated basis while Simmonds and Danielson [247, 248] proposed a set of nonlinear
shell equations in terms of a finite rotation vector and a stress function vector as
independent variables and constructed an appropriate variational principle.. The
theory of finite rotations in shells developed by Pietraszkiewicz [184, 185] led to
several alternative forms of nonlinear shell equations, boundary conditions, consis-
tently approximated shell relations and some new kinematic relations which have
been summarized in [186, 188, 190-1947]. Contributions to the nonlinear theory of
shells in terms of rotations were also made by Wempner [290-293], Shamina
[233, 234], Valid [281-284], Shkutin [240], Reissner [208, 209]. Libai and Sim-
monds [133], Atluri [14], Makowski and Stumpf [143] and Badur and Pietrasz-
kiewicz [19] where further references are given. ‘

The primary advantage of the nonlinear shell equations in terms of finite
rotations is that they contain, at the most, first derivatives of the independent field
variables. In the computerized analysis of shells, this makes it possible to use the
simplest shape functions or the simplest difference schemes which assure high
efficiency of the numerical analysis.

The nonlinear theory of shells in terms of rotations is now in the process of
development and several questions are still open. Only few two-dimensional
problems have been analysed [60, 61] using this approach. Therefore, we found it
worthwhile to review here in more detail, in the unified notation, the most important
results of this field given in the literature and to supplement them with some new
results which are not available elsewhere. It is hoped that it will stimulate further
research in the field.

5.1. Additional geometric relations

Applying the polar decomposition theorem [279, 280, 138], the deformation gra-
dient tensor G defined in the relations (2.5) can be represented [184, 185, 190] in the
form

(5.1) G=RU=VR, G '=U"!'RT=RTV7,

Here U and V are the right and left stretch tensors, respectively, while R is the finite
rotation tensor. The tensors U and V are symmetric and positive definite while R is
the proper orthogonal, i.e. detR = +1.

By the relations (2.1) and (5.1), the deformation of a neighbourhood about
a particle of the shell middle surface has been decomposed into a rigid-body
translation, a pure stretch along principal directions of U (or V) and a rigid-body
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rotation. From the relations (2.2) and (5.1), it follows that there exist two
intermediate non-holonomic bases, the stretched basis S, 1 and the rotated basis
r,, n, which are defined by

(52) S = Ua — RTﬁ Sa'sﬂ = daﬂ:

(5.3) r,=Ra,=V™a_  r-r,=aq,.

Within the shell theory the rotated basis r_, & was introduced first by Alumée [5]
and was used in [8, 247, 248, 240, 133, 19]. The stretched basis S,, I was mtroduced
first by Novozhilov and Shamina [178] and used in [184, 185, 188, 190-194, 14]. In
terms of the bases, the following expressions for U, V and R can be given [185, 1907

U=s®a*+n®n, U != a,®s*+n®n,
(5.4) V=2Qr+i®l, V!=r®i*+iQnm,
R=23®s"+n®@n = r,®a“+n@n.
Any rotation tensor R may be represented by
(5.5) R = coswl+sinwe x 1+4(1 —cosw)eR®e,

where the unit vector e describes the axis of rotation of R and o 1s the angle of
rotation of R about the axis of rotation.

v Sometimes it is more convenient to describe rotations by means of an equivalent
finite rotation vector, the direction of which is e and the length is a function of w.
For example, the finite rotation vector Q = sinwe was used in [247, 248,

178, 43, 184-186, 190-1947, the vector 8 = 2tg§e was used in [241, 133, 197 while

@ = we was applied in [240]. As it was pointed out in [199], each of the definitions
has some advantages: Q is particularly convenient to be expressed in terms of
displacements (cf. [185, 192]), 6 leads to geometric relations which do not contain
trigonometric expressions while @ is the single-valued function of w and can be
defined in terms of the natural logarithm of R, cf. [199]. In [108, 109] the rotations
were described in terms of four Rodrigues parameters. In the following part of this
report we shall use primarily the finite rotation vector 0, in terms of which
transformation rules for the basic vectors are

_ I 1 1
aﬁ=sﬁ+?8x(5ﬂ+§9xsﬂ>, = 1-}-26.9,

1 1
(5.6) ry = aﬂ—i-?ﬂ X (aﬁ+§9 X aﬁ>,

f

n

1 1
Rn = n+;6>< <n+§9xn).
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Let us introduce the relative (symmetric) surface stretch tensors

n=U-1=n,®2", mn;=s,—2,=71,2,
(5.7)
e=V—1=¢,@r", g5 =a;—1;=1,0,

(5.8) &= RRT, ¢ = Rnﬁ.

In terms of so defined #,, many useful geometﬁc relations may be derived,
[185, 190, 193, 199, 19]..
The corresponding relative (unsymmetric) surface bending tensors are defined by

p=RTh,;—ny)a" = p,@a", p,;=p,a%
(5.9)
A=, —Rnp)®r = L@, Ay = i1,

(5.10) L =RpRT, )y =R,

The relative surface strain measures 7,4, i, Were introduced first by Alumae [5].
They are related to the Lagrangian surface strain measures (2.7) and (2.8) by

1 A
Yap = r]aﬂ+§r]ar]}.ﬂa
(5.11)

1 1
Hap = ‘2"[(55:1 + 1) g+ (05 + 15 Maz) — E(birllﬁ + b5 1a)-

Since RTR; and R 4R” are skew-symmetric, they are expressible, according to
[199], by their respective axial vectors k; and 1, called also the vectors of change of
curvature of the coordinate lines [232, 190], by the relations

(5.12) A RTR; =k, x1, R,R" =1,x1, 1, =Rk,
Then, from Egs. (5.6), (5.11) and (5.12) we obtain
(5.13) p, =kyxn, Ak =1,xn,

1/, 1
ky = 6 tapa; +kyn = ?<9’B +§6,ﬁ X 9),

5.
(5.14) :

_ 1
]ﬂ = gal,u-aﬁrlJl—an = ?(9’13"‘59’[3 X 9)
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rotation. From the relations (2.2) and (5.1), it follows that there exist two
intermediate non-holonomic bases, the stretched basis s,, n and the rotated basis
r,, n, which are defined by

(
(

2) s, = Ua, =RTa,, s,5,=4,,

n

) r,=Ra,=V™'a, r, r,=aqa,.

1)

N

Within the shell theory the rotated basis r,, i was introduced first by Alumie [5]
and was used 1n [&, 247, 248, 240, 133, 19]. The stretched basis s, n was introduced
first by Novozhilov and Shamina [178] and used in [184, 185, 188, 190-194, 14]. In
terms of the bases, the following expressions for U, V and R can be given [185, 1907

U=s5®a"+n®n, U™ !'=a®s*+n®n,
(5.4) V=4@r+i®, V !=rQ1+i®f,
R=3,®s"+0®@n =r,®a"+n®@n.
Any rotation tensor R may be represented by
(5.5) R = coswl +sinwe x 1+(1 —cosm)e®e,

where the unit vector e describes the axis of rotation of R and  is the angle of
rotation of R about the axis of rotation.

v Sometimes it is more convenient to describe rotations by means of an equivalent
finite rotation vector, the direction of which is e and the length is a function of w.
For example, the finite rotation vector Q =sinwe was used in [247, 248,

178, 43, 184-186, 190-194], the vector 0 = Ztgge was used 1n [241, 133, 19] while

© = we was applied in [240]. As it was pointed out in [199], each of the definitions
has some advantages: Q is particularly convenient to be expressed in terms of
displacements (cf. [185, 192]), 6 leads to geometric relations which do not contain
trigonometric expressions while ® is the single-valued function of @ and can be
defined in terms of the natural logarithm of R, cf. [1997. In [108, 109] the rotations
were described in terms of four Rodrigues parameters. In the following part of this
report we shall use primarily the finite rotation vector 0, in terms of which

transformation rules for the basic vectors are

- 1. 1 1
a, = sﬁ+?6 X <sﬂ+§9xsﬂ>, t = 1—!—20-0,

1 1 ,‘
(56) ry = 3,420 <aﬁ+§9 ) aﬁ>,

A

1 1
n=Rn= n—l—;Bx <n+§6xn>.
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In the components in the reference basis we have

8 =c*¥0ya,+0;n =e*0;r,+ 040,

(5.15) )
r,=rypat+rm,  0,=yha, +y,n,
1 1 1
Llﬂ = aw-?<8,u;93 +§910ﬁ+‘2‘a}_ﬁ9%>,
(5.16)
1
Tﬁ :; 05+§8ﬂa9 03 s
(517) l]blﬂ = Slxgxw—b;}(‘)?’, wﬂ = 93,B+b28)_x9x,
1 1 1
('518) n* = ——t‘<gl+§8a}'9a63>, n = 1—59191

Using Egs. (5.15)-(5.18) together with the relations (2.2), (5.7), (5.9), and (5.14),, the
relative symmetric surface strain measures may be expressed explicitly in terms of
components of u and 8 according to : ’

— 1 -5 — A _
Nag = Tt8g—ayy = r i+ r,0p—a,, =

1 1 1
(519) = uam—baﬂw— 1 [Sﬁa03 +§019ﬁ+§aaﬁ9%+
1+Z(819‘+9§)

1 1 1
+ <8M93+ 3 6,6, + 3 am9§> (ul[ﬁ— biw)— <9a+ EEMQ"%) w4+ bﬁuﬁ):],

The expression (5.19) should still be symmetrized in «f indices.

1 1
Qap = ’i(ga}.kﬁ_*_gﬂ/lka)'aif: E(uaﬁ+#ﬁa) =

1 | 1 ‘ 1 1
= é—t—[eaz (Wﬂ +§92 ‘ﬁ/}) T 1 <Wa+§91 %) _5(‘//#? + 'ﬁﬂa)esj’ -
(5.20) 1 1 .
- — 1 [Qalﬂ—}-Qﬂla—{—gal(bﬁe:%—59163’/3+50’1|ﬂ63>+
2-!—5(916/1‘*‘9%)

1 1 1
+ 8N<b§93 —ielem +§91|a93> —b,g(076,+ 9§)+§(bdeﬁ+ b“é)a)el}

Corresponding expressions for 5 and k; in terms of components of 8 follow directly
from the relations (5.14), and (5.15),. In components of  the relations (5.20) were
given first by Simmonds and Danielson [247], while the relations (5.19) by the
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author [184, 185]. Equivalent relations for 7,4, f,p and kj in terms of components of
® were given by Shkutin [2407]. Linearization of ¢, given by the relations (5.20) with
respect to displacements leads to the tensor of change of curvature which, according
to Budiansky and Sanders [37], is the best choice for the linear theory of shells.

Rules of differentiation of the intermediate bases may be given with the help of
the relations (5.12) in the form [190, 199]

(5.21) Saiip = —kﬂxsa—{—baﬂn, n; = —kﬁxn— 5S4
I'am=lﬂ><ra+baﬁl—l, ﬁ,ﬁ=lﬁ><ﬁ—b7§l‘a

Since 4, = a,+u,, we Can solve Egs. (5.6) and (5.14) for u, and 8 ,, what leads to

1 1 1 1
u, = na+?8>< <sa+§9 ><Sa> = 8a+?9 X <ra—59 Xra)’

1
0, =k += 9xk+ (9k)9—l—§9><1+ Yoo,

The integrability conditions e u ,; = 0 and &8 ,; = 0 of the relations (5.22) give us
the following two sets of vector equations:

1
(5.23) gty x5) =0, & (k“'ﬂ Y3 k“) -

1
(5.24) e (gq5+1, x1,) = 0, eaﬂ<la,ﬁ+ I, %1 > —0.

