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lntroduction

We formulate rigorously the global and local laws of mechanics and
thermodynamics for shells with singularities at some stationary or moving
curves in the shell base surface (itself not necessarily smooth). The laws are
derived in an exact manner from underlying laws of continuum
thermomechanics written for the sheil-like body. Our formulation is sufficiently
general to include not only traditional applications to reversible problems of
regular shells, but also those modeling irreversible and non-smooth processes
in irregular shells. Discontinuities at stationary singular curves model
geometric and material irregularities such as folds, abrupt changes in thę shell
thickness or in material properties, etc. Moving singular curves can model one-
dimensional physical phenomena in shells such as wave propagation, motion of
coherent or incoherent phase boundaries, strain localization or cracks.

Different ways of interpreting the non-linear theory of shęlis, and distinct
approaches to formulate complete set of thę shell governing relations are
known in the literature. Generally, the existing approaches can be grouped into
two broader classes: a) the so-called direct formulation, and b) the derived or
deductive Jbrmulation, the latter one having many faces. Naturally then, there
exists a variety of shell theories differing if not in the basic concepts then in the
form of resulting basic relations. Indeed, virtually each paper in the field
contains some sort of derivation of the governing relations. Being of its own
interest, the derived relations are obtained by methods convenient to the author
within the context of intended specific applications. As a result, the shell
relations and physical interpretations of their ingredients vary substantially
throughout the literature.

Fortunately, there also exists an ęxtensive literature discussing in detail the
two approaches and different versions of shell theory, their advantages and
disadvantages, their limitation and generality, their ranges of applicability and
usefulness in application to specific problems. We refęr to monographs by E.
AND F. Cossenłr [1909], MusHrłRt AND GALIMov [1957]' WozNnr U966],
lrlłcHot U972l, PiprRłszriEWICZ U979l' ANttvłłN [1995], and Ltsat łNo
Stl.łtvtoNos [1988,1998], to survey papers by KoIren [1966], LIałl łNo
StlłvtoNos [1983] and PIrIąłSZKIEWICZ [1989,2001]' as well as to collection
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of 620 books, conference proceedings and survey papers compiled by Noon
[1990] and PmIRłSZKIEWICZ |1992], where extensive references to original
papers are given.

The extent to which the non-linear theory of shells has been understood is
reflected in its mathematical foundations, clarity of its formal structure, and
precision of definitions, statements and results associated with it. It seems to be

clear that each approach to formulate shell relations contains a considerable
amount of anticipation of the results to be obtained. Therefore, only the very
basic concepts underlying different versions of shell theory are worth of a

serious discussion. Details of formulation and derivation may then be treated as

a purely technical matter, possibly quite involved and requiring much effort.
Naturally, the choice of the basic concepts may be a matter of taste.

Among many possible ways leading to formulation of the general shell
relations, the approach proposed by StvvoNDS [1984] within the general
thermomechanics of shell-likę bodies deserves a special attention. This
approach is so natural and straightforward that it has a good chance to be
generally accepted in the future. The principal features of this formulation
distinguishing it from other ones are:

o Dynamics, not kinematics what is more common in shell theories, is taken
as the basic concept underlying the non-linear shell theory.

Dynamic balance laws and the principle of irreversibility for shells are

obtained as exact specification of the principles of thermomechanics of the
Cauchy continuum for the three-dimensional shell-like body. This
specification is made by direct through-the-thickness integration of
appropriate 3D fields, and involves no approximations or postulates
whatsoever in nature.

Shell kinematics is not assumed, but is derived exactly through the 2D
virtual work identity written for the shell base surface. This results in the
displacement vector and the rotation tensor helds as the only independent
kinematic variables describing the gross shell motion. Associated shell
strain measures are introduced exactly as well, as implied 2D fields work-
conjugate to the exact resultant shell stress measures.
All approximations are made by StlłlłoNos [1984] only in the assumed
form of the equation of energy balance and in the associated constitutive
equations.
This approach, within the purely mechanical setting, was developed further

and applied to specilrc equilibrium problems of regular shells by LInłI łNo
StulłoNos [1983,1998], Młt<owSKI AND Srulłpp [1990]' CHnoŚcIplEWSKI el
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al. |1992], and to irregular shells by Młrowsrl AND Sruirłpp |1994],
CHnoŚcIplEWSKI [1996]' CHnoŚcIBI'EWSKI et al. |1997], and PIprRaszrIEWICZ
[2001], as well as to non-linear shell dynamics of regular and multifold shells
by CHnoŚcIELEWSKI et al. |2000,2002].

Several attempts to develop thermodynamic theory of shells with the
regular base surface are known in the literature. Apart of the one by SIvvoNos
[1984], other early versions of shell thermomechanics were proposed by
KRArztc U97Il, GngpN et al. |1965], Nłcuot [1965], GRIEN łNo NłcHot
|1970,1979], HorrvłNN AND CłHN |1972,1979], and MuRoocu [1976]. In all
of the versions either some simpliĄ'ing kinęmatic assumptions were used when
reducing the 3D continuum thermomechanics to the 2D shell thermomechanics,
or the shell theory was constructed directly as for the material surface with an
additionally assumed internal structure, without any relation to 3D theory.

This report is an attempt to further extend basic results in general
thermomechanics of shells, which were obtained by SttrłvoNos [1984] using
the reduction procedure outlined above and applied recently by
StnłvoNos [2001] within one-dimensional shell problems. It SeęmS to us that
the most important conclusion following from the Simmonds papers was that
any properly formulated general shell theory, whether the direct or derived
approach is applied, may be based on only five postulated or derived 2D laws:
balance laws of mass, linear momentum, angular momentum and energy,
together with the principle of irreversibility. No additional postulates are
needed.l However, the structure of these five 2D laws, which -uy follo* either
from some rational reduction of 3D laws or through an appropriate direct
representation of the shell-like body by a material surface, becomes far from
the standard one generally accepted in continuum thermomechanics of 3D
bodies. On the other hand, various generalised forms of continuum
thermomechanics, often introduced with a little physical justification, appear
quite natural within the resulting 2D shell thermomechanics, when rigorous
reduction of the rational thermomechanics of the 3D Cauchy continuum to the
two-dimensional form appropriate for shell-like bodies is performed.

We generalise here the thermomechanics of shells in three principal
aspects:

']t may be notęd that most shell theorięs are usually using some additional postulates such as,
for example, the ba|ance equation of director forces (cf' e.g. NłcHot [1972]).
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1. We modiĄ' the two_dimensional law of enelgy balance for shells by
introducing additional terms representing the interstitial working and
responsible for spatial interactions of longer range.

2. We allow the shell base surface and various fields defined on it to be non-
smooth along specified stationary or moving curves.

3. We develop the general structure and several specific forms of the
constitutive equations for regular shell pańs.

When thermomechanics of the Cauchy continuum is consistently reduced
to the corresponding shell thermomechanics, as in StvlłoNos [1984], the
stress tensor field gives rise to the stress resultant and the resultant couple
tensor fields naturally defined on the shell base surface. Thus, according to
TouptN LI962l, the resulting shell theory becomes a kind of theory of higher-
grade 2D continuum. It is well known that higher-grade models of continua are
incompatible, in general, with the usual laws of the rational continuum
thermomechanics described in TnupsoELL AND TouprN 11960], TRupsopr-r-
ANDNoLL U9651 and TnuBsoell [1984]. To allow for spatial interactions of
longer range, several broader structures of continuum thermodynamics were
proposed in BntoctrłłN |1961], Kpsrm [1988], Jov et al. |1988,2001], and
Mullpn AND RucGEru [1998], for example, where references to other papers
are given.

We shall use here the particularly simple and attractive concept of the
extension of continuum thermomechanics which was proposed by DulNN łNo
SeRRm [1985] and Dt'ixłl Il986]. Adjusting the concept to our 2D shell theory,
we propose here, after Młrowst<t [2000], to preserve without any change the
two-dimensional purely mechanical balance laws of linear and angular
momenta as well as the purely thermal principle of irreversibility. Only to the
2D balance law of energy we introduce additional fields analogous to those
suggested for 3D theory in Drrrw AND SERRTN [1985]. These fields are
responsible for an additional so-called interstitial working which is lost by the
reduction procedure applied by SlvvoNDS [1984]. With these additional fields
the energy balance for shells may also be regarded as an exact consequence of
the 3D energy balance for the shell-like body. Introduction of these fields
provides a convenient mechanism for the surface stress measures, energy and
entropy fields to depend on higher gradients of the shell deformation and
temperature fields. Such a dependence is necessary in the general discussion of
the shell constitutive equations.
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The second aspect of shell thermomechanics discussęd in this report is
related to suitable regularity assumptions to be used for the shell base surface
and for various fields entering the thermomechanical processes in shells. The
initial integral-impulse statements of the laws of thermomechanics for the
shell-like body only requires that the reference configuration of the shell base
surface be regular enough for the surface and curvilinear integrals to be
meaningfully defined. Such statements of basic laws provide a very general
background on which a general thermomechanical theory of shells can be
founded. Corresponding local field equations and side conditions of shell
thermomechanics should then follow from their global statements upon
application of the generalised surface gradient-divergence theorem. Several
forms of this theorem are derived here, because their standard forms presented
in many books and papers are restricted to smooth surfaces with smooth
boundary curves and to smooth surface fields. Such regularity restrictions are
too strong for many shell shapes and many thermomechanical processes of
physical or engineering importance.

Real shell structures often contain folds, branches, self-intersections,
stiffeners, stepwise thickness changes, parts made of different materials,
technological connections etc. The base surface ofsuch shell-like bodies cannot
be regarded as smooth or regular one. Some mechanical problems of irregular
shells and their numerical analysis were discussed by Młrowsrl AND Srunłpp
|1994], CunoŚcIplEWSKI L1996], CunoŚclelEWSKI et al. |1997,2002| and
Młrowsrl et al. |1999], where other existing results are referred as well.

Equally imporlant for possible future applications are thermomechanical
shell problems with discontinuous fields along specified singular curves. We
are not aware of any general formulation of the non-linear theory of shells
which would take into account discontinuities of the fields describing
thermomechanical processes. Therefore, let us note that within the continuum
thermomechanics several physical mechanisms are known which develop weak
and strong discontinuities in thermomechanical processes at some stationary
and moving singular surfaces within the body. As examplęs of such processes
let us mention wave propagation, motion of coherent and incoherent phase
boundaries, continuum theory of dislocations and disclinations, strain
localisation in plasticity and damage mechanics, and fracture of solids. In some
of these problems not only smoothness, but even continuity of the relevant
fields cannot be taken for granted.

For description of such singular or discontinuous processes in continuum
thermomechanics we refer to monographs by TRupsopLr, AND TouprN [1960],
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TRupsppl-t' łNo Not-l [1965]' MłuctN |1993,1995]' SII-Hłvv |1997], and
Gunrm [2000]' where many references to original papers are given. It sęems
that a 2D theory describing similar problems in shells, with singularities or
discontinuities reduced to some stationary and/or moving curves, should be of
great interest to the scientific community. It would allow one to model and
analyse some of the complex discontinuous 3D processes described above
within a simplified 2D setting with hope for better insight into physical
understanding of the phenomena.