These two sets of equations constitute two alternative vector forms of compatibility
conditions in the nonlinear theory of thin shells. The second equation of the set (5.23)
was derived independently by Chernykh and Shamina [43] and Pietraszkiewicz
[184]. The vector equations (5.24) were derived first by Shkutin [239, 240] and
independently by Axelrad [16] and Libai and Simmonds [133]. In component form _
the relations (5.24) were given already by Alumdie [5,7] and in orthogonal '
coordinates by Reissner [208]. Since £, = Ry, and I; = Rk, both sets of com- )
patibility conditions are transformable to each other. Several other equivalent vector ’
or tensor forms of compatibility conditions may also be constructed from the ones '
given by Pietraszkiewicz and Badur [199, 200] for the three-dimensional defor-
mation of a continuum. The three-dimensional compatibility conditions of
[199, 2007 should be written on the reference surfaces .4 or .# and Kirchhoff- Love
constraints should be taken into account.
Within the K-L type shell theory, finite rotations are expressible in terms of
displacements by non-rational relations [185, 190, 192] expressed in the stretched
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basis
R =3 Q®s+0®n = c‘zaﬂ(éj+n§)(aa+u,a)®ai+(n“aa+nn)®n,

1

(5.25) Q= ﬁ(sa x A% +nxn) =& [(fs,— @,)s;+(u, s)n] =

[NORI

1 =2 a a =
= Egaﬁ{[na_a “(05+ nae,] a’ +a* (5% +n%) ¥, n},

or in the rotated basis
R =r1,@a"+n@n = r*@[(6; +n2)r, —u, ] +0®[0,a (5)+nj)r, + nii],

1
(5.26) Q= ;(% xr*+nxh) = =g [(u, r)h+(n,—nr)r] =

N |

1 i} _ _
= 5t i[n"— a3+ 13, Jr0 +a* (85 +n3)ih,n}.

The dependence of rotations upon displacements can also be expressed implicitly,
in the form of three constraint conditions [19]:

n-n, =n-g, = (Rn)(a;+uy,) =n,l4+ne, =0,
(527) B B B B At B

e 1, = eam, = efr, g, = B“ﬁ(Raa)-(aﬂ—%u,ﬁ—Raﬂ) =& (rlly+r0,) =0,

where n;, n, r;,, 1, are given in terms of rotation components by Egs. (5.16) and (5.17)

while 12, @, are expressed in terms of displacement components by the relations
(2.3);.

3.2. Decemposition of deformation at the boundary,

During the shell deformation the orthoﬁ%}al triad v, t, n of 4 transforms into the
orthogot-gaal triad a,, 4, n of ¥, where a,=4,x0. According to the polar
decomposition (5.1), we obtain |

=41

a, =

JL°=Rs, =Vr, s, =Ut, r =r1t"=Rt,
Rs, = Vr

v v?

(5.28)

S
Il

<

s,=Uv, r1,=r1,v"=Rv.

Since v and t do not coincide, in general, with the principal directions of U, the
action of U on v and t consists of an extension by a factor @, and a finite rotation
about n. This rotation may be described by the proper orthogonal tensor Q.
Similarly, the action of V on r, and r, consists of an extension by a factor 4, and the
finite rotation performed with the help of the proper orthogonal tensor Q,. Both
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rotations are defined by

1
QU = E(SV®V+S,®0+H®D,

(5.29) 1 ‘
Qy = a?(ﬁv®rv+5t®rt)+ﬁ®ﬁ.

t

It is convenient to replace two subsequent rotations performed by Qy and R, or
R and Q,, by one total rotation performed by the proper orthogonal tensor

' 1
Rt = RQU = QVR = E(ﬁv®v+ﬁt®t)+ﬂ®na
(5.30) ‘
i=aRyv, a=aRt, §4a=Rn

Since RTR, and R,RT are skew-symmetric along %, they are expressible n terms
of their respective axial vectors k, and 1,, called the vectors of change of curvature of
the boundary contour [178, 185], by the relations (cf. [199])

(5.31) RIR, =k, x1, RR/=Lx1, 1L=Rk.
Now derivatives of a, and 1 along % can be given by

o

ﬁ; = athl:—C—l_z'yttt+(Qt -+ kr) x t:l:

(5.32) o

i = R,[(g,+k)xn],
where in components ¥ the reference basis

0, = o, v+T1,t+xn,
(5.33) o

k, = —k,v+k,t—k,n.

Exact expressions for components of k, in Eq. (5.33), were given by Novozhilov
and Shamina [178] and the author [184, 185]. In terms of physical components of
the Lagrangian strain measures on % these expressions are [193]

1 _
ki = aT[O-t(at— 1)+ %],

t

al _ 1 |
(534) kvt = \/%[ar(rt + %vl) + Ez‘yw (Ut - %lt)jl - Tl b)
t

1 Ja 1 Ja )
km = %t<1 "*-_—2\/:>_ﬁjzz}’vt(ytt+2%tyvt)+
a; a a; a

a .
+ \/%[2}),\4 - (ytt),v + 2%\»'])\1: + 2%z(yvv - V:t)] .
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Using Egs. (5.11) it is easy to express the components of k, also in terms of physical
components of the relative surface strain measures 7,5 and p,; on %.

During the shell deformation compatible with the K-L constraints, the
shell boundary surface p(s, {) =r(s)+{n(s) deforms itself into the surface
p(s, {) = r(s)+{n(s). According to the discussion presented in Section 4.5, the
boundary surface p(s, {) may be entirely described by assuming f = ¥* and ¢ = ¢*
along 4, These conditions constitute the basic (displacement) version of geometric
boundary conditions for the nonlinear theory of shells.

The deformed boundary surface may also be described by the following
differential equations [178]:

(5.35) ps=¢r+{n’, p,=n, =4,

(5.36) Po=F'+(0", Pgu=0, [ =4i,

 The set of equations (5.35) describes the surface p(s, {) implicitly, with accuracy
up to a translation in the space. According to the relations (5.30),, the right-hand
sides of Egs. (5.35) are established if y, and R, are given along 4. The geometric
conditions y, = y#, R, = R} on ¥, are called the kinematic boundary conditions of
the nonlinear theory of shells.

Also the set of equations (5.36) describes the surface p(s, ) implicitly, W1th
accuracy up to a translation and rotation in the space. According to (5.32) the
right-hand sides of Egs. (5.36) are established if y,, k, and R, are given along €,
However, since R, can always be included into the description of an arbitrary
rotation in the space, it is enough to assume only y, and k, to be given on 4. The
geometric conditions y,, = v, k, = kf on €, are called the deformational boundary
conditions of the nonlinear theory of shells.

In the case of the geometrically nonlinear theory of shells, we can simplify the
components of k, given in the expressions (5.34) by omitting small strains with
respect to the unity, what leads to [190, 192]

ki = %, + G, Ves
(537) kvr ~ %vt+2(o-z"—%tt)yvt_ft’yvv7
kn = 2y — Vee,v T 2%vyvt - %;(yzz - Vvv)-

In terms of the relative strain measures, these approximate relations are

ky ~ Qtt+(rr+gvt)nv:> |

1 3 1
(538) kvt ~ Ow + '2_Tt(r]tt - ’7\'\1) + E(O-t - Qrt) v -——-7—(0", - vi)”vz:

km ~ 277;1_77n,v+2%y77vz—%r(’7tt’“7]vv)'

These results were extended recently [41] to the large-strain theory of shells.
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5.3. Shell equations in the rotated basis

Let us introduce the expressions (5.11) into the principle of virtual displacements
(3.12), what gives

(539)  [[(5* 81,5+ G™ 50,5)d4 = [[ (p-u+h-5p)dA+ | (T-du+H-5B)ds,

@

where the following stress and strain measures have been used

1 ' 1 |
S*# = N* +—2—(niN i N +§E(u“ — b M+ (WP —bPH M3,

(5.40)
1
G = M+ S (1M M),
1 1 y
(541) .uaﬂ = Qaﬂ+§8aﬁQ7 Qaﬁ = E(ﬂaﬁ_*_.uﬁa)s g=¢ :u'aB'

Note that both surface stress measures S*¥, G** and both surface strain measures 7,
0. are symmetric here by definition. They have been introduced first by Alumie [8]
and independently by Simmonds and Danielson [248]. ‘

Since SRRT is skew-symmetric, we express it in terms of its axial vector d® by
[199, 137]

‘ 1 1
(5.42) SRRT = —RSRT =0 x1, Jo= ?<59——2—59 X 9),
which, together with the relations (5.3), and (5.6); leads to
(5.43) or, = dwxr,, Of=0n=0Jmxn.

Taking variations of g; and X, given in the relations (3.7), and (5.9), and using Eqgs.
(2.1), (5.42) and (5.43), after transformations we also obtain

(5.44) ONgpt® = OU 3 +025 X 00,  Ofig™ =00 X 1.

If we take variations of the constraint conditions (5.27) and use Eqgs. (5.44), the
following relations for dw in the rotated basis are established:

1 .
oo = 28“/’(5(1 + 720 du
(5.45)
1

247

n-ow

gh*r  du 4.

With the help of the relations (5.43)-(5.45), the principle of virtual displacements

—
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can be transformed into

— [ (N?|,+p)-SudA + Y (F,—F¥)-du+
J

M

(3.46) o o
+ [ [(P—P*)-0u—(M—M*)i-5u,]ds = 0,
“r
where
- 1
N/ = <S“ﬁ—l—§8“ﬂ5>ra+Qﬁﬁ,
\ 2 )
(5.47) S = m%x[ﬁgsw—(bé—/ﬁg)@ 1,
1
QF = (3} + 1) [eaa( Gl + o) = GEk ],
ISZNﬁvﬁ—i—F’, P*=T+F*,
w 1 ag s 2 %B ., = 2o 1 1 _
(5.48) F= i (65 +n2)en G¥vgn,  F*=— Kr—fwav i,
t

- 1 - 1
M = —‘C—ita(éi_*—r’i)gixGXBVﬁ: M* = ﬁ,zi—K

For arbitrary du, éu; and n-du , from the form (5.46) follow the equilibrium equations
and corresponding static boundary conditions
N, +p=0 in .4,
PP, M=M* on%,
(5.50) F,=F# at each corner M;e%,.

(5.49)

It was shown 1n [142] that n-du, is not integrable in terms of displacement
derivatives on ¥, i.e. there exists no displacement boundary conditions which would
be work-conjugate to the relations (5.50). In this chapter we shall use the relations to
derive the set of shell equations in terms of rotations and other field variables as
independent variables. Therefore, there will be no need to use displacement
boundary conditions. However, if one would like to discuss such work-conjugate
static and geometric (displacement) boundary conditions, one should apply the
general formula (4.30) to transform the corresponding boundary terms in the
principle (5.39). Then some modified static boundary parameters P, M, ¥ could be
calculated to which there would correspond some work-conjugate displacement
parameters u, ¢. In this way one could construct an alternative form of the
Lagrangian shell equations written in terms of S, G*, 1,5, Ly, ks as given functions
of displacements and their derivatives. Here we are not interested in such alternative
displacement shell equations.
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The equilibrium equations (5.49) can be presented in component form in the
rotated basis r,, n, what gives

: 1 1 1
(5.51) Saﬂ"’“gusﬁkﬂ+§eaﬂ3’f’+§““ﬂ5k"_Qﬁ(’)ﬁ‘é’%‘aa“*mw)w“=o,

: |
S (bap—0ap) =552+ Q" g +4 =0,

where p* = p-r* and S, Q° are functions of S*, G* given in Egs. (5.47).