The contents of the report can concisely be characterised as follows. In
Chapter 1 we remind basic laws of the rational continuum thermomechanics
expressed in the integral-impulse form. These are balance laws of mass, linear
momentum, angular momentum, and energy, as well as the principle of
irreversibility. By representing these laws consistently on the shell base surface
the appropriate laws of thermomechanics for shells are derived in terms of the
fields def,rned on the base surface.

In Chapter 2 we discuss various regularity assumptions associated with the
reference base surface and with various tensor fields defined on it. The base
surface is regarded to be only piecewise smooth, in general, with an almost
smooth boundary curve. We describe singular curves moving relative to the
base surface and piecewise continuous tensor fields having various j,t*p
discontinuities at the singular curves. For such discontinuous fields we develop
several forms of the generalised surface gradient-divergence theorem and the
surface transport theorem, which are to be valid on the piecewise smooth
surface. These theorems are the main driving vehicles allowing us to reduce the
integral - impulse statements of the laws of shell thermomechanics to their
corresponding local forms.

Local f,reld equations, continuity conditions at the singular curves and
several side conditions for shell thermomechanics are derived and analysed in
Chapter 3, with a special attention focused on those results which follow from
the relaxed regularity assumptions used here. In particular, we derive several
original męchanical and thermal continuity conditions and inequalities to be
satisfied at the singular curves.

In our approach to shell thermomechanics the shell kinematics is implied
exactly by the local resultant balance laws of linear and angular momenta. In
Chapter 4 we discuss in more detail how to construct such an exact shell
kinematics from the weak form of the momenta balance laws. It is proved, in
pańicular, that any shell conf,rguration is completely determined by the position
in space of the base surface and by the non-singular second-order tensor field of
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shell structure. Relative to the reference configuration, the shell position is
established by the displacement vector of its base surface and the rotation field
describing the gross mean rotation of shell cross sections.

It is noted in Chapter 5 that the 2D effective mechanical power of the shell,
following from corresponding 2D representation on the shell base surface, may
not be an exact consequence of the mechanical power of the 3D shelt-like body.
We propose here to fill this gap by introducing additional fields responsible for
an interstitial working, which allow us to restore the lost part of the mechanical
power. Then the influence of these fields on all the shell relations are
discussed.

The shell strain and bending measures which are work-conjugate to the
respective shell stress and couple measures are constructed in Chapter 6 and
several related kinematic results are derived.

In Chapter 7 the roles of various thermomechanical fields are discussed and
general functional forms of 2D constitutive equations are proposed. We also
discuss several additional assumptions about the constitutive nature of heat
fluxes and temperatures assigned to the shell faces as well as about the
interstitial working, extra entropy source and flux.

Thermodynamic consistency of the shell constitutive equations is analysed
in chapter 8. By introducing thermodynamic potentials, we discuss the
structure of kinetic constitutive equations. Shell constitutive equations in the
material representation for the class of "simple" shells are developed.

Chapter 9 deals with general and several specific forms of constitutive
equations appropriate for heat conduction and thermo-visco-elasticity in shells.
In particular, the structure of constitutive equations appropriate for
thermoelastic, isothermal, and higher-grad shells is proposed.

We believe that the results reported here provide a good introduction to
description of a variety of problems of shell thermomechanics which can model
complex irreversible and non-smooth 1D processes in irregular shell structures.
Please note, however, that some of the non-smooth or singular 1D phenomena
may require additional configuration forces or energy densities to be associated
with the singular curves. Within 3D continuum thermomechanics, discussion of
such 2D singular processes is given by MłucrN [1993,1995] and Gunrn
120001. Modelling of analogous lD singular processes within 2D shell
thermomechanics is still waiting for a sufficiently general and satisfactory
description. We believe that the results presented in this report provide a good
introduction to the field and will allow one to model such 1D singular
processes in shells already in the near future.

11
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lntegral-impulse laws of thermomechanics

l.l Basic notation

In this report the physical space 6 is the three-dimensional Euclidean point
space with elements x,y,o,,..eG called points. Its translation space E is the
three-dimensional inner-product vector space with elements il,b,u,at,...e E
called vectors. Second-ordet tensors, as linear transformations of E into itseif
are denoted by A,B,S,T,H,...eEe E, where I is the tensor product. We
shall use a direct multilinear algebra and analysis as given, for example, in
HłLlłos [1958]. Notation conventions of geometric and physical fields are
similar as in TRuESDELL ANDNoLL [1965], Guąrm [1981], Tnupsoer-l [1984],
and Śti-Hłvy |1997).

Many fields in this report are defined only on points x e M of a surface
M ę t, . If T^M c t' is a tangent space to M at X (a two-dimensional irrner-
product vector space), then the surface vectors will be distinguished by
different fonts: il,r,?,q, i,...e TrM . On the surface fuI we apply coordinate-
free algebra and analysis developed by GunrrN łNn MunoocH |1975] aNo
MunoocH [990]. The standard concepts of spatial and surface differential
operators as defined in GunrrN [1981,2000] will be applied throughout, with
appropriate generalizations developed in Młrowsr] AND STUMrr [1994].

1.2 Framework of continual theories

In a synthetic approach to non-iinear thermomechanics of continuous
bodies, one begins by choosing a system of fundamental postulates, referred to
as physical principles, which are assumed to be valid for all bodies within a
considered class.

As is standard in modern theories of continua, the subsequent
considerations are based on the idea that all material bodies possess mass,
sustain forces and torques, convert energy, as weil as basic laws of mechanics
and thermodynamics together with axioms of constitution are valid for every
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part of the body regardless of its size. In the following discussion F denotes a
parl of the body - the shell-like body in this report.

For description of mechanical behavior of the body the following
quantities are assumed to be meaningful:

m(P,t)- milss (scalar),

c(P,t)- mass production (scalar),

ł(P,t)_ linear momentum (vector),

le,t) - total force (vector),

ał(P,t) *ang ular momentum (axial vector),
t(P,t) - total torque (axial vector).

According to modern interpretation of continuum mechanics, all these
entities are primitive objects not defined in terms of other quantities. They must
be given a priori for each class of particular theories. In general, they must be
consistent with the following, global in space and time, balance laws of
mechanics:

balance o.f mass

|m(e, ąl',' : J'] c(P, Ąat,

balance of linear momentum (inertial frames)

lłe,D]:,: = I']l{:r,tsat ,

balance of angular momentum (inertial frames)

|nłr. t )]|1,' = |,,' t(P., )d, . (1.3)

When a theory is designed to account for thermal effects, the balance laws
of mechanics alone do not suffice to formulate the complete set of governing
relations. These laws must be supplemented by additional postulates needed tó
account for non-mechanical effects associated with heat and temperature. Such
additional postulates are commonly called the principles of thermodynamics. It
is generally accepted that there are no more but two such additional principles.
However, even today there is no general agreement as to which specific forms
these principles should take.

In contemporary thermodynamics of irreversible processes of continua
several directions are being developed, for example: a) classical irreversible

(1.1)

(1.2)
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thermodynamics, developed by oNsłcpR [1931] and summarized by
PRtcocnvp |1961]' and DpGnooT AND Młzun [1963]; b) extended irreversible
thermodynamics, summarized in Jou et al. |2001] , and Mullpn łNo RuccpRI
[1998]; c) internal variables thermodynamics, developed among others by
BRtoctrłłN [1961] and KgsrtN [1988]; and d) rational thermodynamics,
developed by TnuesoELL AND TouptN [1960], TRuesoEl'I- łNo Not-l |1965l,
Tnuesopt-l [1984] and ŚIlHłvY [1997]. In this report we use the rational
thermodynamics based on the clausius-Duhem inequality, see TRupsopLL
[ 1 e84].

In general, the first law of thermodynamics grants the primacy of energy,
and states that the time rate of energy of a body is balanced by the rate of work
of forces (and possibly couples) acting on a body together with the rate of heat
addition. There are several possible interpretations of this law, depending on
thę meaning assigned to the terms "energy'', "work'', and 'heat''. If the term
"energy" refers to the total energy and the term "work" is associated with the
mechanical power, then the formal approach to continuum thermodynamics
may be based on the assumption that for every part of the body - here the shell-
like body - the following quantities must be presumed:

u(P,t) - total energy,
p(P,t) - mechanical power,
q(P,t)- heating.

A11 quantities described above are scalars, with q(p,t) having the same
physical dimension as p(P,t), namely force times distance per unit time. They
are assumed to satisĄz the first law of thermodynamics

balance of energy (ineńial frames)

|u(r,Ą]']. : J'ł {pe,D + q(r,D} dt .

15

(1.4)

Just as the first law of thermodynamics is intimately related to the concept
of energy, the second law of thermodynamics deals with another concept nót
present in mechanics, namely with the one of entropy. Entropy is inextricably
linked to energy, and like energy is more of a concept than a thing. Like energy,
the entropy is a relative concept, and thus only the changes of entropy that are
significant. A formal approach to the second law of thermodynamics may be
based on the assumption that every part of the shell is assigned two scalar
quantities
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b(P,t)- entropy,

i(P,t)- entropyflux.
These two fields are assumed to satisĄl the inequality

p r incip le of ir r ev e rs ib ility

f,,'8{P.,ld =|hłr.t))!,,i - |,,'i@"t\dt żO. (1.s)

This inequality is regarded as the second law of thermodynamics. It states

that the total entropy production |i,'g(p,Ąa, over the time interval |t1,t2) is

never negative. The entropy production is a result of increase of entropy of p
equal to |b(P,Ą]:,:, and the exchange of entropy between parts of the body as

well as between the body and the environment expresseO Uy li i(p,f)dt. Thus

the quantity g(P,t) defined in terms of I\(P,t) and i(p,t) is the total rate of
entropy production.

The above considerations provide merely the framework upon which a
particular thermomechanical theory of continuum, in our case the shell
thermomechanics, can be built up. These are the specific forms of all the
entities appearing in the laws of mechanics and thermodynamics, which
distinguish one theory from another.

1.3 Inertial objects in mechanics

while the principle of balance of mass (1.1) and the principle of
irreversibility (1.5) are frame-indifferent, the principles of balance of linear
momentum (1.2),balance of angular momentum (1.3), and balance of energy
(1.4) are formulated relative to the particular class of frames, called the inertial
frames of reference.

Let {o,e;\ be an inertial frame of reference at time / , with oe 6 and an

orthonormal basis €i,i=I,2,3 of E.Let also {o-,ei} be an arbitrary frame of
reference at time t* : t - a, such that ei = O(t)ei , where O(t) is any time-
dependent orthogonal transformation, and a Ls a time shift. When motion of
the body is described relative to an arbitrary frame of reference, the balance
laws of momenta and the balance law of energy no longer retain their forms
(1.2), (1.3) and (1.4).
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In continuum thermomechanics the mass, the heating, the entropy and the
entropy flux of any pań of the body P are assumed to be unaffected by any
change of frame of ręference, and we havę

I7

m.(P,t.) = m(P,t), q.(P,t.) = q(P,t),

b.(P,t.) =b(P,t), i.(P,t"1= i(P,t) .

(1.6)

(1.7)

(1.e)

(1.1 0)

As part of charactertzatton of forces and torques we must indicate their
transformation rules under the changes of frame of reference, regardless of
whether these changes can be directly observed or measured. The physical
interpretation of the force and torque requires that they be frame-indifferent,
that is

l" (P,t.) = o(t)l(P ,t) , t. (P ,t.) = o(r)t(P,t) .

Although the expressions of the momenta are not declared yet, it seems
legitimate to infer from (1 .2) and (1.3) that a standard additive splitting has
been accepted here; namely, that the total force and the total torque are sums of
a non-inertial part (left-hand sides) and an inertial pań (right-hand sides), a sort
of D'Alembert force and torque. Without such a splitting, the balance laws of
mechanics (1.2) and (1.3) should be replaced by

fi,'|'{:r,r1d, :0, |i't'ęP,ryd, = g, (1.8)

where l'(P,t) and t'(?,t) are the totalforce and the total torque actingon p,
respectively. These two forms of the balance laws of mechanics are equivalent
if the linear and angular momenta are expressed in terms of the inertial force
and the inertial couple, i.e. if and only if the inertial force and torque are
determined in terms of the respective linear and angular momenta.

If t(P,t) and m(P,t) are differentiable with respect to time, then

Lłre,,>)? : I'i,'F{rłydt, |*(|p1]: = l']*{r,ąa,.

Let us introduce explicitly the inertia force l''(p,t) and the inertia torque

ti"(P,t) as negative rates of change of the linear and angular momenta,
respectively,

|''(P,t): _ p(P,t), t''(P.t)= _ thęrł1.

Then the total force and the total torque are defined by
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l'(p,t): l(p,t) + l'' (p,t) , t'(p,t) = t(p,t) + ti'(p,t) , (1.11)

where the non-inertia force l(P,t) and the non-ineftia torque ł(P,t) ale
explicitly shown. Now (1.8) with (1.11) are general statements of the balance
laws of mechanics, which are equivalent to those (1 .2) and (1.3) formulated in
inertial frames.

Unlike the balance of linęar and angular momenta, the balance of energy
expressed by (1.a) does not split the total energy into non-inertial and ineńial
parts. The concept of the mechanical power p(p,t) includes the implicit
assumption that the total force and torque may be split into the sum of non-
inertial and inęrtial pańs, the latter one being defined in terms of the linear and
angular momenta. This assumption underlines the statement of the basic laws
of mechanics in the form (1.4) and (1.8). without this assumption, the term
"work" should be associated with the total mechanical power denoted by
|b(P,t), which is generally defined as the ratę of work of all forces and couples'
thus including the rate of work of the inertial forces and couples. Consistently,
the term "energy" should then be understood as the internal energy e(p,t) , and,
the balance of energy should take the form

|e@,t)]'] = I'ł {*(p,t) + q(r,Ą} dt . (1.I2)

If the total mechanical power is written as the sum of inertial and non-
inertial parts,

n(P, t) = p(p,t) + w'' (p,t),

then the balance of energy (I .I2) may rewritten as

le@,t)li) _ 
I'j,, ,,,1p,r)dr = st;,, {p(pJ) + q(r,D}dr .

It follows that (1.14) and (1.4) arc equivalent statements of the balance of
energy provided that the total energy u(p,t) is assumed to be determined bv the
equation

|u(r, Ą]j,' = |ąP, t)],',' _ 
l'] r'' {r, ąat . (1.1 s)

The total energy u(P,t) is often additively decomposed into the internal
energy e(P,t) and the kinetic energy k(p,t)

(1 .1 3)

(1.14)

u(P. t ) = e(P. t ) + k(P. t ). (1.1 6)
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It follows from (1.15) that the splitting (1.16) is equivalent to requiring that

I'} *''ęr,Ddt _|hęr,t;]|,' = o. (1.I7)

1.4 Isothermal processes

In an isothermal process, that is when temperature is regarded to be
constant, the entropy flux i(P,t) is assumed to be inversely proportional to the

heating q(P,t)

i(P,t) = 0-t q(P,f)' (1' 18)

where the strictly positive constant scalar 0 , 0 > 0 , is called the absolute
temperature. In this case, the total entropy production over the time interval
It6t2] can be written in the form

Ii,'g(p,t)dt =Lvreł>]ił _ 
I'ł e_'q(ę,Ąa,

= a'{leb{r,r)):; - !'o' a{r"Dat}. 
(1'1e)

With the use of the balance law of energy (1.4), the impulse of heating

I'] a{r,t)dt =|u(rł)li} - I'; vl:r,,1a, (1.20)

may be eliminated from (1 .19) to yield

I','r{P.t)dt = 0 '{_|ułP.l _ lh(P.l l]li *li' l{r.tdt} i.21l
If the total energy can be written as in (1.16), then

u(P,t)-0$$>,t)=e(P,t)-?\(f>,t)+k(P,t). (1.22)

Thefree energyfor an isothermal process can be defined by

f (P,t) = e(P,t) - 011(P,r). (1.23)

Therefore.

I']srr,Ądt = r_'{_|u(P,t) _ ilb(P,Ą]:; * !'] 'l|r,,>a,}. 0.24)
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in which case the total entropy production is given by

!i,'g(p,Ąat = r_'{_lre,Ą]:; + !'] n1r,ąar}.

Since temperature is strictly positive,

|l(P,t) _ zbe,Ą)| < I'] v{r,,1a,,

the principle of irreversibility (1.5) implies that

lf (P,t)]:; _ 
I'] ręr,,ydt Ś0

in every isothermal process.

(r.2s)

(1.26)

(t.27)

1.5 Referential description of shell motion

All primitive objects introduced in Section 1.2 - mass, force, momentum,
energy, heating, etc. - are defined globally over a paft P of the shell-like body
B . In continuum thermomechanics each spatial configuration P(f) c B(f) of
P c tsattime /e Z is the 3D region ofthephysical space 6, and Pe B is the
region occupied by P in the reference configuration B usually associated with
t = 0 .Bodyparticles Z e ts areidentified by their places z e l in the reference
configuration, See Tnunsopt t- łNo Not-t- [1965].

In this report each spatial configuration of the shell-like body ts at ttme
/ e 7 is represented by a base surface M(t) in the physical space 6. Thus, the

shell is regarded as a kind of 2D continuum consisting of generalized point-like
pafticles, possibly with an additionally assigned internal structure, which are
smoothly distributed over M(t) at each time instant tęT. The additional
structure of the shell parlicles will be discussed in Section 4.5 and in Chapter 6.

In general, m. admissible reference configuration of the shell base surface
is any geometric surface M c 6 having the chosen degree of regularity.
Naturally, different regularity assumptions will be needed for different classes
of problems, and this question will be discussed in more detail in Chapter 2.
The reference configuration serves to identiĄl the shell parlicles. Thus x e M is
a place occupied by a typical shell particle X in the reference configuration.
The position vector of x ę M relative to an origin o e cS of the frame of
reference is given by x=x(X)=X-O and may be considered as a vector-
valued mapping x: M -+ E .
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Relative to M, motion of the shell base surface over the time interval
Itr,trle 7 is described by a mapping

X:M x Z -+ 6, (x,r) + y = X(x,t).

21

(1.28)

In this description, y eM(t) is the spatial place at present time / of the shell
pańicle X whose reference place was x e M . Moreover, M(i) = x(M,t) is the
spatial configuration of the base surface at present time r. The position vector
of ye M(t) relativeto the samepoint o e 6 is y = y(y,t) = y-o.

With the motion described by (1.28), the position vector of M(t) may be
regarded as avector-valued fieldon M

y: M xT _> E, (x,r) -+ y = y(y.t) = x(x,Ą -o' (t.2e)

Thus, (1.28) and (1 .29) are two equivalent descriptions of the shell motion
relative to an arbitrarily fixed reference configuration. In general, M need not
be smooth. In this report M is assumed to be connected but not necessarily
simply connected surface.

1.6 Surface representation of mechanical objects

In the following considerations, IIc M will denote the part of M
representing in the physical space the part tr of the shell-like body.

The mass of a body is commonly defined as the quantity of matter or
substance, or as the amount of material in the body. This quantity is a function
of internal structure of the substance and of its dimensions. The balance law of
mass embodies two basic assumptions: a) the mass is permanent (it can be
created but not destroyed), and b) the balance of mass is invariant with respect
to the state of motion. By an additional assumption the mass is a strictly
positive scalar, m(P,t) > 0. In what follows we assume that the mass m(p,t)
and the mass production c(P,t) of any part p of the shell are given by

m(P,t) = llrmqda, c(P,t) = Jlrcsda, (1.30)

where ms(x,t) and c6(x, t) are the surface mass and mass production densities
per unit area of M , respectively.

The relations (1.30) indicate that the surface densities mę: and c6, aS w€ll
as other surface fields representing primitive objects discussing below, are
defined directly as representing on M the corresponding primitive objects
m(P,t) and c(P,t), respectively. The representation of m(p,t) by the integral
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of mo over II requires the assumption that the mass measure ms be absolutely
continuous function with respect to the area measure. This assumption implies
that when the area of 11 approaches zero, the mass m(p,/) must also approach
zero. Hence, any concentrated masses are ruled out by this assumption. The
reason for accepting this assumption is that the theory of shells, like continuum
mechanics, deals with distributed force fields acting on spatial configurations.
Any concentrated mass point would require a concentrated force in the
description of its motion, and this would cause singularity in the force field not
acceptable in such a shell theory. The same arguments apply to the
representation of c(P,t) in (1.30).

The linear momentum ł(P,t) and the angular momentum m(P,t) are the
basic measures of motion. For extended bodies, these fields are defined in the
particular - inertial - frames of reference. Like the mass, the linear and angular
momenta are extensive quantities and can be expressed directly by their
densities

ł(P,t) = II, pdr, m(P1) = Jlo (' + y x p)da, (1.31)

where p(x,t) is the (surface) linear momentum vector, and s(x,r) is the
(surface) angular momentum vector.

once the mass and momenta has been specified for every part of the shell,
there remains to speciĄl mechanical interactions between parts of the shell and
between the shell and its environment. Simplest forms of such interactions are
described by forces. However, the experience with an elementary analysis of
bęams makes it plain that for shells the mechanical interactions must also take
into account couples.

Forces and couples acting on the shell are of two kind: a) the body forces
and couples, and b) the contact forces and couples. The resultant force l(p,t)
and the resultant torque t(p,t) of the shell-like body can therefore be
represented in the physical space by

l(P,t) = JJrua ł Iurrur, n,dl + Iur,,rr, r*dl ,

t(p,t) = II rk + y x b)da * Iurrur,(m, + y x n )dl

t Irr.,rr r(.m. 
+ Y x n.)dl,

where b(x,t) and c(x,r) are the (surface) force and couple vectors, n,(x,t) and
m,(x,t) are the (surface) contact stress and couple vectors describing internal

(1.32)
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mechanical interactions between the shell parts, while 0M r is a part of

boundary of M along which the external boundary force n 
*(x,t) and couple

m. (x,t) vectors are assigned as a result of mechanical interactions between the

shell and its environment.