The dependence of rotations upon displacements has been explicitly taken here
into account by applying the relations (5.45) in the transformation of the principle
(5.39) into the form (5.46) and using in the form (5.46) the variational expression
fi-ou,. However, when we intend to use rotations as independent variables, the
dependence of R upon u should be implicitly taken into account. According to [19]

this implicit dependence can be given by three constraintconditions (5.27) for the

relative stretch vector g5 = 7,51% In terms of variations these constraints in .# are

(5.52) er on,rt =0,  0-6n,r* =0.
- « B , B

1 . . : . :
Let 55 and Qf be Lagrange multipliers associated with the respective constraints

(5.27) and (5.52). Then the left-hand side of Eq. (5.39) can be presented in an
alternative form

‘ 1
(5.53) if {[(S“”%—;a“ﬁS)raﬁ-Qﬂﬁ:]'(smﬁfl‘f‘Gaﬁ 5Qaﬂ}dA,
M =

where d1,; and 8, are given by Egs. (5.44) in terms of now independent Su and Se.

Similar constraint conditions (5.52) should also be applied at the shell boundary, -

only then the constraint (5.52), should be multiplied by ¢, what corresponds to the
constraint (2.15),. If now A4 and B are Lagrange multipliers associated with the
respective constraints (5.52) on %, then we should add to the right-hand side of Eq.
(5.39) the following line integral:

(5.54) [ (Ae*r,6n,50* + Bia- 61,51%t%)ds.

€

Now the principle of virtual displacements (5.39), with the form (5.53) as the left-hand

side of Eq. (5.39) and the integral (5.54) added to the right-hand side of Eq. (5.39), can
be transformed with the help of the relations (5.44) into

— [J (NP, +p)-du+(MP|,+4, x N’ +ii x h)-dw]d4 +

M
(5.55) + | {[N?v,—T+(Ar,+ Bii)]-6u+[M’v,—fix H+ Ba,—
Cr

—A(r, xa,—r,x8,9/)]- 60+ Ar,-u,}ds+ ) (Ar,+ Bi);-ou; = 0,

J
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where N’ is given by Eq. (5.47), in terms of S*, S and QF as independent variables
and M* = 1 x Gy,

It follows from the form (5.55) that for an arbitrary r-ou, on %, we always
have 4 =0, ie. the constraint condition (5.27), is always satisfied on &. Taking this
into account the line integral of the form (5.55) 1s reduced to

(5.56) | {[Nﬂvﬂ—T+(Bﬁ)’]-5u+[Mﬁvﬂ~ﬁ><H+Bﬁv]=5w}ds+ 2. (Bi);-du,.
Cr Jj

Since Ju and dw x i are now independent, from the relations (5.55) and (5.56) follow
vector equilibrium equations and corresponding static boundary conditions:

(5.57) N,+p=0, M +a,xN+iixh=0 in .z,
(5.58) N'vy—T+(Bif =0, G*rv,~H-Bi =0 on %,
(5.59) (Bn); =0  at each corner M;e%,.

Corresponding work-conjugate geometric boundary conditions follow from the
kinematic constraints du =0, Soxfi = di = 0 on ¢, and 6u; =0 on M,e%,. For
independent displacements and rotations these constraints have the solutions

(5.60) u=u*, Rn=R*n on 4,
(5.61) u; =uf at each corner M,e%,.

The second of the solutions (5.60) is still subjected to the two constraints: (5.27),
multiplied by # and (5.27),. Therefore, in fact the solution (5.60), describes implicitly
only one scalar conditicn. , :

In components in the rotated basis Eq. (5.57), takes the form

5.62 G|y — e Ghk, —(85+n3) QF +A* = 0,

| 1
S(l +—2—77§>-eunﬁS’w—-suG“ﬂ(bﬁ—gé)——z—GZQ = 0>
/
while the boundary conditions (5.58), written relative to v, t are

1 \
=1, (0% +n%) G"ﬂvﬁ——K,—B&t =0,
al

(5.63) 1
B—fx(éi‘F Ui)Sa)_GaﬂVﬂ—Kv = 0.

t
Note that only two components appear in the conditions (5.63), since 4 has been
eliminated. :

The equilibrium equations (5.51) and (5.62) were derived by Alumie [8].
Equivalent forms of equilibrium equations are given in [35, 248, 240, 197. Boundary
and corner conditions were not discussed in [5, 8], while the four static boundary
conditions derived in [248, 197 would follow from our relation (5.58) after elimina-
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tion of the Lagrange multiplier B with the help of the condition (5.63),. But then it is
not apparent how to construct the work-conjugate geometric boundary condition
corresponding to the constraint v-on = 0 on %, used in [248] and to the equivalent
constraint t-ém = 0 used in [19]. Therefore, the work-conjugate geometric boun-
dary conditions were not discussed in [248, 19]. On the other hand, the kinematic
parameter d[t-(we)] used by Shkutin [2407] cannot be regarded as to be equivalent to
the one which would appear during the elimination of B from the relation (5.58),. It
seems that the choice of such a parameter in [240] resulted from an identification of
the axial vector dw defined by the relations (5.42) with the variation of the finite
rotation vector we, what is correct only for infinitesimal rotations.

5.4. Alternative shell equations in the undeformed basis

Sometimes it may be more convenient to use an alternative form of nonlinear shell
equations discussed in Section 5.3, which is referred entirely to the undeformed basis
of .Z. Having this in mind, let us introduce the axial vector dw of the
skew-symmetric tensor R7SR in analogy to the relations (5.42) by [199]

1 1
(5.64) RT6R = —S6RTR =dwx1, Jw= ?<59+§59 X 9>

in terms of which variations of the relative strain measures (5.7); and (5.9), are given
by
oMy = 0Ngpa’ = OV 5+ Kk, X Ov+s, x ow,
(5.65) ! g ’
Opy = Sp,pa* = 0w pxn(ky x dw) xn,

(5.66) sw=RT5w, &v=RTsu.

If the rotations are to be regarded as independent variables then the constraint
conditions (5.52) are replaced by
eaom, =0, ndn,=0 in A,

(5.67)
efa om, =0, nontl = on €.

.1 L . : :
Let again ES’ Q? be Lagrange multipliers associated with the respective

constraints (5.67), in .# and A4, B be Lagrange multipliers associated with the
respective constraints (5.67), on 4. The constraint conditions (5.67), multiplied by
!

55 and Q”, respectively, may be introduced into the surface integral of the left-hand
side of Eq. (5.39). Similarly, the constraint conditions (5.67), multiplied by 4 and B,
respectively, may be introduced into the line integral of the right-hand side of Eq.
(3.39). Then, the so modified principle of virtual displacements can be transformed

e -

X
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with the help of Egs. (5.65) and (5.66) into
—{f [(N”|ﬁ+kﬂxNﬁ+RTp)-5v+(Mﬁ\B+kﬁxM"+sﬁxNﬂ+anTh)-5w]dA+
"

(5.68) + [ [ NPy, —RIT+(Bn) —Bnxk,t#]-ovds +
r
+ [ [MPy,—nx RTH—Bnxs,t’]-ow,ds+ ) (Bn);ov; =0,
%s J

where now
~ 1 _ -
NF = (S“ﬁ+§s“ﬂs>aa+gﬂn =RTN’,
(5.69) M? =nx G¥a, = RTM?,

1
dw, = RI 0, = =t X (6v' +k,1¥ x 6v) +(t-0w))t.

t

In the transformations leading to the principle (5.68) we have taken into account that
A =0 on %, for an arbitrary t-6v,,, in analogy to the reduction of the relations (5.55)
to (5.56). :

Since 6v and Sw are independent, from the form (5.68) follow vector equilibrium
equations and corresponding static boundary conditions:

NA,+k; x NP +RTp = 0,
(5.70) - . . ,, in M,
M’ |, +k, x M’ +5s, xNf+nxRTh =0,
NPy, —RI T+ (Bn) —Bnxk,t’ =0,
G*a,v,—RTH—Bs, =0,

(5.72) (Bn), =0 at each corner M;e%,.

(5.71) on 4,

The component form of the relations (5.70) in the undeformed basis a,, n coincides
with Eqgs. (5.51) and (5.62) while the components of the relations (5.71) in the basis v,
t are equivalent to those given in the conditions (5.63).

Alternative forms of equilibrium equations written in the stretched basis s,, n are
given by the author [185, 190, 193] and in the rotated basis by Kayuk and
Sakhatzkii [109].

5.5. Static-geometric analogy

Betweeh the equilibrium equations (5.57) and the compatibility conditions (5.24) (or,
equivalently, between the relations (5.70) and (5.23)) an interesting static-geometric
analogy can be established. In order to show this analogy, let us express the
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compatibility conditions (5.24) in component form in the rotated basis, what gives

8aﬂr]la|ﬂ + e (5; + n;)gx).kﬂ =0,

1.
Q<1 +§n:>—8"‘”n;‘(bxﬂ—gxﬂ) =0,

(5.73) 1 -
“”e“w+§8""@,ﬂ—saﬁkoz(bz—gw—a”kag =0,

1 1
aﬂ lf‘(bla—zgla)Q;‘ﬂ—Zg + & Bka]ﬂ - 0

Let us introduce modified measures by the formal relations

~aff __ ao ft ~aff __ ac fr T __ ac ~
o = —&7 & Qg1 n = +E& & Nars k = +¢& ka—: Q= —0,
(5.74)

T

Oapg = _gaagﬂréma Nap = +8aa8,3rr~ld ’ ka = _gadka’ @ = é

In terms of those modified measures the compatibility conditions (5.73) can be
written 1n the form

. L. 1
Tlaﬂ[ﬂ—‘2-8a)'7']§kﬁ‘—< ﬁ‘*‘ ﬂﬂ)kﬁ—o

’
- 1N 1 3y 1 1
9<1 +Zna>——2~8amg0 — €41 7] B<b§—59‘>—znae =0,

(5.75) 1 1 1o ol L
@“ﬂlﬁ—ia"‘léﬁkﬂ—{—ia“ﬂé,ﬂ -}—Za“ﬁ@'kﬂ——k‘9<b°ﬁ‘——2—g‘}‘3——za“*8;gg> =0,

528 /b _l _l~ Bl =0
0 ( =50 | =780+ |, = 0.

If we compare Egs. (5.75) with the equilibrium equations (5.62) and (5.51), we note
that the homogeneous equilibrium equations can be transformed into the modlﬁed
compatibility conditions (5.75) if $%, G*, Q*, S are replaced by 8%, 7, K,
respectively, and all nonlinear (quadratic) terms are multiplied by 1/2. ThlS
static-geometric analogy was noted by Alumde [7, 8]. It extends to the nonlinear
theory of shells the static-geometric analogy of the linear theory of shells which was
formulated in tensor form by Goldenveizer [76].

The compatibility conditions (5.73), , can always be solved for k, and g, what

gives
A ox(si | 4
ka = ”\/%(3@ (ba_*_r’a)r],lgix:
(5.76) )
g = 1 8aﬂﬂi(bxﬁ—Qxﬂ)-
14+ =-n%

2
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Similarly, the equilibrium equations (5.62) can be solved for 0, S what gives the
formulae (5.47), 5. Then k_-o, O and S may ‘be eliminated from the remaining
equilibrium equations (5.51) and the compatibility conditions (5.73)5 4, which then
are expressed entirely in terms of symmetric measures S*, G** and Naps Qup-
Unfortunately, for such a transformed set of 343 equations the static-geometric
analogy formulated above does not hold.

5.6. Shell equations in terms of rotations, dlsplacements
and Lagrange multipliers

Various nonlinear shell relations discussed in the preceding sections allow for some
freedom in choosing independent field variables of an appropriate boundary value
problem.

An interesting version of the nonhnear theory of shells can be given in terms of
finite rotations @, displacements u and Lagrange multlphers S, Of as independent
field vanables [19].

In terms of corresponding stress and strain measures S**, G** and Nap> Qap, the
strain energy density (3.32), and the constitutive equations (3.34) are

h h?
(577) o }: = EHGB)'H(?’]M;Y]M‘ 12Qaﬁgﬂ.u> + O(Ehnzg )
0x Eh
S = = C[(1 —-v)n* +va*n ]+ O(Ehnb*, C= 5,
' ) 5 s ER3
G¥ = —— = D[(1—v)¢” +va* ¢5]+ O(Eh*n8?), D=—1.
00qp 12(1—v?)

Let the constitutive equations (5.78) together with (5.76) be introduced into the
equilibrium equations (5.51), {5.62) and then 7,4, 0,45 be expressed in terms of u, 6 with
the help of the geometric relations (5.19) and (5.20). As a result, the problem is
reduced to nine partial differential equations: six equilibrium equations (5.19), (5.20)
expressed in terms of 0, u, S, O/ and three constraint conditions (5.27) containing
only 0, u. Corresponding work-conjugate static and geometric boundary and corner
conditions are given by the relations (5.58), (5.60) and (5.59), (5.61), respectively,
together with one constraint condition (5.27); multiplied by .

The structure of such final set of nine equations is relativelv simple. The
equilibrium equations (5.51), (5.62) are linear in S, Q® and their first derivatives, are
quadratic in u, but linear in u,, while rotations appear in them as polynomials
which are quadratic in 0, but again only linear in 8,5 The constraint conditions
(5.27) are polynomials in rotations but linear in ug.

This system of nine nonlinear equations may be considerably simplified in the
case of small strains, when additionally we assume that the strains caused by
stretching and bending of the reference surface are of comparable order, ie.
Map ~ ho.p. Within the accuracy of the first-approximation theory from the com-
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patibility conditions (5.73) we obtain the estimates

n@Z ‘ i . nez
(5.79) kg = 0(;7/,1), 0= 0<-h—>, 05— 0l = O(?J
which, introduced together with Egs. (5.78) into Egs. (5.51) and (5.62), lead to the
following consistently approximated equilibrium equations

8 8 5 Ny Ch
' C[(l’_v)r]«z|ﬂ+vnﬂ|cz]+p =0 EhT )

. 92
C(bs— o[ —v)nh +voinil+ Q% +q = O(Eh2%>,
(5.80)
n6?

DQ%I“"“Qa‘{"Ha = O(Eh27>,

S—e {CnA[(L = +va* 0] — D (bl — o) [(1 —v)o® +va* o] = O(Eh*n*07).
Within this approximation S apears only in the last algebraic equation (5.80),

and can be evaluated separately. Equation (5.80); can also be solved for Q% and
introduced into Eq. (5.80),, which then takes the form

a a a % - }’]82
(5.81) Dol + C(bj— o3 [(1 —v)ns +vohnil+q+h*|, = 0<Eh277>,

If now the expressions (5.19) and (5.20) are introduced into Egs. (5.80), and (5.81),
then we obtain

1 0
Caﬁg {;5(1 _V)(r},alzlg +rlg l:la'}"ra(pg +rQ (pa)lﬂ +v(rlﬂl:lg +rﬁ@g)[a]+ﬁa = O<EhL>’

A
1, 1 L,
ofi o (vr o) 3w |

1 I 1 1
+ C{b; —“é—tﬂax I:Ek7<lﬂ?/3 +’2‘9y¢/ﬂ> + 8[3):(1,[/2};{ +§9ywx> _.?j(wxﬂ + wﬂx)Qle} X

. 762
X [(1 =)@ (raull, +1,0,) +v0s a® (ry f + 1,001 +q +h|, = 0<Eh‘%7>-

B
+

(5.82)

Equations (5.82) together with the conditions (5.27) give us six partial differential
equations for six components of 6, u to be solved.

Simplified static boundary and corner conditions on %, follow from the
corresponding reduction of the relations (5.58) and (5.59), with the help of Egs. (5.78),
(5.32) and (5.38). In the right-hand sides only the principal terms, which have the
same structure as those in the approximate left-hand sides, are taken into account.
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As a result, we obtain on %j

COr i) = Q,+0(En0?),  C(1=v)n,, = Q,+ O(Ehnb?),

(583) D[(vi+tht),v+2(1 _v)(Q,\Jz+%val)+(l ”‘V)%I(vi*Qn)] +Ev =
/ 2’782 q
= Q0+ K;+0[ Eh - ) D(o,,+vo,) = K,+O(Eh*n6?%
and
(5.84) D(L=¥)[0,i]; = [K,B],+O0(ER*16?) on M,e%,,

where the relative strain measures still have to be expressed in terms of components
of 6, u by the expressions (5.19) and (5.20). Corresponding work-conjugate geometric
boundary and corner conditions are given in the solutions (5.60) and (5.61), with the
condition (5.27); multiplied by #* as the constraint.

Let us assume that the external loads p, h, T and H are derivable from the
potential functions @ [u, B(R)] and ¥ [u, B(R)] by the relations (4.4). Note that now
u and R may be treated as independent variables, what allows for some flexibility in
the definition of the conservative loads. If the external loads are conservative, the
total potential energy of the shell is given by the functional

I={f {Z[;yaﬁ(u, R), 0.5(R)] +-;—6“ﬂSz7aﬂ(u, R)+0’nR7¢,(u, R)+ & [u, B(R)]}dA—}-
(5.85)
+ | {¥[u, BR)]—BnR g, (u, R)*} ds

Cr

with the geometric boundary (5.60) and corner (5.61) conditions and the constraints
(5.27) on 4, as subsidiary conditions. The variational principle 61 = ( states that
among all possible values of independent fields u, R, S, Q* and B, which are subjected
to the conditions (5.60), (5.61) and (5.27) on %, the actual solution renders the
functional I stationary. The stationarity conditions of I are: the equilibrium
equations (5.57) in .#, the constraint conditions (5.27) in ., the static boundary and
corner conditions (5.58), (5.59) on ¢, and the constraint condition n-g;tf =0 on E,.

Note that the functional I defined by Eq. (5.85) is linear in S, Q” B and is rational
in u, R and their only first surface derivatives. The latter property is important for
the computerized numerical analysis of the flexible shells based on direct disc-
retization of tHe functional (5.85). It allows to apply the simplest shape functions in
the finite-element analysis or the simplest difference schemes in the finite-difference
analysis, which assure high efficiency of numerical algorithms and better convergence
to the accurate final results.

In some applications it may be convenient to apply the more general free
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functional

1
I, —H{ naﬁ,\aﬂ%— sﬂSnaﬂ+Q"n gg—

M

— 8% [ap —naﬂ(ua R)]—G* [0ap —0.4R)] + @[u, ﬁ(R)]}dA +
5.86
>80 + [ ¥[u, pR)Jds— jBnRT s, R)tPds— 3 (Bi);*(u;—uf)—

i

— j «{[Iifﬁvﬂ+(Bﬁ)]~(u—u*)+ [G“ﬁravﬂ—Bit]-(Rn—R*n)} ds

This free functional follows from the functional (5.85) if we introduce into it the
strain-displacement-rotation relations (5.19), (5.20), the geometric boundary con-
ditions (5.60) and the geometric corner conditions (5.61) multiplied by the respective
Lagrange multipliers P*, K*, P, K, S,. Then some stationarity conditions of so
defined I, allow to identify the Lagrange multipliers to be S*, G*, N#v, +(Bi),
G*r, vy — Ba, and (Bn),, respectively, which have already been used in Eq. (5.86). The
functional I, in Eq. (5.86) is defined on the following free fields subject to variation: u,
R in ./, u, R on %, u; at each M;€%4,; Nup, 0aps S, G*, S, OF in M, S*, G*, S, QF,
B on %, B on %, and B, on M,e®%, The variational principle 61, = 0 is equivalent to
the complete set of nonlinear shell equations: (5.57), (5.58), (5.59), (5.27), (5.19), (5.20),
(5.60), (5.61) and (5.78).

5.7. Shell equations in terms of rotations and stress functions

If all the external forces are functions of the finite rotations alone, the set of nonlinear
shell equations can be expressed in terms of the finite rotation vector 0 and the stress
function vector F. Such equations were first proposed by Simmonds and Danielson
[247, 248].

When rotations are taken as independent variables, the rotational compatibility
conditions (5.24), or (5.73); 4 are 1dentically satisfied. The force equilibrium
equations (5.57), can also be satisfied if we introduce the stress function vector
F = F*r,+ Fn such that

(5.87) N/ = ¢*F +Pf, P/ = P*¥r +P'n,

where P? is a particular solution of Eq. (5.57). Now it follows from Egs. (5.87), and
(5.47), that S**, S and Q” are prescribed functions of 0, F. It remains to satisty the
moment equilibrium equations (5.57),, the tangential compatibility conditions (5.24),
(since here u will not be regarded as an independent variable) and to eliminate u and
B from the boundary conditions.

Let conservative surface and boundary loads be defined in terms of potentials

W T
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@[r, n(9)], Y[r, n(8)] by

- o 0 o 0w
5.88 9 92 o Y g
(5:88) P= "% = = 7

Let us apply the Legendre transformation (3.36) only to the first part 2, of the
strain energy density given in'Eq. (5.77), which contains squares of 7,5 Let us also
introduce the tangential compatibility conditions (5.24), into the functional (5.86)
- with the help of the Lagrange multiplier F. If the relation (5.19) is also a priori
satisfied, then the functional (5.86) can be written in the form

1 _
J,=1] {Saﬁim—zg(&"ﬁ)+ZQ(Qa,;)Jr—Z—SS“’jnaﬂ+Qﬁn-naﬁr“—-

M

— G0 —0ap(8)] + 6™ (s +1, x 1) F+ O[T, ﬁ(O)]}dA +

(5.89)
+ [ WIE 8(0)]ds— [ (4, s+ BP im0 ds —
— [ {L-GE—t)+M-[A(0)—n(0%)]}ds— ¥ K,*(F,—TF),

where 4, Bf and L, M, K, are corresponding Lagrange multipliers associated with the
constraints (5.27) on & and with the geometric boundary and corner conditions (5.60)
and (5.61).