1.7 Surface representation of thermodynamical objects

The balance of energy (1.4) expresses convertibility of mechanical and
thermal energies. The global energetic quantities consist of the total energy
u(P,t) and the heating q(P,t). The total energy u(P,t), like mass and momenta,

is an extensive quantity and may be expressed in terms of the (surface) total
energy density u(x,t) per unit surface mass

u(P,t) = llrmouda. (1.33)

In general, it represents the rate of increase of energy not necessarily
accompanied by the mechanical working alone.

A body is said to absorb or emit heat according to whether q(P,t) > 0 or

q(P,t) < 0, respectively. Thus, the integrat |j'a{'r,,Ąat indicates the heat gained

by the shell part P over the time interval ltr,trf .The shell may also absorb heat

from external environment through the upper M* andlowęrM_ shell faces,

and through the part of the shell lateral boundary represented by 1Mp. To an
arbitrary part II of the reference shell base surface M thę heat can also be
supplied by internal heating and through the boundary III from other shell
parts. Thus, the general 2D expression for heating of the part P C ts
represented by IIc B takes the form

q(P,t) = JJr{*0, - (q* - q-)}da - Iurrur,q,dl - I5r^6r,4*dl, (1.34)

where r is the surface heat supply, ql the heat influxes on shell faces M* and

M-, Q* the heat supply through the external boundary lMn, and q, the heat

supply through the internal boundary ó17.
The concept of expended power is the keystone in the constructing a

mechanical theory of shells, because it makes explicit our prejudices about the
basic mechanical duality between kinematic and dynamic variables. The
mechanical power p(P,t) is defined as the rate of work of non-ineńial forces

23
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and couples. In general, p(P,t) is an arbitrary real-valued function to be

specified by means of mechanical theory. The forces and couples are specified
by the assumed form (1 .32) of the resultant force and torque. However, until
this point there has been no need to mention an underlying kinematics of the
shell. Hence, there is still no indication what specific form of p(P,t) should be

postulated.
We can take again that to an arbitrary shell part 17 the mechanical power

is supplied by the surface power density P , Pęr unit area of M, and by the

internal contact p, and the external boundary p* power supplies, per unit

length of the corresponding boundary, respectively. As a result, the mechanical
power of the part P c B of a shell-like body can be represented in the physical
space as

p(P,t): II, pao* Iurr* p,dl + Irr.rr r.Or. (1.3s)

Entropy is a quantity which can be created in irreversible processes but
cannot be destroyed. Entropy of the whole shell is the sum of entropies of its
parts. Thus entropy, like mass and internal energy, is an additive set function,
the set being the shell material particles. Entropy is an extensive quantity and in
the physical space may be represented by the (surface) specific entropy density

ry(x,t) measured per unit surface mass, so that

tl(P,t)= llrmsqda. (1.36)

Entropy can be changed either by interaction with sułrounding or by
changes within the shell. Central question in continuum thermodynamics is of
how to describe difference between the heat flux through a body and the heat
supply from the external world. Postulating that one can distinguish between
these two mechanisms of the heat transfer, in the statement of the second law
of thermodynamics one must then allow separate entropy flows due to the two
mechanisms, each of which separately tends to zęro as the corresponding heat
flux tends to zero. Hence, one is led to the form (1.5) of the second law of
thermodynamics with Ę(P,r) being given by (1.36) and i(P,t) being given by

i(t>,r1= IIr{-ot - (j* - j-)\da - Io, jdt , ( 1.37)
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where s is the (surface) specific entropy supply, 1
shell faces, and j, the entropy influx through the

represented by 0II .

the entropy influxes on

internal shell boundary



Ghapter 2

General regularity assumptions

2.1 Reference configuration of the base surface

In order to derive local laws of mechanics and thermodynamics for shells
from their integral - impulse statements given in Chapter 1, certain regularity
assumptions must be introduced. Naturally, different regularity assumptions
may be needed for different classes of problems intended to be analyzed. In
general, it is desirable to consider the possibly weakest regularity assumptions
under which we can still formulate the mathematical initial-boundary value
problem. Unfortunately, to the best knowledge of the authors such assumptions
have not been stated yet within the general thermomechanics of shells. The
main diltculty lies in the fact that various fields appearing in the laws of shell
mechanics and thermodynamics are defined over Riemannian domains of the
shell base surface, but not over domains of the Euclidean space as in the three-
dimensionai theory of continuous media. Accordingly, we should first
introduce appropriate regularity assumptions to the description of the reference
shell base surface M , of motion of the base surface and of all the fields which
are defined on M .

The only general assumptions which may be stated about the reference
configuration M ofthe base surface are:

1. M is a (topologically) open and connected (but not necessarily simply
connected) surface;

2. a boundary dM of M ts either an empty set, or has sufficient regularity
properties for a surface gradient-divergence theorem to be applicable.

A (topologically) open Smooth surface M inthę Euclidean Space 6 is said
to have an almost smooth boundary if

(a) M is regularly open, i.e. M =intclM (in the relative topology);
(b) for each exterior unit normal v(x) e T*M of AM , M is locally on one

side of AM at x;
(3) L(dM) < - and L(dM \ 0'M1= g .
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Hęre lM denotes the topological boundary of M , 0'M C aM denotes the
set of all regular points of 0M, i.e. points of 0M at which the outer unit
normal vector y(x) is defined, and L is the one-dimensional Hausdorff
measure on 6 (the "line" measure). It follows that the exterior unit normal
vector v(x) e TrM is defined for L -a.e. points x e 0M .

In general, the surface M need not be smooth but merely Lipschitz
continuous with almost smooth boundary lM as dehned above. Surfaces
having this property are close to being piecewise smooth. Roughly speaking, a
piecewise smooth surface consists of portions of smooth surfaces joined
together. Such a surface may have sharp edges and corners. In what follows the
term edge will refer to one of the finite number of regular arcs comprising the
boundary of a regular surface element. The term vertex will refer to a point, at
which two edges meet. If all the edges of a surface belong each to two of its
surface elements, then the surface is the closed regular surface. A regular
surface (and hence a closed regular surface) is necessarily both connected and
bounded.

27

Fig' 2' l Moving singular curvę on a piecewise smooth surface
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The position vector x(X) specifies thę location of each point x e M
relative to the origin of the frame of reference, and the field n(x) determines
the orientationof M .

The assumption that M is Lipschitz continuous is equivalent to the
statement that the position vector of M considęred as the mapping x: M -+ E
is Lipschitz continuous. This assumption implies that the position vector x(x)
is differentiable almost everywhere on M, i.e. except of subsets of M whose
area measure is zero. Points at which x(x) is differentiable are the regular
points of M and at such points the unit normal vector z(x) is well defined.

At every regular point x e M there is the well defined vęctor space
E =T16. If x e M ts a regular point, thęn E =Ę6 has natural decomposition
into the direct sum of the tangent space T*M to M and its orthogonal
complement TrMr,

E =TrE =T*M @TrMr (2.r)

With such a decomposition (2.1), the unit tensor 1 of the tangent space,
the inclusion operator I andthe projection operator P,

1(x):T*M -+7,M, 1(x) :T,M ) E, P(x) : E -+7,M,

are well defined and satisfu the following relations:

Ir=p, pf =1, Ip=l-n@n.
Here 1 is the unit tensor on E , i.e. the identity linear map.

(2.2)

(2.3)

2.2 Time and surface differential operators

To prevent ambiguity in notation, thę following rules will be consistently
used throughout this repoń. For fields defined on the current configuration
M(t) of the shell base surface, partial differentiation with respect to time will
be denoted by 0,, while d I dt or overdot will be reserved for the material time
derivative, i.e. time derivative following the motion of the shell base surface.
The surface gradient and the surface divergence operators on M(t), whenever
meaningfully defined, will be denoted by grad = grad, and div: div,. The
corresponding differential operators on the reference base surface M will be
denoted by V : Grad,, Div = Dlv", respectively.
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2.3 Singular curves for surface fields

In the referential description, local laws of shell thermomechanics are
described by various fields definęd on M. It may happen that values of some
f,relds may change extremely rapidly from one point of M to anothęr as well as
within two close time instants. In order to model such rapidly varying processes
within phenomenological theories, we assume that such fields suffer jump
discontinuities at ceńain, possibly time-dependent, subsets of M. Admitting
these kinds of discontinuities, in the following considerations it will be
assumed that they are localized along stationary or moving curves in M .

A moving curve tn M over the time interval ltyt2] is a one-parameter

family {:CQt)\, t e|Ą,t2], of piecewise smooth curves in M . Velocity relative
to M of the moving curve is necessarily a tangential vector field on M
denoted by u(x,t) eT,M and defined only at regular points of M. The normal
component V of u is called the speed of propagation of the singular curve; it
is a measure of speed with which the moving curve transverses the stationary
surface M . Thę tangential component T of u is a measure of intrinsic motion
of C(r) within itself; its value depends on the way in which C(r) has been
parameterized.

For various helds appearing in the integral laws of shell mechanics and
thermodynamics, it will suffice to adopt the following definition. A time-
dependent fteld ry: ry(x,t) on M having C(r) as the singular curve is any
mapping ry(,t):M\C(t)-+F defined for almost aII t, with F being any
finite-dimensional vector space.

For the most part of this repoft it will sufficę to assume that there exists a
finite pańition {M,(r)\i=I'.''., of M and a set R(r) c M such that:

1) Mi(t) is a smooth surface element for any i;
2\ zrRlr.y;=s'

3) ry(x,t) is of class Cr on M,(t) and,it has extension of the same class to
the closure of M,(t);

4) at all points x e d.,(r) \ R(r) , where the curve

Ii',(t)=0M,(t)n0M1Q)aM, 1<l< j śn,

is a smooth curve in M , and

A(l,,(t)a Ip/r)) =g if (i,il + (k,l).

(2.4)

(2.s)

29
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Here and throughout this report L(A) , A(A) and V(A) indtcate the one-,

two- and three-dimensional Hausdorff measures of O , respectively. We call
any of 1,,,(t) the singular curve for the field ry(x,t) . In most cases of interest,

the set R(r) reduces to a finite union of isolated points tn M. In pafticular,

when the singular curve divides the surface M into two parts, the subscripts I

and j may be dropped and we may write

I(t) = Ii.,Q) , M,(t) = M- (r) , M i(r): M* (t). (2.6)

The field ry: q(x,t) with a singular curve C(r) is said to be r -times

piecewise continuously differentiable on M if for every / there is a partition of
M such that the restriction of ry to Mi(t) is continuous with continuous

extension to the closure of MiQ) for each i.If r =0, then ry is called the

piecewise continuous field. If r=1, then ry is called the piecewise
continuously dffirentiable or piecewise smooth field. These definitions and
implied consequences apply to fields with values in any finite-dimensional
inner-product vector space, such as R , E or Eo E , as well as to tangential

vector and tensor fields. However, less clear is the question of appropriate
restrictions which should be put on the sets M;(r). There appears to be no
formal treatment of the piecewise continuously differentiable fields in the
literature, except of the one-dimensional casę.