The variational principle 8J, =0 allows us to find various stationarity con-
ditions of J,, among which are relations that identify the Lagrange multipliers 4,
B, L, M, K, to be ‘

(5.90) L =Py, +F +(Biy, M =G%r,v,~Bja,
K; = F;+(Bn);.

In order to eliminate the free field variables 7,5, G™, 045, S*, S, Q% in A, T on ¥,
and T, at each M, %, let us assume that the following stationarity conditions of J,
are a priori satisfied:

0§ oz o .
g = =g G = 6—4_):;’ 0up = 025(0), NP =¢"F, +PF in 4,
(5.91)

=i

r=r* on ¥ . =TF at each M,e%,.

u? ]




104 W. Pietraszkiewicz

If now the relations (5.90) and (5.91) are used, then the functional (5.89) is reduced to
Jo = [T {(#"F .+ P)-g,(F, 0)— ZS(F, 0)+ 2,(0) +

M

+ & [e,5(F, 0)+15(0) x r,(0)]-F+P/,-t+f[0(0)]}dA+

+ [ {=T-E+g[A(®)]}ds— | B,i(0)2,(F, 0)r’ds—
% %

— [ [G*®)r,(0)v,— B,i*]-[A(6) —n(6*)]ds,

u

where @ = P#|,-f+/[(0)] and ¥ = —T-F+g[A(®)] have been used.
Since A, = lyxr1,+bygi+2,p In A, the second line of Eq. (5.92) can be
transformed further to the form

(5.93) || [—(s"“F,a%Pﬂ)-ﬁﬁ—i—f]dA—l— | (Pﬁvﬁ-f—F-F’)dst- | (Pﬂvﬂ-f*—F-f*’)ds.
M € Fu
It follows from the relations (5.92) and (5.93) that on %, we still have to eliminate
r from the following line integral:

[ PPy t—F-F=T-t)ds =
(5.94) ]
= [ (PPyy+F =T)t— ) [Fls;41—0) T —F(5;+0)F

i

Cs

It is easy to see that the values of T on each .# ;& %, are not known, in general,
and the out-of-integral terms in (5.94), can not be evaluated only in terms of ¥ and 0.
However, there are two special cases of the boundary conditions when those terms
are given. The first obvious case is when the boundary contour € has no corner
points. In this case those terms do not appear at all. The second special case is when
on % only (displacement) geometric boundary conditions are prescribed, ie. 4 = %,
or % is divided by the corner points into an even number m of intervals, on which
alternately only static (5.58), or only geometric T = r* boundary conditions are
prescribed. In the last case all the corner points belong simultaneously to %, and to
%, Intervals (M, M;.)e%,, (M, M., €%, where j=1,3,5,...,m—1, i=j+1.

u

Since deformation of & is continuous and T, = I¥ on each M;e %, we indeed obtain

r,=r1f, for any M;e%,.

Let us assume that % is divided indeed into an even number of intervals on which
alternately only respective static or geometric quantities are prescribed, as discussed
above. Then, in order to eliminate T from the line integral of (5.94), the following
functions are introduced on %;:

(5.95) G,(s) = [ (T—Pfv)ds, T—Ply,=(G,;+C),
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where C; are constant vectors which should ensure F to approach %, continuously.
Taking further into account that Gi(s)=0,%(s) =F =T, I(5;4,) =T} = rf, we
can transform (5.94), into

m—1 Sj+a

(596 Y { [ [G+C=F)1ds—[Gyls;+1)Fhas + C(h, —F5)])

i=1,3,... s,

where 1’ on , 1s understood to be expressed in terms of F, 0 by the tensor (5.7),, the
inverse of Eqgs. (5.78),, (5.47), and (5.87),. As a result, the functional J, in Eq. (5.92)
can be transformed into the formr

J,(¥, 8, B, C) ” {Z,0)—Z5(F, 0)—(e"*F .+ PF)r,(0)+/[0(0)]) dA +

Si+1

N mj (| {(G,+C,~F)-¥(F, 0)+g[a(0)]} ds— .

J=1,3,... sj

(5.97)
LG54 ) T2 + Cp (T s —T))]) — | B.i(6) 2, (F, 0)¢/ ds—
€ ,

~ [ {Fi* ~ PPy £ [G(O)r,(0)v, — B,F* - [A(8)— A(0%)]} ds.

The variational principle 6/, = 0 is equivalent to three tangential compatibility
conditions (5.24), in .#, three moment equilibrium equations (5.57), in ., three
constraint conditions (5.27) in .#, three force static boundary conditions
G;+C;—F—B,n =0 on each interval (M;, M;.,)e%,,j=1,3,..., m—1, two rela-
tions (5.63) on %, (the first identifies B, and the second is the static boundary
condition for the couple), one constraint condition n-g,t* =0 on & and two
geometric boundary conditions (5.60), on %, for the rotations.

If we compare the functional (5.97) with the analogous functional given by
Simmonds and Danielson [248, f. (76)], we note that, apart from some unimportant
constant terms and the extended potentials f and g which are included into (5.97),
also the line integral over ¥ and the last term in the line integral over €, in (5.97) do
not appear in the corresponding functional of [248]. Even if B, is eliminated from the
functional (5.97) with the help of the condition (5.63),, those two line integrals do not
reduce themselves and have to be taken into account in the consistent nonlinear
theory of shells, which is expressed in terms of stress functions and finite rotatlons as
independent variables. _

Several functionals in terms of finite rotations were discussed also by Atluri [14]
who used the undeformed as well as the rotated basis as a reference basis. In the
reduced forms of the functionals of [14] also the force static boundary conditions
were supposed to be a priori satisfied. This means that corresponding C; should be
constructed separately outside the variational problem, what makes the solution
even more difficult. A term analogous to the last one in the functional (5.97) is taken
into account in [14], but the line integral over € of (5.97) still does not appear in:the

corresponding functional of [14]. In the functional proposed recently by Basar
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[24, 257, the rotation vector has been defined as @ = nxn, cf. [23]. The so-defined
vector has different geometric meaning than the finite rotation vector used here and,
therefore, the functional of [25] can-not be compared with the functionals discussed
here. If the rotation vector is expressed through displacements, i.e. @ = é¥n,a,, the
functional of [25] becomes a particular case of the functional (4.8) of the
displacement shell theory developed in [201, 197].

In the literature on computerized FE analysis of flexible shells, rotations are
utilized explicitly and implicitly, exactly and approximately, on the level of an
element and in the global matrices. As a result, it is not apparent how to compare the
theoretical shell model discussed here with the numerical shell models. Let us only
note that rotations were used in the numerical shell models proposed, among others,
by Ramm [203], Argyris et al. [12], Parisch [181], Hughes and Liu [95], Surana
[265], Oliver and Ofiate [180], Bergan and Nygard [29], Recke and Wunderlich
[204] and Recke [205] where further references are given.

6. Intrinsic shell equations

In some special problems of flexible shells, under particular types of boundary
conditions, the basic set of nonlinear shell equations may be expressed entirely in
terms of two-dimensional strain and/or stress measures. Such intrinsic shell
equations and their approximate versions for the geometrically nonlinear bending
theory of thin elastic shells were derived already by Chien [44] in terms of the strain
measures. Alternative sets of intrinsic shell equations and/or alternative schemes of
their approximation were proposed by Mushtari [152], Alumie [5], Koiter [115],
John [101-103], Westbrook [294], Axelrad [15, 17] and Valid [283]. Intrinsic
formulations of thin shell dynamibs were discussed in [84, 130, 131, 304]. Danielson
[49] selected stress resultants and changes of curvatures as basic independent
variables, what allowed him to derive the refined set of intrinsic shell equations.
Those equations were then modified slightly by Koiter an Simmonds [120] with the
help of John’s [101] error estimates. Alternative formulations and special cases of the
refined intrinsic shell equations were discussed by Pietraszkiewicz [185, 190],
Simmonds [244], Libai and Simmonds [133] and Koiter [119].

The simplicity of the intrinsic shell equations is remarkable. Their solution leads
directly to the determination of stress and strain measures in the shell, without
necessity to calculate displacements. However, displacements and/or rotations may
be calculated, if necessary, by an additional integration of the kinematic relations
(2.7), (2.10) or (5.19), (5.20) and (5.27). '

6.1. Intrinsic bending shell equations

Let us note that the component form (3.31) of the mixed shell equations (3.30), in the
deformed basis a_, n is already expressed entirely in terms of two-dimensional strain
and stress measures. Corresponding four static boundary and three corner con-
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ditions (3.30), 5, when written in components along ¥, t, B, are also expressed in terms
of the strain and stress measures. Appropriate boundary conditions on %, can also be

~ expressed entirely in terms of the strain measures by assuming functions (5.34) and y, to

be given on %,. Therefore, the equilibrium equatlons (3.31) and the compatibility
conditions (2.12) constitute the basic set of six nonlinear equations with respect to
arbitrarily chosen six components of strain and/or stress measures which are
connected by the constitutive equations (3.34) and (3.35).

Let us now assume that the small strains in the shell caused by stretching and
bending of its reference surface are of comparable order in the whole shell, ie.
Yag ~ N#zg. Then, within the error of the first approximation to the strain energy
density (3.32),, the equilibrium equations (3.31) and the compatibility conditions
(2.12) can be essentially reduced {185, 193] to the form

B B nd*
CLA—vyyzlg+vygel +q, = O h—T

02
Dyl + Cba— ) [(L =)y + 82 i) + g + k), —0<Eh L)

/1'2
n6?
%glﬂ %ﬁla - O(h].)

Bla_ alf (W b By LB e ap n6”
'})a|ﬂ_yalﬁ—(ba%ﬁ_ba%ﬁ)'*'z(%a%ﬁ‘“%a%ﬁ) =0 —]_—2 .

(6.1)

Corresponding static boundary conditions on %, reduce to [193]
Cw+Vvyu) +O(E0®) = Q,,
C(1—v)y,,+O(Emo* = Q,,

D {%vv,v + Viity + 2(1 - V) %,vt -+
. | "
(1= V) [5,(3¢0y — %) + 23¢, %, 1} + K, + O(Eh2-7> = Q+K;,

D (%, +vxy) +O(ER*n0?) = K
while at each corner point M;e%, we should assume

(6.3) D(1—v)(,);8;+O(Eh*n0?) = (K,)f,.

J7Ir

Corresponding deformational quantities (5.34) can also be reduced in accordance

~ with the error already introduced into the reduced compatibility conditions (6.1)5 4.
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This gives us the deformational boundary conditions [193] on €.

0> NG
%tt+0<%—>:k;§7 %vt+0<’1h~>:kfn

63
(64) 2y;t_’ytt,v+2%vyvt+%t(YVv_ytt)+O<r]T> = k;kt:

Ve = Vo

The resulting set of bending intrinsic shell relations (6.1)—(6.4) is very simple. Four
field equations (6.1), 5 are linear while two remaining ones (6.1), , are quadratic in
terms of y, and s, All boundary conditions are linear in the strain measures,

6.3. Refined intrinsic shell equations

In many problems of flexible shells the small strains caused by membrane force
resultants may be of essentially different order (higher or smaller by the factor 62)
from those caused by the couple resultants. In those cases the reduced bending shell
equations (6.1); 3 should be approximated with a greater accuracy, since within the
accuracy indicated in Egs. (6.1), 5 they contain only terms of one kind: membrane
strains or changes of curvatures, respectively.

The refinement of Egs. (6.1); 3 may be performed by selecting membrane stress
resultants N*/ and changes of curvatures Xqp s the basic independent variables of the
shell theory. The estimation procedure presented in detail in [49, 120, 185, 193]
leads then to the following refined intrinsic shell equations

1
Nl +2A(NIND),, —S AL ~v) NjNE +vNENE] |, —
= D{(b2 =) (L =) vkt ]}y — (b — ) Dy k) +
g 2 no*
+24[(1+v)NEq;—vNig]+q, =0 EhT ,

92
Dl (b — BN + g + ke, = o<Eth>,

2

(6.5) /
by — i — A(1 +V)[(bé~%§)N§;a+(b£-%g)Nﬁm] + |
B__ . By NA B no*
+Av(bs —xf) N5, —2A4(1 +v)(bz—xE)g, = O 77 )
A 1 2
ANZIg+<b£_§%g>%;—<bg——§%§>%g+z4(l +V)qﬁ|ﬂ = O<'77792—>,

, 1 Eh?
(6.6) A=—

D=—"7/__
Eh 12(1—?)
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The refined intrinsic shell equations (6.5) expressed in terms of N, »,; as
independent variables and with all the external surface forces ¢, g taken into
account were given in [ 185]. Here we have additionally supplemented them with the
external surface moments k,. Danielson [49] derived Egs. (6.5) in terms of —x,; and
a modified stress resultant tensor n*, with only ¢ taken into account. Koiter and
Simmonds [120] expressed Egs. (6.5) in terms of n*#, —§,, in the absence of surface
forces, while g, ¢ were taken into account in [190]. .

The boundary and corner conditions associated with Egs. (6.5) should also be
refined. Note that only the tangential static boundary conditions (6.2); , and the
tangential deformational boundary conditions (6.4); need to be refined, since the
other boundary conditions (6.2)5 4, (6.3) and (6.4), ; of the bending shell theory are
accurate enough for the use with the intrinsic equations (6.5).

Let us multiply the conditions (3.30), by v or t, apply the transformation rules
(3.9) to express v, or ¢, in terms of v, or ¢, respectively, and use the constitutive
equations (3.34),. Then within the error O(Ehn6*) the tangential static boundary
conditions (3.30), on %, can be reduced to the consistently approximated form

[1 + A (va - VNtt)] lev —D (Jv - %vv)(%vv + V%tt) + ZD(l - v)(fr + %vt) L

= Q,+ (1, + %) K, + O(Ehn0%),
(6.7) |

[1 +A(Ntt_Vva)] Nvt+ 2A(1 +V)vaNvt+D(Tt+ %vt)(%vv +V%tt)~'
—2D(1=y)(0,~ %) %y = Qi —(0,— %) K, + O(En0%).
Corresponding deformational boundary conditions on %, ¢an be constructed by
4 ) B
the consistent reduction, to within the error O(%—) of the parameters k, and

k,, given by the expressions (5.34), , with the subsequent elimination of y,; with the
help of the constitutive equations (3.35),. As a result, we obtain the following
consistently approximated deformational boundary conditions:

no*
%rt+A(Jt_%tt)(Ntz_Vva) = k;';+0 T s

no*
%Vt+2A(1 +V)(O-t_%lt)Nvt—A(Tt+%v2)(va_VNtt) = ki+0<%>a
(6.8) ‘ :
2A(1 +v)jvlvr—A(sz,v‘Vva,v)+2A(1+V)%vat+

93
+A(L+v)x (Nvv Nn)—k,’t‘,+0< h>

A(N,—VvN,,) = 7.
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The static boundary conditions (6.7) and (6.2)5 , are equivalent to those given by
Danielson [49] in terms of n®, — 5. The refined form (6.8) of deformational
boundary conditions has not been discussed in the literature.

6.3. Work-conjugate static boundary conditions

The consistently simplified static and deformational boundary conditions given in
Sections 6.1 and 6.2 are not work-conjugate to each other since the static parameters
in the line integral (3.28) work on virtual displacements and not on variations of the
deformational parameters k,, Ky Knis V2. In order to derive work-conjugate boundary
conditions, the line integral of (3.28) should be transformed as it was suggested in
[192, 193]. N

According to the relations (2.17), and (5.30),, 3, = t+u' = a,R,t. Taking the
variation of this expression with the help of relations (4.27) and using the identity
ou’ = (éu), we obtain

(6.9) (o1) = a_izﬁtéy,ﬁ—ém, xa,,
t .

where by du we understand the variation of the displacement field on ¥, which is
referred then to the deformed basis ¥, T, n, i.e. the virtual displacement field appearing
in the principle (3.28).

Let ¢ be an arbitrary constant vector and & = R,c. Then 6¢ = dw, x ¢ and
¢ =1 x¢, according to the relations (4.27) and (5.31). Since again (0€) = 46(¢) this
leads to

(6.10) (bo,) = 8, — o, x1,.

Using the relations (5.31) and (5.33),, the relation (6.10) can also be presented in the
alternative form

(6.11) (82, = — bk, ¥+ Sk, T~ 0k, .

Let A and B(O) be the vectors of the total force and the total couple with respect
to the origin O e & of all the internal force and couple resultants acting on a part of
the deformed boundary €. With the help of the transformation rule (3.9),, these
vectors are defined by :

A=Ay+ [Pds, P=Nv,—(Hfy,

(6.12) S
B(0) = By(0)+ | (Fx P+ Gb)ds,

So

where N?, H and G are given in Eqs. (3.29) and A, B,(0) are initial values of A, B(0O).

, T e
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:The total couple vector B = B(M) with respect to a current point M of & is given by
(6.13) B =B(0O)—rxA.

Differentiating A and B along %, we obtain

(6.14) ' A'=P, B =Gt—a xA.

Differential relations (6.9), (6.11) and (6.14) can be used to transform the
boundary terms in the principle (3.28). Indeed, introducing A’ for P into Eq. (3.28)
‘and integrating by parts, then again introducing B’ for Gt—a, x A and again
‘integrating by parts, we obtain
' [ (P36 +Gt-60)ds— Y H,i, 6, =
: Er J
(6.15) .

. = — f[ (6m,) + A aéyn]ds Z[(Hjﬁj+Aj)-5ﬁj+Bj-5cotj].

. Exactly the same transformations hold for the analogous external force and
-couple resultant vectors, only in this case T, H*, G* and H¥ appear in place of Nﬂ
‘H, G and H, respectively, in analogous deﬁmtlons of P* A* B*, A¥ and B} As
“a result, Wlth the help of Egs. (6.11), (6.15) and an analogous transformed mtegral for -
.the starred quantities, the boundary terms of the principle (3.28) can be transformed
‘1nto

_ 1 _ T

j [(B—B*)-V&kn—(B«—B*)-tékw+(B——B*)-ﬁék,,t—T(A——A*)-téyans—

Cr a;

[(6.16) i 3 |
_Z{[(Hj—Hf)nj+AJ.—A;F]-auj+(Bj—B;!=)-5mtj}.

. It is apparent from the form (6.16) that on %, components of B—B* in the basis
, v t, 0 and the component —a Y (A— A%t Work on variations of the deformational
iparametera Therefore, the static boundary conditions which are work-conjugate to
ithe deformational ones have the form

: 1 ¥ 1 T
(6.17) B=B* —At=_A*t on%.

t
. Itfollows from the form (6.16) that terms associated with the virtual work at the
‘corners M ;€% are not expressed in the intrinsic form, since the static parameters
‘work there on 5@ and Jo, respectively, but not on variations of deformational
- quantities. Therefore, in order to make a shell problem solvable in the intrinsic way,
entirely in terms of strain and/or stress measures, those out-of-integral terms should
1dentically vanish. It is easy to note that those terms vanish identically in the case of
the smooth boundary contour (ie. without corners) or when only geometric
dlsplacement boundary conditions are assumed on the entire 4. Another special case
s when % is divided by corners into an even number of intervals, on which
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alternately only static or only geometric (displacement) boundary conditions are
prescribed. In such a case all the corners belong simultaneously to ¢, and to %, and,
therefore, 0@t and Jw, vanish identically at each corner Me .

When the work-conjugate static boundary conditions (6.17) are used in conjunc-
tion with the bending shell equations (6.1) or with the refined ones (6.5), all the
vectors A, B, A* and B* should be calculated from the consistently reduced
components of P, G, P* and G* given in the conditions (6.2) and (6.7), respectively.

6.4. Alternative form of refined intrinsic shell equations

An alternative set of intrinsic shell equations was derived in Chapter 5. Indeed, six
equilibrium equations (5.51), (5.62) and six compatibility conditions (5.73) are
expressed entirely in terms of the stress measures §**, G** Qf, S and the strain
MEASUTES Top, Qup, Kg, O

When strains are small everywhere, the equilibrium equations (5.62) and (5.51)
can be reduced within the error of the first approximation theory to the form

. n6*
G*|,~ Q"+ h* = O En* -
S = 004113 §™ =, G (b —0f) = O(EMn6),

1 ) 04
S“ﬂ[ﬂ—S“*SQkﬂﬁ—iaaﬁS,ﬁ—Qﬁ(b;—gg)+p“ = O<Ehn7>,

(6.18)

af | Bl 47 210
S*(bap—0up) +Q"|;+P = O| Eh )

Similarly, the compatibility conditions (5.73) can be reduced into

92
8aﬂ77,1zx[,8+k,1 — 0<U_>’

A
64
Q—Saﬂna}t(b;_Qz‘) = O<r]_];_>a
(6.19)
e et +£8Kﬁg — ek (b5—0%) =0 no” '
lalf 3 B \Og—@p ni )

1 02
8“’33*"(@& —EQM>Q,¢ + &% kg = O<n72—>

It should be noted that the static-geometric analogy formulated in Section 5.5 holds
also between the reduced sets of Egs. (6.18) and (6.19).

3 . 7 53 = -
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. Let us solve Egs. (6.18) , for 0% S and Eqgs. (6.19), , for k,, o, respectively, and
introduce the result into the remaining equations (6.18) and (6.19), what leads to

> 1 % QAQ % 2
Slﬂlﬁ+8a}'8xgsg’7ﬁxlg +58aﬂ6xg [r/AS ‘+G i(b%—gi)]lﬁ‘—

(6.20) ~(GP*, + )b —03) + p* = 0<Eh’7794>,

. = . 82
S (bag—0ap) + GPlup + WP |y + P = O(Ehz%)

| | ) 5 s o no*
T e 6% 0 115 +_2'8”ﬂ8“ [0 (b8 = @)l + &% &% sy (B — 05) = O<—h—'1_>’
(6.21) '

0 i 1 n6*
: g ﬂal [(bla_5921>.gxﬂ_rllalxﬂ:l = 0(?)

"'Introducing the transformations (5.74) into the left-hand sides of Egs. (6.21) and
changing signs, we obtain

1 1 l 1
~afl ai >0 B afl x ~Ag
Q ETET Q%M Bl €7 8y

1
6.22) + ﬁ“(bi *5@’1)}

: . 1 -
: Qaﬂ<baﬂ—§Qaﬁ>+n ﬂlczﬂ = 0.