If ry is piecewise continuous on M , then it is bounded on M \C(t) ; if it is
piecewise continuously differentiable on M , thenboth ry and Vry are bounded
on M\C(t). A piecewise smooth field need not be continuous. If it is
piecewise continuous and piecewise smooth, then it is locally Lipschitz
continuous provided that M is a Lipschitz continuous surface.

If M ts a smooth surface, then for any held ry on M having C(r) as the

singular curve, the jump and the mean value are defined by

[ry](x) =?t*(x)-q-(x), ((łXx) = }(o*r'l * ł-(")), (2.7)

wherę ry+ and ry are one-sided finite limits of ł7 at the regular point x e C(t) .

If the ftelrd 11 is continuous across C(r) then [ry] = 0 and ((ł) = ł/, since

continuity asserts that 4+ = q- .
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If 11 and q are fields on M for which C(r) is the common singular curve,

then

[ry q,pn: hn 8 ((ł))+((ry) e fipl (2.8)

everywhere along C(r).
Let the freld ry : M -+ F be differentiable on M , except possibly of points

belonging to the curve C(r). Then the surface gradient Zrl exists at all interior

points of M+(t) and M-(t). Moreover, if one-sided finite limits of Vry exist at

all points of C(r) , then the jump of Vry is defined in the same manner as for the

field itseli

[v ryn(Ą = (V Ą+ (x) - (V d_ 8)' (Ż.9)

If the field ry together with its surface gradients up to order ł _ 1 suffor no
jumps along the curve C(/), but the gradient of order k or higher is
discontinuous across C(r), then C(r) is called the singular curve of order k for

the field 7 . This means that bll= 0 and [VTryn= 0 for I =1,2,...,k -1 , while

[Vc)rynź 0 along C(r). The strongest singularity is of order zero' when the

fteld 4 itself is discontinuous along the curve C(r) .

If M is merely the Lipschitz continuous (piecewise smooth) surface, then
the curves forming the edge set f of M are natural sources of singularities for
surface fields. For example, a tangential vector field w on a piecewise smooth
surface M cannot bę defined in a continuous manner at points x ef , since
tangent spaces to M are not defined at points of f . However, if x ef is a
regular point of the edge set, then the one-sided tangent spaces TrM* and

TrM- are well defined and the one-sided limits w*(x) eTrMr of w may

exist at x ef . If the limits r1(x) are finite then, strictly speaking, the

definitions (2.7) of the jump and the mean value do not apply to w because

w*(x) eTrM* and w-(x) eT^M- belong to different tangent spaces.

However, ,ft1x;wt1x) are elements of the vector space E=T*6 and the

following definitions make sense:

[wn= I'w'- I-w , ((w))= t{t*** + I-w-).

31
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For a tensor field ,S on a piecewise smooth surface M, such that
S(x) e EoT*M at regular points of M, we set

s"t1x; = ^st1x;ut1x;, (2.11)

where l*(x) and u_(x) are the outward unit normals to 0M+ and 0M_ ałong

the edge set I of the two parts M+ and M-, respectively. Now we can define
the generalized jump and the generuIized mean value by

[r"]=[.Sv]=sj+s;, (su):(Sv)=]{ri-s;), (2.12)

atany point of non-smoothness of M.
The definitions (2.12) make sense for fields on Lipschitz continuous

(piecewise smooth) surfaces. The relations (2.12) reduce to more common ones
(2.7) whenever M is a smooth surface.

2.4 G eneralized surface gradient-divergence theorems

Let M be a piecewise regular surface in the sense of Sect.2.l, i.e. a
Lipschitz continuous surface with almost smooth boundary, and let
w eC(M,TM) be a piecewise smooth tangential vector field on M .Then

Iu, *. vdl = lJrrrnnwdr- Ir^rlw. vldl,

where the jump at regular points x e C is defined by

tw . ,l= 1łr| . v- + 1lt_ . v_ .

If M is a smooth surface, and orientation of C is assumed to

with orientation of the boundary of M-, then v=v =-y* and
(2.14) can bę written as

tw . ,7= -[su. l,]r, [w] = 1v+ - w- .

In this case the theorem (2.I3) may be rewritten in the simpler form

Ir, * . vdl = JJrrrnivwda+ lr^, fw . vlvdl .

(2.13)

Let us apply the theorem (2.r3) to the tensor field p@,s composed of a
spatial vector field p e C(M, E) and a spatial tensor field ,S e C(M, E aTM) ,

both piecewise regular on M, which after transformations leads to

(2.r4)

coincide

the jump

(2.rs)

(2.16)
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Iu, , @ Svdl = IIrrr{, s (Div,s) +(vw)Sr}da- Ir^rlw a Svldt, (2.r7)

where the jump at regular points x ę C is defined by

[u O Sv] = w* @'S*Y* + ru- I S-v-.

As an immediate implication of (2.17) we also have

lu, svdl = Jlo,. Divsda- Jr^rfsvldr,

Iurr. Svdl =jlo,.{(o;us). w+ S .Vw}da- Ir^rlr. Svldl,

Irr, n Svdl = IIrrr{, n (DtvS) +(vw)Sr - S(vw)r)da

- Ir^rl' tr svldl 
'

Iurw Svdl = IIrrr{, x (Dlv,S) - ad-t11vw)^st - S(vw)r))da

- Ir.rI' x svldt '

The jumps in (2.20) are defined as in (2.18), with the tensor product to be
replaced by the inner product, the exterior product and the cross product,
respectively.

Here and in the sequel we shall often use notation ad: E -+ E nE for the
linear and invertible map ad which associates with every spatial vector w e E
the uniquely defined skew-symmetric spatial tensor W = adw e E n E such that

Wrł:wxtł. YuęE.

1a
JJ

(2.18)

(2.re)

(2.20)

(2.21)

We shall also use the operations on the tensor space E a E which deliver
the transpose, the skew paft, and the trace to any tensor A ę E @ E , i.e. a linear
map of E into itself. These operations are linear and continuous, and when
applied to the tensor product a @ b of any two vectors are defined by

(a@b)r=b@a, anb=a@b-b@a, tr(a@b)=s.6. (2.22)

Moreover, the inverse of the map ad : E -> E n E is also linear, continuous and
is given by

ad-I(anb)=-axb. (2.23)
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These theorems apply also to vector and tensor fields with moving curves

C(r) tn M .

2.5 Surface transport theorems

If sufficient regularity assumptions hold to justiĄl the interchange of
differentiation and integration operations at the reference surface M ,then

#il, ryda = *slr rd.a = !!, a,r1aa = II, ła, (2.24)

for any domain II c M and every time-dependent field 4(x,t) on M .

Naturally, ry(x,t) must be differentiable almost everywhere and its time

derivative must be integrable for each time instant.

Let /V(r) c M be an evolving region whose boundary ó1/(r) moves with

velocity u(x,t). The theorem (2.24) applied to the integral over the evolving

region 1/(r) gives

s il r,,,n d' = II *ę10,'1 d'' = II, ę,,łd', (Ż.25)

where ry(x,t) = \tt(x,t) at the interior of 
'V(r) 

. Relative to this velocity, the

rate of change of a surface integral of a given field 4(x,f) over rV(f) is

determined by the transpoń theorem

ft il r,rroo = ft il rur, da + !,r,,r(u . v)ry dt
(2.26)

: Ilrę1do+ lr'r,l (a'v)rydl '

If a moving curve C(t)cM intersects a fixed region II c M and a(x,r) is

the velocity of C(r), then

ail !G)=(aI'(r)tc(r))"(C(/) a0n tę1). 
Q.27)

Then the use of theorem (Ż.26) applied separately on 1/_(/) and 1/*(r) makes

it possible to show that

# ilrrrr,r'tdo = llrrr,,rTda +Jc1,1.n l(u' v)ryldl 
'

(Ż.28)

where the jump is defined by
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l@. v)rt|= (rł* . v*)4* + (u_ . v_)ry_ . (Ż.29)

This theorem holds even if C(r) instantaneously coincides with any curve
belonging to the edge set I . If C() is a singular curve for ł1(x,t) on a smooth
surface M , then at each regular point x e C(t) we have

v=v =_v*, ,r=lł_=lłt, (2.30)

and the jump (2.29) may be rewritten as

l@. r)rtl_ (u. v)tt_ _ (u. v!t1*= _ (u. v)ffryl, [ttl=łl* _ łt_ . Q.3I)
Then the theorem (2.28) may be expressed in the form

$il, ryda = IIrrrę1dr_ Ir,r^rV\lldl , (2.32)

where V = rł. y denotes the normal velocity of the curve C(r).



Ghapter 3

Thermomechanical local field equations and side
conditions

3.1 RegulariĘ of motion

Sometime it may be assumed that motion of the shell base surface is
continuous and piecewise continuously differentiable with regard to time. Then
7 is unequivocally defined even for points x belonging to the singular curve

C(t) and it has a well defined boundary value X'r(x,t) for all xe1M.
However, the assumption of the motion continuity excludes many singularities
of physical impońance and cannot be taken for granted.

The discontinuous motion of the shell base surface which does not produce
a macroscopic hole may be described as follows. One can consider a piecewise
continuousiy differentiable but discontinuous motion 7 with a singular curve

C(r) having the proper1y, that for every t e|ą,t1f therę exists a diffeomorphism

Q(.,t):C(r) -+ C(r) such that

X*(x,t)= y-(rp(x,t),t), Vxe C(r), (3. 1)

where X!(x,t) are one-sided limits of I at C(r). Kinematically, at every time
instant / the surface M is cut along C(t), then points of the two sides of the

cut are allowed to slip along C(r) one with respect to another, and finally the
two sides are glued together.

3.2 Continuity equations

If the mass m(P,t) of P is differentiable for almost all r e 7, then

|m@,Ąli ='j ńręr,t1dt . (3'2)
tl

By the classical theorem of anaiysis and application of the transport
theorem (2.28) to (3.2) we obtain the rate of change of mass in the form
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m(P, t) : ft I I r rr, rlngda = I I rr,.' 6hodo + I, ę;^ r|(u . v)mgldl .

With this result the balance of mass reads

II 1116(ńo 
_ cg)da + 116^ rl(u . v)mgldl = O,

from which we read off that locally the balance of mass takes the form

ł(ę,t) =#ilr roo

= Jlo,.or itda + Ir,r^rt(r. v)pldl ,

m(P,t):#ilr(s+y x p)da

=Jln,.t,l(ś+y X p+ yx jĄda*l.,,," ,t(a.v)(s+ yx p)ldl.