. 1
_Uﬂlh(b; _EQ%> =0,
B

‘When Egs. (6.22) are compared with the homogeneous equations (6.20), it is seen that
the static-geometric analogy still holds between the reduced equations (6.20) and
5(6.21), what was not the case for the exact sets 3+ 3 of the transformed intrinsic shell
.quations (cf. Section 3.5).

The measures 7,; and G*# can still be eliminated from Egs. (6.20) and (6.21) with
the help of the constitutive equations

o - Map = AL(1+V)S.5—vapSi1+0(1n6?),
o G = D[(1—v)g* +va* g4]+ O(Eh?n6?),

fi
‘What, after transformations, gives us the following alternative form of the refined
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intrinsic shell equations:

1
Sﬁ,ﬂ+A[(1+v)S;}—v5§S:]|ﬁS§——-§A[(1+v) S;—vSiSall, —
—lD(l——v)(b’1 ls—D(bE—08)ok s+ P, — (b2 —0PVF, = O Ehng4
2 e ,{Qa}ﬂ a Qa QM,B pa a Q(l B = T 3
o
(6.24) DoZ|f+ (b8 — 08)Ss+p + h*|, = 0<Eh2’12>
1
ng—Q%mJFEA(l+V)[(bl—Qa)Sﬂ—(bﬁ ANAE

04
| ~ (b= ot)Sijg— A1+ )b~ o), = 0<’7M)
1 1 62
a5ty + (1250t )i (vt Joh+ 4+ = o 15 ).
If we apply the identity [49, 185]
; 1
(6.25) (SzS5—SESD, = E(Sésﬁ-Sﬁsﬁ)la

the first two of the equilibrium equations (6.24), can be put into another equivalent
forms:

1
am+A[(1—v)Si+v515;]|ﬂSﬂ——A[( —V)SESA+vSES|, +
1
(6.26) +5D(1—v)(biez —bzoh)l,— Dbl —f) ol +

94
+2Av(Sgﬁﬂ—Sgﬁa)+ﬁa—(bg~gg)ﬁﬁ = O<Eh’77>

1 1
Saip+AS; IﬂSﬂ—EA( SPlats D(l—V)(b" i —bioh)ls—

no*

(6.27)
—D( —Qa)QuﬁAV(Sﬁpﬂ S§P) +b.— (b2 — B Ry _O<EhT>

The refined intrinsic shell equations (6.24) are fully equivalent to those given by
Eqgs. (6.5). This can be shown directly if we take into account the transformation rules
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(5.11) and (5.40) written here in the appropriately approximated forms:

1 .
0 = #a+5 AL +v)[(bz —xx) Ni + (b — ) Nz —

94 2
—Av(bf—%ﬁ)Nﬁ—*—O(?—h——) = %£+O<ﬂ—2—),
(6.28)

1 )
S8 = NP+ A[(1+v)N?—vé2N%] NE—ED(I —v)(blsek + b sl —

— Dv (b8 —58)sh 4+ D(1 —v)ulseh + O(Bhnb*) = N2+ O(Ehnb?).

In the comparison of Egs. (6.24) and (6.5), one should also take into account that the
tangential equilibrium equations (6.24), are derived here from the components (with
the subsequently lowered index «) of the vector equations (5.49), in the rotated basis .
r., while the corresponding equations (6.5), have been derived from the components
(again with the subsequently lowered index a) of the vector equations (3.30), in the
deformed basis a,. Therefore, we should also take into account the following
transformation of the bases

r, = \/gaﬂg £22(03 +1)a, = [0 —vE+0(no*]a,; =

(6.29) = {5£—A[(1+v)N§——v5£Nﬁ]+0(1792)]}ﬁﬂ.
If now the rules (6.28) are introduced into Egs. (6.26) and the effect of change of the
basis is taken into account according to the transformation (6.29), then, within the
indicated accuracy, the Egs. (6.26) can be transformed into Egs. (6.5),. Applying the
same arguments, also the remaining equations of the set (6.24) can be transformed
into the corresponding equations of the set (6.5). Therefore, the sets of the refined
~intrinsic shell equations (6.24) and (6.5) are fully equivalent indeed.

The corresponding set of refined static boundary conditions in terms of S*,
045 can be derived from the relations (6.7) and (6.2); 4 if we apply there the reversed
transformation rules (6.28). Then, after appropriate estimates and transformations,
we obtain on %;

Syy—A(l +V)S31+D(1 —v)(T1+Qvt)Qvt = Qv+(TI+QVt)Kt+ O(Ehﬂ94),
1
Svt_|_/4(1 +V)Svat +§D(1 —V)(O'V—QW)QW—
3 1
'_'2"D(1 —V)(O-:“Qtt)gvt+§D(1 _V)(Tr'{'Qvt)Qw‘"

(6.30) |
1
_iD(l “v)(‘ct-*_Qvt)\Qtt = Qt—(o.t_Qtt)Kz—*_O(Ehr’e‘t)a
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D{vi,v + ‘)Qtt,v + 2(1 _V)Q/Vt +(1 "—V) [.-.%.t(QVV—QIf) +2vaw]} + EV =

= Q+K;+0<Ehﬂ§l>,

D(vi + thI) - Kv + O(Ehz }7@2)7
while at each cornmer point M,;e%, we have

(6.31) D(1—=v)(gu);n, = (K,),ii;+ O(ER?50?).

Similarly, the corresponding set of refined deformational boundary conditions in
‘terms of S*, g, can be derived from the conditions (6.8) again by applying the
reversed transformation rules (6.28). Then, after appropriate estimates and transfor-
mations we obtain on

- no*
Qtz+A(1+V)(Tt+Qvt)Sw = k?:_*_O "h— ’

1 3
Qvt—‘EA(l +V)(O'V—vi)sz+§A(1 +V)(Uz'“Qtz)sz—

1 , no*\
(6.32) —EA(I+V)(Tt+Qvt)(va’—Sn) = kj;+0 )

93
2A(149) Sy — A(Sey — VSyus) + 2A(1+ V)50, S+ A(L+V)%,(Suy— Su) = k;‘;+0<%>,

A(Stt—Vva) = yi+ 0(’792)

It should be noted that within the indicated error the homogeneous equations
(6.24) may be shown to be equivalent to the ones proposed by Koiter and Simmonds
[120]. In particular, when linearized, both sets of equations reduce to those of the
_best” linear theory of thin shells according to [37]. However, a) our equations (6.24)
are expressed in terms of the measures S*f, 0,; which appear naturally in the
nonlinear theory of shells (cf. Chapter 5) while the corresponding equations of [120]
are expressed in terms of some modified measures for which no exact Eulerian
counterparts can be defined (cf. discussion in Section 3.4); b) our equations (6.24) take
into account all the surface loads p, ~ Ehn/4, p ~ Eh*n/A?, h, ~ Bh?n/A, while those
of [120] are given for the case of zero surface loads (the loads p* and p have been
included in [190, 1197); c) our equations (6.24) follow from the set of 3+ 3 reduced
shell equations (6.20), (6.21) which obey the static-geometric analogy in the nonlinear
range of deformation, while such an analogy cannot be established between the
initial relations of [120]; d) our equations (6.24) are supplemented by appropriately
simplified static and deformational boundary conditions, while no such boundary
conditions were given in [120].




Geomerrically nonlinear theories 117
6.5. Some special cases of intrinsic shell equations

As it was noted in the Introduction, already Chien [44] proposed a formal
classification of approximate versions of his intrinsic equations under the assumption
of a slowly varying geometry and slowly varying strain states of plates and shells.
Mushtari [152] applied a less formal qualitative analysis and constructed ap-
proximate versions of intrinsic equations for small and medium bending of shells and
plates. In [152] several sets of intrinsic equations of the boundary layer type were
also given. Alumde [5] introduced the notion of wave length of deformation patterns
and discussed 12 cases of intrinsic equations for the buckling analysis of shells which
are shallow or almost shallow relative to deformation patterns. The solution of the
most complete set of such equations was then reduced to the solution of two
equations expressed in terms of stress and deformation functions F, W. Similar
assumptions were applied independently by Libai [129] and Koiter [115] to derive
the equations for quasi-shallow shells. However, no corresponding intrinsic boun-
dary conditions were discussed in the papers referred to above.

The derivation of refined equations [49] provided new possibilities in the proper
formulation of intrinsic equations for various types of shell problems. As a starting
point for further discussion, three different but equivalent versions of the refined shell
equations may be used: the one proposed by Koiter and Simmonds [120] and
supplemented by the surface forces in [190], which is expressed in terms of some
modified stress and strain measures, the one derived in terms of N%4, %z DYy the
author [185, 193 and summarized here as Egs. (6.5)-(6.8), as well as the one derived
in terms of S*, o, in this report, Egs. (6.24), (6.30)~(6.32). Referring to the discussion
after Egs. (6.32), the third version, as the most complete, seems to be preferable.

Let us look more carefully into the structure of Egs. (6.24). Let #,5, ~ 1 and
hg,s ~ ho be the maximum extensional and bending strains, respectively. Let also L,
and L, be the wave lengths of deformation patterns associated with the extensmnal
and bendm0 strains, such that 5%, ~ n/L, and ¢f, ~ o/L,, respectively. Then,
dividing Egs. (6.24), ; by E and multiplying Egs. (6.24); , by h%, we obtain the
following order estimates for magnitudes of individual terms in the refined intrinsic
shell equations (6.24):

h h h h
6.24),: —n, , ——h ho, = —-(ho)?,
(6.24), Lnn Lnr/ R 7 e Q Lg(@)
h\? h
(6.24), (-L—> ‘ho, =, nhe,
(6.33) 0
h h h h h h h
6.24).: —-h —_— — . o
( )3 LQ Q’ R l r]’ R Lr’ r]: L” r] h‘Q’ Ln rl hQ
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Similar estimates can also be given for terms appearing in the static (6.30), (6.31) and
deformational (6.32) boundary conditions.

Various small parameters appearing in the estimations (6.33) describe quite
different phenomena. The parameters h/R and h/I describe the initial geometry of the
shell and its spatial variability, which is supposed to be known in advance. The
parameters #, hg, h/L, and h/L, describe the respective predictions of orders of
magnitudes of the extensional and bending strains as well as their predicted spatial
variability. These parameters are not known in advance, for they strongly depend on
the type of shell problem being solved, i.e. on the geometry, external surface and
boundary loads, boundary conditions etc. Within the accuracy of the first-ap-
proximation theory of shells it is already assumed that terms of the order of h/R,
(h/D?, (h/L,)%, (h/L,)*, n and ho can be omitted with respect to the unity. This gives us
the upper bounds for estimates of various small parameters. However, in different
types of shell problems the real magnitudes of some small terms may be far from
their upper bounds.

For some shell problems it is possible to predict in advance the type of solution
behaviour in the whole internal shell region. This prediction may then be used to
compare the orders of magnitudes of various terms appearing in the set of equations
(6.24), (6.30)6.32), what allows us to omit some terms which are of the order of error
of the first-approximation theory. Then the predicted solution of the shell problem
may be obtained from a considerably simplified set of intrinsic shell equations.
However, it is always advisable to check at the end whether the solution calculated
from the simplified equations represents indeed the predicted type of solution of the
shell problem. Note that the type of shell problem is described in the estimates (6.33)
by all six small parameters given above, whose orders of magnitude are entirely
independent. As a result, a large variety of special cases of intrinsic shell equations
may be generated from Egs. (6.24). In what follows we shortly discuss only few
special cases which seem to be most important.