ńo: Co - (3.s)

This equation is trivially satisfied at points of M away of the singular
curve C(t), tf the referential mass density is time-independent, ms = ms(x)

with c6 : 0. The principle (3.4) requires that at regular points x e C(r) of the
moving singular curve the following continuity conditions be satisfied:

f(u. v)mol= g. (3.6)

lf x e C(r) is a point of smoothness of M ,then(3.5) reduces to the form

Vftmsl=Q. (3.7)

The balance of mass imposes no restrictions on continuity of the mass
density at stationary singular curvęs such as the ridges f ' for example.

3.3 Integral laws of mechanics

If time derivativęs of p(P,t) and m(P,t) exist for almost al| t eT , and,if
the inertia force li"(P,t) and the inertia torque ti"(p,t) of p are defined by
(1.10), then application of the transport theorem (2.28) to the laws of
mechanics with representations (1.31) yields

(3.3)

(3.4)

(3.8)

At regular points of the base surface the inertia surface force bi"(x,t) and

the inertia surface couple c''ęx,t) are defined by
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b'" = 
_ b, c'' = 

_ (ś + j,'x p). (3.9)

Then the resultant inertia force and torque as defined by (1.10) are obtained in
the form

l'" (P ,t) = Ilrrrslb'," do - Irur^ ,l(u . v;) pldl ,

ti" (p,t)= JJo,.1,;("'' + y, c'";da - Irrr. r[(a . v)(s + y x

With the boundary ó17 written as

51 = (Oil a 0M) u (d11\ dM) ,

the total force and torque (1.1 1) take the form

|'(P,t) = JJo'.1,;(ó + bi")da _ Iręyrl(r. v)pldl

+ lurndl t Irr^rr(n. - n)dl,

t' (p,t)= Jln,.r,t lc + ci' + y x (b + bi' )\da - Iro.rt(u.
+ Iail(m, + y x n,)dl * Irr^rr{(m. - m,) + y x

The next step is to convert the line integrals along 0II in (3.12) into
surface integrals, so that the arbitrariness of II may be exploited to obtain local
forms of the balance laws of mechanics. This requires the introduction of
ceńain additional assumptions concerning the nature of the contact force

n,(x,t) and the contact couple m,(x,t). Before we come to this point, one

property of the torque should be explained.
In (I.29), y(.x,t) is the position vector, relative to an arbitrarily fixed point

oe ć', of the place y eM(t) of a surface particle whose reference place was

x e M . If ą e 6 is another point in the same frame of reference, then the

position vector of yeM(t) relative to o* is y-(x,t) =.y(x,r)+ur*, where

w* = Q - o is a constant vector. Hence the total torque is

t:(P.t) = JJrr,.,,, 
(,c + c'' + (.y+ w.) x (b + bi' )|da

- Irur.rl(u'v){m + (.v + w.) x P}ldl

+ Iarr {m, + (.y + w.) x n,}dl

* Irr^ur{(m. - m,) t (y + w.) x (n* - n ))dl .

(3.10)
illdt .

(3. 1 1)

_ (3. 12)
v)(s+ yxfllda
(n. - n,)\dl.

(3.1 3)
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Subtracting (3.12) from (3.13) we obtain

t:(P,t) _ t'(P,t): Jjo'.r,l w* x (b + b-)da _ Irę,^rl(u. vXp-

t Iurr. x ndl * Iur^urh,* x (n* - n,)dl .

x plldt
(3.14)

Noting that w* is a constant vector, we obtain the transformation

t:(P,t)- t'(P,t) = w* X l'(P,t) (3. 1 5)

upon the use of the expression (3.12) for the total force acting on any part of
the shell.

This result expresses the property that the total torque is independent of the
origin of frame of reference if and only if the total force vanishes. Moreover,
the balance of angular momentum implies the balance of linear momentum.
The converse is not true. For extended bodies the balance of angular
momentum cannot be derived from the balance of linear momentum and is an
independent postulate of mechanics.

3.4 Cauchy hypothesis and surface stress and couple tensors

The contact surface stress and couple vectors n,(x,t'S and m,(x,t) are

defined at the internal boundary curve ó17. When two oriented surface curves
intersect each other at a point x e M , the contact vectors associated with each
of them need not be the same at that point. In other words, the vectors n (x,t)

and m,(x,t) are not just the functions of the point (x,/) but also of orientation
of the curve III across which they act. The fundamental postulate - the
Cauchy postulate - requires that the contact force and couple vectors be given
in terms of the surface stress and couple tensors,

n,(x,t): N(x,r)r(x), m,-(x,t) = M(x,r)v(x). (3.16)

Since v(x) is an element of the tangent space T*M , while n,(x,t) and

m,(x,t) are spatial vectors, it is apparent that both N(x,/) and M(x,t) are

linear maps of T*M into E .

With the contact vectors defined by (3.16), application of the generalized
surface divergence theorem (2.I3) yields
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J u, N vdl = JI rrraPivNda - Irla^rlN rldt,

lr, ruvdl = Jl,,,.r,r DivMda - Irrr^rlMvldl ,

Iu, !, Nvdt= Il17'.t,l {y x (DivN)_ ad.(rN', _ rłr',;yda Q'I7)

- l''''''lY x Nvldl 
'

where the jumps at regular points of the singular curve C(t) are defined by

llivl:N*Y*+N-v-,
tMvl: M*vn + M-v-,

[Yx Nu]=.]'* xtry'nv* + y- xN v-.

(3. 18)

Here F(x,t) =V y(x,t) denotes the surface deformation gradient, and
ad: E -+ E trE is the linear and invertible map associating with every vector
weE the uniquely defined skew-symmetric tensor adweEnE.It should be

notedthat F(x,r)eEaTrM and 7(x,t)eE@T.M.Therefore, FTr and, NFr
are elements of E @ E , and FNr -NFr is the skew-symmetric tensor whose
axial vector is well defined.

substituting (3.17) into (3.r2), the total force and the total torque are
obtained in the form

l' (p,t) = JJo,.,,, ( DivN + b + bi" \da

- Irur^r{[I/v] + I(u . v) p!]da * Iu, ^rr(r* 
- Nv)dl,

t' (P,t)= jl,,'.r,l 
{D 

ivM + ad_I ęNFr _ FN' )

+c + ci' + y x (DivN + n + n''ylda

- Irrr^r{lMrl+ [y x Nv] + [(a. r)(s + y x p)!)dt

t Irr",or{(m. - Mv) + y x (n. - Nv)}dt .

3.5 Local laws of mechanics

Since both balance laws of mechanics (1.8) are required to hold
simultaneously for every part of the shell, the integrands in each integral of
(3.19) must vanish separately by virtue of arbitrariness of 12. The dynamic

(3.1e)
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field equations are the local equations of motion of the shell and they take the
form

DivN +b+bi" =0, DivM +ad*l(NF' - FN')+c+c'' :0 (3.20)

at each regular point of M \C(t).
In addition,the dynamic boundary conditions

n* - Nv =0. m"-Mv=0 (3.2r)

should be satisfied at every regular point x e 0M 7 with the complementary part

of the boundary 0Ma - AM \dM f .

It also follows from (3.19) and (1.8) that the dynamic continuity
conditions at regular points of a singular curve C(t) arc

[Nu] + l(u. v;p1=9, lMvl+ [y x Nu] +t(u. u)(s +./ x p)l = 0. (3.22)

With the inertia force and couple vectors given by (3.9), the equations of
motion (3.20) may be rewritten as

DivN+b= b, DivM+ąd_l(NF'_FN')tc =ś + j,* p. (3.23)

In classical three-dimensional continuum mechanics, the balance of
angular momentum is satisfied if and only if the balance of linear momentum
holds and the Cauchy stress tensor is symmetric. No similar theorem holds in
the general theory ofshells discussed here.

Specific forms of the dynamic continuity conditions (3.22) depend on the
nature of singular curves and certain additional regularity assumptions. For
example, if motion of the base surface is continuous across singular curves, i.e.
the position vector y(x,t) is continuous over the entire M , then the second of
the continuity conditions (3.22) takes the form

lMvl + [(a . v)s] + y x ([Nv] + l(u. v)p)l) : 0.

41

(3.24)

In view of the first of the continuity conditions (3.22), the assumption that
the motion be continuous over the entire M yields the reduced dynamic
continuity conditions at regular points of C(r)

[Nv] + l(u. v)p1= g, lMvl+ [(a . u;s1 = g. (3.25)

If in addition x e C(r) is a point of smoothness of M , and we take that

v =v andy*--v)sothat
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[Nr]: - [N]v, l@. v)pl= -V[pl,
then the conditions (3.25) can be replaced by

[N]Y+V[Pl=0, [Mlvtil[s]:9,
where V = lł. y is the speed of propagation of the singular curve.

At regular points of stationary singular curves, such as the ridges f of M ,

u = 0 andthę stutic continuity conditions take the form

[Nv1= 6, tMvl+ [Y x Nu]:6. (3.28)

Under the additional assumption that the motion of the base surface be
continuous, these continuity conditions reduce to

[Nl] = N*y* + N_y_ = 0, tMvl: M*v* ł M'v =0. (3.29)

Thus the surface stress vector fl, = Nv and the surface couple vector fr\ = Mv
must be continuous across such stationary curves.

3.6 Local laws of energy balance

Derivation of the local equations expressing the energy balance proceeds in
the standard way. First, we write the balance of energy (1.a) in the form

(3.26)

(3.Ż7)

(3.30)

respect to time. Then,
rate of change of the

i(f>,t): p(P,t) + q(P,t)

by assuming that the total energy be differentiable with
the transport theorem (2.28) applied to (3.30) yields the
total energy in the form

i(P,t)=ftil rmsuda
(3.31)

= Ilrrrt,l-rńda + Irur^rl(u'v)mguldl .

With the internal heat supply q,(x,t) and the intemal power supply p,(x,t)
given in terms of the surface heat influx vector q(x,t) and the internal power
flux vector p(x,t),

q,(x,t) : q(x,t). v(x) , p,(x,t) = p(x,t). v(x) ,

both necessarily the tangential surface vectors on M , the heating is defined by

(3.32)
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q(P,t) : ll, {-r, - (q. - q-)}da - J, A . vdl - I, nur,(.q. - q . v)dl

= JJrrr.,,, {-or - Divq - (q* - q-)\da (3.33)

* Irę1^rl4 . vldl _ Iurnrrr( q- - q . v)dl .

Now the mechunical power p(P,t) of P can be rewritten in the form

p(P,t) = II, pao + I* p . vdl + Irr.,rr(p. - p . v)dl

= IIrrrę1ro + Divp)da _ Irę'.rl| - vldl + Irr^ur(P- 
_ p. v)dL 

(3'34)

In (3.33) and (3.34) the jumps at regular points of the singular curve C(t) are

defined by

tq.rl=ł* .v* +q_.y_, tp.vl:- P*'v* + p_ 'y_. (3.35)

As a result, the equation of energy balance reads

il rrrrr{-łil - (p + Div p) - tftotn + Divq + (q* - q-)}da

, Irrr^r{lp . ,7-lq . vl+l@. v)msul}dl (3.36)

+ Irr^rr(p. v - p.)dl * Jurnurrkl. - q . v)dl = 0.