In the limit b,; — O Eqgs. (6.24) reduce to intrinsic equations of the geometrically
noulinear theory of plates (less error terms):

1
{sg + AQ(L4+9)SE—v8iS31S8 — S ABLL(1 +v) SSE—vSiS] +

1
+D[<Q§ —555 Qi)@’;}}

(6.34)  Doilf—oiSi+p+R, =0,

+ A[(1+v)S5p, —vS§p. I+ P+ 05y = 0,
B

1 -~
leﬂ"@%la_zA(l +V)(QiSQ—Q’iSi)lﬂ+AQ§S’}|;;+A(1 +V)Qgpﬁ =0, .

1 1 N
ASZI§—5Q€Q%+§Q‘;Q‘,§+A(1 +v)p*l, = 0.
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When the plate is loaded by edge forces only, Slmmonds [244, 133] managed to
~ reduce the solution of an equivalent to Egs. (6.34) set of plate equations of [120] into
two coupled equations for the stress and deformation functions F, W, except in the
case in which rotations are O(1) and simultaneously the variability of deformation is
very large. These extended von Karman equations are [133]

.
A(44F + WEPE + (W, W) =0,

(6.35) 1 |
D{AAWJ{-Z—(AW)Z—UV, W):lAW}—<W, F> =0,
. where
1
{P“ﬁ—l—;(l +v)8“”3wF|§Wl“‘} = AWAF,
(636) ) g

(W, Fy = e WIS FI.

The (almost) inextensional bending theory of shells is usually defined as the one in
which the extensional strains 7,4 are much smaller than the bending strains hg,, i.€.-
n/ho < 1. Here we assume additionally that the spatial variability of the bending
strains is lower than in the general theory, h/L, < 1. Such slewly variable bending
- strain states are typical for the inextensional bendmg deformation of the shell. If also
L, < I, then within the error of the first-approximation theory Egs. (6.24) reduce to
the following set of intrinsic equations of the geometricaly nonlinear inextensional

bending theory of shells (less. error terms)

1 o
{S’f‘*—D(1 —v)(bzoh— A_a)} —D(bf— %) ohip+b.— (bE—08)hy = O,
D91|§+(b£—Q€)S;+ﬁ+ﬁ“|a =0,

i (Qa 5gul)lﬂ

1 1
<b£’ —-2—9‘2)@?‘;—— <b§—§ai>g'§ =0.

In comparison to our previous inextensional bending shell equations [185, 190]
derived from equivalent refined intrinsic equations, the underlined terms in Eq.
(6.37), are taken here into account, what results from the additional requirement
h/iL, <1 used here. The presence of those terms allows for a smooth transition to the
1ne*<ten51onal bending theory of plates if the limit b,z — 0 is taken in Egs. (6.37). The
set of equations (6.37) follows also quite formally from Egs. (6.24) by taking the limit
A—0, cf. [244, 119].

Note that the reduced compatlbﬂlty conditions (6.37); 4 can be solved with
respect to g, independently of the stress state in the shell. In this sense the

. 6.37)
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inextensional bending problems of shells are geometrically determined. When g, are
calculated, S** follow from the reduced equilibrium equations (6.37); , and then the
constitutive equations (6.23) allow to recover 7, and G*.

The (almost) membrane theory of shells is usually defined as the one in which the
bending strains are much smaller than the extensional strains, ho/n < 1. Here we
assume additionally that the spatial variability of the extensional strains is lower
than in the general theory, h/L, < 1, what again is typical for the membrane stress
states 1n the shell. If also L, <l then within the error of the first-approximation
theory Egs. (6.24) reduce to the following set of intrinsic equations (less error terms):

Sglﬁ—*_ﬁa = 05
Da3lf+(bh— D) S5+ P+ A, = 0,

(6.38)

5ﬂ o A(1+v)( _ bESH)— AbESH +Ab St A(l+v)bp, =0,
Bl B

ASZl'g-}-ng”,‘,—sz%—f—A(l +v)p .= 0.

In comparison to our previous membrane shell equations [185, 1907, which followed
from equivalent refined intrinsic equations, the secondary nonlinear terms are
omitted in Eq. (6.38), and the underlined terms in Egs. (6.38);, are taken into
account, what again results from the additional requirement h/L, < 1 used here. It
should be noted, in particular, that the equilibrium equations (6.38); ; cannot be
solved here independently for S* since in Eq. (6.38), we have the underlined terms
which provide the coupling between the equilibrium equations and the compatibility
conditions. As it was noted in [119], this coupling removes from the nonlinear
membrane theory the degeneration prevalent in the linear theory, [254]. In
particular, the geometrically nonlinear membrane theory of plates follows from Egs.
(6.38) in the limit b,; —0. At the same time, our equations (6.38) are considerably
simpler than those which would follow formally from Egs. (6.24) by taking the limit
D —0, what was suggested in [244, 119].

The bending theory of shells equivalent to the one discussed in Section (6.1)
follows from Egs. (6.24) if

L h L kY ho IR LR L, 1
(6.39 e e = Tt Tell Te T
(6.39) max( , ><n<mm<LthLh)

Then Egs. (6.24) can be reduced to the set of equations (less error terms)
Sg|ﬂ+ﬁa = 0,
D3l +(bs—02)Si+p+hl, =0,

(6.40)
(05 —080%)l; =0

1 1 )
ASZI§+<b£—595>e%—<b§—5Qi>Q%+A(1 +v)p*l, = 0.
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Let us introduce the stress function F and the deformation function W by
St = e, (F|;+ 0, KF)+ P?,

(6.41)
oh = +WE+IKW, Phy+p, =0.

The equilibrium equations (6.40), are approximately satisfied by Eq. (6.41), and the
compatibility conditions (6.40); by Egs. (6.41), provided

L L |
(6.42) UKL <1 HKIL < L,

respectively. Then the remaining equations (6.40), , in terms of F, W take the form
 DAUW R 2K W) 4 ey, (B — WIE — 88 K W)(FJ2 + 52K F) +

+(0i— W —KW)Ps+p+ k7|, =0,
(6.43)

1 1
AA(AF +2KF)— s‘”sﬁ,_,<b£—§ng—;5£KW>(W|‘;{ +OLKW) +

+A[APZ—(1+)PE] = 0.

These are the nonlinear bending equations for shells of slowly varying curvature, which
are equivalent to the ones proposed recently by Rychter [213]. Under a more restrictive-
assumption |K|L* < 1, where L = min (L,, L,, ), we can also omit in Egs. (6.43) all
terms with K, what leads to the nonlinear equations of quasi-shallow shells, given by
Alumae [5] and Koiter [115]. ‘

The limited space of the paper does not permit to present here the explicit
reduced forms of intrinsic boundary conditions to be used with each of the reduced
sets of intrinsic equations discussed above. For each particular case those boundary
conditions follow immediately from Egs. (6.30)~(6.32) if corresponding estimates are
introduced and appropriate simplifications are made. The reader can easily derive
them himself if necessary.

Other special cases of intrinsic shell equations and some of their applications are
discussed in [51, 49, 190, 244, 119, 133, 18], where further references are given.,

7. Closing remarks

In this report we have reviewed some achievements associated with the derivation,

- classification and simplification of various sets of equations of the nonlinear
first-approximation theory of a thin shell, the deformation of which is expressible

entirely by deformation of its reference surface. Basic sets of shell equations, which

- govern static problems of a thin shell made of a linearly-elastic homogeneous

isotropic material undergoing small strains but unrestricted rotations, and associted

- variational principles have been formulated either in terms of displacements, or in
i terms of rotations and other fields or in terms of strain and/or stress measures as
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independent variables. References have been given primarily to those original papers
and monographs which deal with general aspects of the nonlinear theory of thin
elastic shells and have been written in an invariant tensor notation. Apart from the
unification of various partial results which are available in the literature, the report
contains also some original results. which have not been published elsewhere.

The subject of this report is quite narrow and many important aspects of the
nonlinear theory of shells have not been discussed. Among those associated subjects
let us mention, for example, stability analysis, dynamic behaviour, large-strain
theory, inelastic material behaviour, composite shells, interaction problems, hig-
her-order shell theories, Cosserat-type theories, existence and uniqueness of solutions
etc. Beyond the scope of this report there are also specific problems of shells with
definite geometries as well as various analytic and numerical methods of analysis of
the flexible shells.
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PE3IOME

TeoMeTpHYECKH HeJIMHEiHbIe TeOPHH TOHKMX YRPyruX 000.J104€eK

B paboTe 0OGCYXIAIOTC OCHOBHBIC 3aBUCHMOCTH HeJTMHEMHON TCOpMH TOHKHX YTpyrux obosouck.
PacCMaTPHBAIOTCS. Pa3JIMYHBIE BH/Ibl yDaBHEHHH DAaBHOBECHA H YCIIOBMiA COBMECTHOCTH AehopManuu,
A TaKke COOTBETCTBEHHAIE JHEPTETHHECKH COMJIACOBAHHBIE CTATHYCCKHE M TEOMCTPHUCCKHE KPAcBbIC
YCIIOBHMSL W YCIOBHA B YIJIOBLIX TOYKax Kpas 060/1049K¥. DTH OCHOBHbIE CHCTEMBI 3aBUCHMOCTEH
BBLIPAKEHBI Uepe3 MEPEMELICHUs CPEIMHHON TOBEPXHOCTH 060104k MJIM Yepe3 TOBOPOTHI H JIpYrue
mapaMeTphl MM K€  4epe3  JBYMCPHBIE  MEDbi nehopMatmil  W/MIA  HATPSDKCHHHA KAk
HE3aBUCHMbIE TIepeMeHHbIE, Pa3pelialomie CUCTEMbl HENMHCHHBIX YDABHCHMA TCOPHH oBonouex co-
OTBETCTBCHHO YIPOILIAIOTCS NPH MPE/NONOKEHUH TO neGopManuu BClofly Manbl. Y paprenus 060104eK
B IIePEMEIUEHUAX [ONOTHATENBHO YIPOLIAIOTCS TIPH OTPAHMYCHAN BETMAMHDL MOBOPOTOB, & YDABHEHUS
0607104eK B Mepax AeopMAalil H/HiIi HANPSDKECHUH TOMOJIHUTENLHO YIPOLUAIOTCS TIpH MPEATIOTOKEHUA
Pa3IMYHBIX COOTHOMICHHUH MemGpannoil U M3rubHO¥N AedopMalm. B cioyuae KOHCEpPBATHBHOH WO-
BEpPXHOCTHOM ¥ KDA€BOW HATPY3KH CTPOSTCH COOTBETCTBYIOLIME BAPHAIMOHHLIC GyHKIMOHAMBI  AJIS
Teopul 060OUEK B NEPCMENIEHAAX UM B MOBOPOTAX W APYIUX MAPAMETPAX. Kpome 0OCTOATENBHOTO
0630pa JIOCTHXEHHIT B 0OOJACTM NMOCTPOCHWA DPA3JIMHHBIX BAPUAHTOB HETMHEWHOW TEOpUH TEPBOTO
npubIMKEHUsT TOHKUX YNpyrux obojouex, B paboTe TPEJICTARICH Takke Psifl HOBBIX DE3yJIbTATOB
HOJMyHEHHBIX ABTOPOM B 3Tolt ofmacTh.
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