From (3.36) we read off the Iocal equation of energy balance

mou-(p+Divp)-{mor-Divq-(q*-q-)}=0 (3.37)

at every regular point of M , the local continuity condition of energy balance

l(u. v)msu\+lp . vl-tq. v] = 0, (3.38)

at regular points of the singular curves C(t), and the local energetic boundary
condition

q*-p*+(p-q).v:O (3.39)

at boundary points x e 0M1,.

Moreover, the balance of energy yields the additional condition

p. - p./=0, (3.40)

which have to be satisfied at the shell boundary 0M \AMh.
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3.7 Local forms of entropy inequality

Assuming that time derivative of t1(P,t) exists (at least for almost all time
instants), the principle of irreversibility (1.5) may be expressed in the form

g(P,t)> 0, (3.41)

with the rate of entropy production g(P,t) being given by

g(P,r)=b(P,t)-i(P,t). (3.42)

Upon application of the transport theorem (2.26) to the expression (1.6) for
entropy, we obtain the rate of change of entropy of the shell part

b(P,t) = #ilrmę1t7da

= Jlo,.t,; mgryda + Ir,ł. rl(,' v)mgryldl . Q '43)

There are at least two ways of showing that the contact entropy flux may
be expressed in the form

j,(x,t) = j(x,r) . rr(x), (3.44)

where the entropy inJlux vector j(x,t) is necessarily the tangential vector field
onM.

With (3.44), the theorem(2.13) can be used to transform the relation (1.37)
into

i(p,t) = II r{-ot- (,r. - j-)}da - Ian i . vdt
_ tf
= JJrrrc(r) {mos - Divi - (it - i-)}da * Irrr^rIi 'vldt . 

(3'45)

SubstitutingG.a, and (3.45) into (3.42) we obtain

g(P,r) = Il rrrat(.orl - {mos - Divj - (j* - D})d"
ł Iro,rn(I@. v)mon\_li . v!)dt. Q'46)

It follows that the rate of entropy production g(p,t) in any part of the shell
may be written as

g(:P,t) = Ilrrr14-oydo+ IręrnT"d.l, (3.4])
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where the speciJic entropy production y(x,t) outside of the singular curve
C(r) is defined by

moT: moT - {mos - Div j - (,L -,r-)}, (3.48)

and y,(x,t) at regular points of the singular curve C(r) is given by

T, =l(u. v)mo1l-Ii . vl.

45

(3.4e)

The principle of irreversibility (1.5) requires that g(P,t) > 0 for every part

P of the shell and for (almost) all time instants /. Since the mass density is
strictly positive, mo(x) > 0, this implies the following two local inequalities:

y(x,r) > 0, y,(x,t)> 0, (3.s0)

which have to be satisfied at all regular points x ę M \ C(r) of the shell base

surface and at all regular points x e C(r) of the singular curve, respectively.



Chapter 4
Kinematics and kinematic side conditions

4.1 Integral virtual work identiĘ

Of the three principles of mechanics, the balance of mass plays solely a
supplementary role. Two remaining principles, the balance of linęar and
angular momenta, are the "true" laws of mechanics. From the assumed integral-
impulse form of these two principles, we have derived in Chapter 3, under
quite weak regularity assumptions, the local equations of motion (3.10) at

regular points x ę M \ C(/) ' the dynamic boundary conditions (3 '20) at points

x e 0 M 7 of the shell boundary, and the dynamic continuity conditions (3 .2 1) at

regular points of the singular curve C(t) c M .

Let u(x,t) and w(x, /) be any two spatial vector fields on M , collectively
denoted by w : (p,+v). These heids are assumed to be defined at all points of
M , except possibly of a singular set of zero area męasure. For any part P of
the shell-like body, which in the reference configuration is represented by the
region IIc M of the shell base surface, we set

G(P ;w) = 
_ fi ,rrvl (rlł,n', + b + bin) . 9

+{DivM + ad-lęNF' _ FN')+ c +c'"1. *)ao (4.1)

_ Iurnurr{.(n- _ l/r). ł ł (m- _ Mr). w}dl ,

where the inertia force and couple vectors are given by (3.8).
Under the regularity assumptions described in Chapter 3, the two terms in

(4.1) containing the surface divergences of l/ and M can be transformed
using the generalized surface divergence theorem (2.20)into
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I rrr6(DirN)' vda= _ J.r,.r,lN' Atlda + Ir1ą^r|Nv' łldl
+ JrrNv. edl,

Irrr',(DirM)'wda: _ L'.,,, M ' Atlvdą+ J.14"n |Mv'wldl G'2)

* Irr^urMv'wdl '

Substituting(a.2) into (4.1) and rearranging terms , we obtain

G(P ;w)= - Jlrr,.r,., 1bi' . lt + ci' . w)da

*JJrr'.,,,(N . Ag _1ad_1ęNFr _rwr;1 .w+ rw.,łw)da

- ilrrr,r(b. p + c. w)da- Iurrrr(Nv. tt + Mv. w)dl (4.3)

- Irr^r,r('n*' 9 + m.' w)dl

_ Irur,r(llru ' łl+|Mv'wl)at.

Let us introduce the following notation for some integrals in (4.3):

G'"(P;W)=Ilrrrę/b'".9+ci'.w)da. (4.4)

Gi(P;W)= Jlo'.t,l(N .vg _ 1ad_11NFr _ m/')} . łłl,-| rw .vw)da, (4.5)

G,(P;w) = JJo'.1,1(ó .9 ł C. w)da

* Irrrur(Nv. 9 + Mv - w)dl + Irr^rr,(n* . u r m* . w)dl. 
(4'6)

Thus (4.3) may be rewritten as

G(P ;w) = - G'' lP ;w) + G,(P ;w) - G,,(P ;w)
_ Irrr^r([ł'u ' ł!+|Mv'w!)at. G'7)

Let us remind that the inertia force and couple vectors are given through
the linear and angular momentum densities by (3.8), that is

G'"(P;W)=_JJo'.,,',{ł.v +(ś + jr" p).w)da. (4.8)

Let us also note the identity
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b.ę +(ś + y x P).łil =*rr. v+,s .w)_{p.ł_ (y 
" 
p).tł,+ s. rł}

= *i(o.v+s .łv)_{p. (ł _ ,il xll) +s.rŁ1, e'9)

from which we have

G'"(P;W) = Jlo'.,,, {p. (ł _ lv X.y) + s . w}da

- ilrrrrr#(P ' t' + s 's(')da' 
(4' 10)

By the transport theorem (2.26) we obtain

II rrru,,ft {r' e +'t' w)da
(4.i 1)

=s!!rrrr,,(P' ł + s' w)da_ Irr,r^rl@' v)(p' v+^s' w)!dt,''-_ 
^'

so that

G-(P ;W) = _ 
ft il rrru.(P . ł + s . w)da

* Jlrr,.r,l {p. (ł _ 1v x./) + s . w)da (4.I2)

+ Irę.^rl(u. v)(p. V ł.f . w)ldl ,

or

Gi"(p ;w) = Ga(p ;w) - ft il rrrrl(p . v + s . w)da

+Ir1ą^rt(u.r>ro.9t'$ .w)ldl, (4'13)

where

Ga(P;*)= Ilrrrurlr. (ł _ 1l, x -y) + s . w}da. (4.14)

Substituting (a.13) into (4.7) we finally obtain the expression

G(P ;nv) = fi il rrr,,,( p . s + s . w)da

- Ga(P;w) + G,(p;w) - G.(p;w)- Irrr^rpdl, 
(4'15)

where

P : [I/v . v] + tM, . wl+|@. v)(p. v +.s . w)l. ę.16)
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4.2 More about jumps of surface fields

Let us consider a vector field u(x,t) and a tensor field S(x,r) on a

piecewise smooth surface M . At regular points of M we have
u(x,t)eEaT*M and ,S(x,r)eEaT^M. At any regular point x e C(t) of a

moving curve tn M we set

s"i1x;=St1x;vt1x;. (4.r7)

Let us remind that in Section 2.3 we have dęfined the jump [.] and the
mean value (( )) Uy

[.un= u* - ,t , ((")) = ]{u* + u-), (4.1g)

and the generalized jump [.] and the generalized mean value (.) bV

[s"]=[^Su]=si+s", (s"):(Sv)=]{"i-s"). (4.19)

Let us now consider the following expressions:

rs"ro ((z) 

=+;',',r,;l]: :,.;ls"*@ r- +s" @ z-),

(s") o 
''' 

= i[ ;;] : :-, ,:'_ sł g u_+ s, o z-) 

(4 20)

The sum of these t*o-"*p."rsions may be written as

[s,]e ((z))+(s,)o [zn=ł('"* @ u+ +.su* @ tł*+s'- 8 u+ _s, @ u*

*",:' u_ - rł @ u_ +s" 8 tł_ +s" @ ł-), 
(4'Żl)

and hence

['"]o(("))+(s,)o[zn:si @u+ +s" @ł-. (4.22)

In consistency with (4.19) we define

[s,oz]=sio un+s,@u-, (4.23)

and from (4.22) it follows that
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or

[s, o a] = [s"] o (ł)+(s") 8 [zn ,

[.Sv s z] = [.Sv] o (("))+ (^Sv) @ flzn.

This and many other formulae, which may be derivęd in the same manner'
hold for non-smooth surfaces. For smooth surfaces they reduce to the more
transparent forms. In particular, if C(t) is a singular curve on a smooth surface

M ,then at each regular point of C(/) we can state that v = v : - yn and

[s"] = - [.Sny, (s,) = - ((S))v,

where

[^Sn = S* -,S-, (s))= *(s. - S-).

Thus (4.24) takes the form

[s" o z] = - [S]v e ((")) - (s))u o flun.

Taking the transpose of (4.28) we obtain

[z o s,] = - ((u)) o [^Sly - [un e ((s))y

: - ((("))o [,sn + [,'n s (6)))v.

On the other hand, from definition

[z o s"] :|u@ Sv] = ł* @ S*y* + u_ @ S_y-,

so that

[u o 
^Su] 

: _ u* 8'S+y t ł* @ S_v

=-(r*O^S+-z-o,S-)v
=_[_u@^Snv.

Thus, we finally obtain

[z o,Sn: [z] s ((s))+ (z))o [sn,

which looks like the corresponding formula in the three-dimensional

(4.27)

(4.24)

(4.2s)

(4.26)

(4.28)

(4.2e)

(4.30)

(4.31)

(4.32)

case.
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4.3 Implications to terms in dynamic continuiĘ conditions

with the use of identity (4.25), the first two terms in (a.16) may be written
AS
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[Ny. ul+lMv.1,tl= [Nu]. ((v))+ tMvl. (fu,\)

+ (I/v) . [vn + (Mv). [wn.

From the dynamic continuity conditions (3.24) we have

[Iru1= -t(u. v)pI,
lMvl=-[y * Nu] - [(a. r)(s + y x p)1,

and (4.33) may be written as

[Nu . ul+lMv . wl: -t(u. v)pl. ((v))- [(a . u)(s + y x p)1. (w))

+ (Nv) . [vn + (Mv). frvn - [y x Nv] . ((rv).

In the same manner we can transform the last term in (4.16) into

t@. v)(p.9 t,$ . tv)l=l@. v)pl. ((v))+ [(ł. v)s]. (w))

+ ((u. v)p) . fivn + ((a . y)s) . [r,vn.

The integrand (4.10) can now be given as

P : [Nv . v] + lM, . wl+l@. v)(p. v + s . w)l
= -t(u. v)pl. ((v)) + l(u. v)pl. ((u\

-l(u. u)sl . ((w)) +t(u. u)sl . ((w))

-l(u. v)(y * p)l . ((w)) - [y " 
Nyl . ((w))

+ (Nv) . [vn + ((u. v)p). fivn + (Mv). firłln + ((ł . u)s) . [rvn,

or after further transformations

p = (1.nrr,) + ((u . v) p)) . [łl + ((uv) + ((u. v)s)) . [w|

- ([y 
" 

Nv] + l@. v)(y * pN). ((w)).

(4.33)

(4.34)

(4.3s)

(4.36)

(4.37)

(4.38)

4.4 Weak form of momentum balance laws

From the definition (4.1) of the expression G(p;w) and the subsequent
formal steps leadingto (4.7) we see that
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J';' G1r;wydt : o, (4.3e)

(4.4r)

for every part P of the shell-like body and every time interval ltr,t2], provided
that the balance laws of linear and angular momenta hold. The converse
theorem is also true, as it can be shown by reversing the whole process of
derivation.

The integral identity (4.39) is often referred to as the weak form of the
momentum balance laws. Using (a.15) with (4.16) it may be rewritten in the
form

[JJo'.,,, t r' V ł,S' *)drf:; * I: {_ Ga(P ;w ) + Gi(P ;w) _ G 
"(P ;w)} dt__|ł{Iru^,Pdt+Irrrrr(Nv'tl+Mv'w)at}at=o- 

G'40)

The physical meaning of the integral identity (4.40) is actually self-evident:
it represents in the weak form the dynamic equilibrium conditions of the entire
shell with any kind of irregularities and undergoing possibly non-smooth
deformations. In this sense the vector fields (ę,w) may be called the
generalized virtual displacements (mathematically, test functions).

within the purely mechanical theory, the reasoning underlying this
derivation of the resultant mechanical power may be replaced by the
construction of the virtual work identity. These are two different but closely
related concepts.

4.5 Shell kinematics

The integral identity (4.40) must hold in every virtual motion of the shell.
In particular, it must hold also in the real motion, in which case the fields
(ł,tł,) should be identified with the real shell velocities. To distinguish the real
velocities from the virtual displacements, the former will be denoted by (u,a).
From the real velocities it is possible to construct the complete shell
kinematics.

In a fixed frame of reference, a spatial place y e M(t) instantaneously
occupied by a Ępical shell particle is determined by the position vector y(.X,t) .

The velocity vector u(x,t) is then determined by time derivative of y(x,r) :

ft Ń:^,t) = u(x,t).
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Here u(x,t) is tangent to trajectory of the shell particle, which in the reference

configuration has been placed at xe M .

Alternatively, we may consider the velocity held o(x,r) as the primitive
kinematic variable and define the position y(x,t) vector as the solution to the

differential equation (4.41). This solution takes the form

y(x, t) = I',oo(^, r)dt + u(x, t o),
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where u(x' 16) is thę initial velocity, here taken at time /6 .

In the same manner, let Q(x,t) denote the skew-symmetric tensor having
the angular velocity a(x,t) as its axial vector, both assumed to be known. We
then seek the solution to the following first-order ordinary differential equation:

ĄYęx,t) = Q(x,t), ś)(x,t) = adal(x,t). (4.43)
dt

The general solution to the differential equation (4.43) has the form

(4.42)

(4.46)

(4.47)

Y(x,t) = Q(x,t)X(x),

where Y(x,t) and X(x) are non-singular tensors, while

orthogonal tensor, Q-' = Q' . Taking into account that

Y-t - X-'Q', we obtain

e =iy-1 = ee'

(4.44)

Q$,r) is an

t =eX and

(4.4s)

It follows from (4.42) and (4.44) that every spatial configuration of the
shell is completely determined by the base surface M(t), having y(y,t) as the
position vector, and by the non-singular structure tensor Y(y,t). In particular,
the reference configuration is determined by the position vector x(x) of the

base surfacę M and by the non-singular structure tensor x(x).
In the referential description the shell motion is determined by two fields

y:MxT-)E, Y:MxT-+E@8,

with the position vector y and the structure tensor Y being given by

y(x,t) = x(x) + u(x,t), Y(x,t) = Q(x,t)X(x),
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where u(x,t) denotes the associated displacement vector of the base surface
and Q(x,t) is the rotation tensor describing an independent mean rotation of
the shell cross sections.

Having described the "ręal'' motion of the shell, the virtual motion can
now be described by

y,(x,t) = y(x,t) + *(x,t), Y,(x,t) = exp(al{(x, r))Y(x, r).

The relation between (4.48) and two vector fields w : (u,w) used to
construct the integral identity (4.40) becomes now clear if we note that

j; ł,(x,t)p=g = l(X,t),

Recalling the representations (3.16) of the stress and couple vectors, it
becomes obvious that both vectors may have all three non-vanishing
components with regard to any basis (typically, two tangential components and
one normal component). In the component form the equilibrium equations
(3.20) constitute the system of six independent scalar equations involving six
components of the stress and couple vectors. Also the dynamic boundary
conditions (3.2r), when expressed in the component form, constitute the
systems of six scalar equations. It is apparent that in order to support these six
dynamic shell relations we need also six independent kinematic fields to
describe thę shell motion. And indeed, it follows from discussion above that
the general shell kinematics is described by the displacement vector u(x,t) and,
the rotation tensor Q(x,t) constituting the six independent scalar fields work-
conjugate to the six dynamic shell equations.

4.6 Kinematic side conditions

Let us assume that the shell boundary be represented as the sum of two
disjoint parts, denoted by 7Mr and \Ma, and the dynamic boundary
conditions derived in the previous chapter be prescribed along 0M1. Then
from the line integral in (a.6) we may conclude that along the complementary
part 0Mą the following kinematic boundary conditions must be specified:

y(x,t) - y. (x,t), Y(x,t) = Y. (x,t).

jrY,ęx,t\1,=o='W(x,t)I(x,r). (4.49)

(4.48)

(4.s0)



Ghapter 5
Effective mechanical power and interstitiar working

5.1 Effective mechanical power and stress power theorem

In mechanics, the męchanical power is generally defined as the rate of
working of all forces and couples acting on a body under considerations. This is
true in mechanics of rigid and deformable three-dimensional bodies, as well as
in męchanics of two-dimensionai shell-like and one-dimensional rod-like
bodies.

within the considered theory of shells, the forces and couples acting on
any part II of the shell base surface are specified by the assumed form (1.32)
of the force l(P,t) and torque t(p,t). Moreover, from the results of foregoing
considerations it may be concluded that the mechanical power of the shell can
be given in the form

p"(P,t) = IIrQ. U ł C . a)ćla * Irrrrr(n, . u + m,. a)dl
ł Iur^rrr(n* . u ł m* . a)dl, (5.1)

where u(x,t) and a(x,t) aIę the linear and angular velocity fields'
respectively.

However, if one requires that the mechanical power for the shell be an
exact consequence of the mechanical power of the 3D shell-like body (i.e. the
numericai value p,(P,t) be equal to the mechanical power of all forces acting
on the corresponding pań P of the 3D spatial region representing the shell-1ike
body), then (5.1) cannot be identified with thę mechanical power p(P,t) of the
3D shell-like body. Hence the subscript "e" in the effective mechanical power
defined by (5.1). That some additional term is needed here is obvious when
analyztng derivation of the 2D shell mechanical power from the mechanical
power of continuum mechanics, which was given in LtełI AND SIMMoNDS
[1998], Chapter 8, using the reduction procedure.

Let po(P,r) be such an additional part of the shell mechanical power which
completes p"(P,t) in the sense that now
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p(P, t) = l,(P, t) + p 
"(P, 

t) . (5.2)

In general, at the shell base surface the additional mechanical power can be
represented by the sum of three parts, analogous to those given in (1.35),

p"(.P,t) = JJrwda+ Iurrurw,dl + Irrnurr.*dl , (5.3)

where w is the (surface) interstitial power density, w, the (surface) contact

interstitial power supply, and w* the boundary interstitial power supply. The
names "interstitial" are taken here by analogy to terms introduced in extended
continuum thermomechanics by Drłr'N AND SERRIN [1985].

TouprN's U962] theory of n-grade materials has several novel
characteristics, among which is a need for couple stresses and for existence of
an asymmetric Cauchy stress tensor which does not deliver the surface traction.
DunN łNo SERRIN [1985] demonstrated that Toupin's theory is not compatible
with continuum thermodynamics unless the latter one reduces to
thermoelasticiĘv. They also presented a formalism which does a "minimum of
violence'' to the thermodynamical structure of such a continuum' modiĄring
only the equation of energy balance by introducing a rate of supply of the
mechanical energy across material surfaces of the body. For lower-dimension
continua such as shells, plates and rods long-range interactions are naturally
expected, and the concept of DrNNr AND SERRTN [1985] can be used in such
theories as well.

With the surface stress and couple vectors being given by the surface stress
and couple tensors, the effective mechanical power (5.2) may be rewritten in
the form

p(P,t) = IIr(b.'U * C. a ł w)d'a + Ión(Nv. a l Mv. o ł w,)dl

+ Iur^rr,{(n- _Nv) . a + (m" _ Mv). a ł (w* _ w,)}dl.
(s.4)

Applying the generalized surface divergence theorem (2.20) to the
respective boundary terms in (5.a) we can present them as

IurNr. udl = Jlo,.,, {(DivN). u r ny' .vu)da- l.,r"o[Nv . uld.l,

IrrMr. adl =Jlo'.,u {@ivM). a ł M .va}da_'Irrr^r|Mv. aldl . (5'5)

Substituting the results into (5.4) we obtain
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p(P,r)= JJo'.1a((DivN + b) . u + (DivM ł c). 6
* N. vu + M .val ł w)da

- I.,,,.o([Nv'o] + tMv'a!)a (5'6)

+ lrrwdl t lrrnur,(@. -Ny). u + (m* - Mv). a -r (w* - w,y)at

This result follows from (5.4) merely through the use of the generalized
surface divergence theorem, without any reference to the underlying laws of
mechanics. It can be simplified further if the balance of linear and angular
momenta hold. Under this assumption, the first two terms in the last line
integral of (5.6) vanish by virtue of the dynamic boundary conditions.
Moreover, from thę dynamic equations of motion (3.20)

DivN +b=_b'', DivM łc:_c'" _ad_|ęNF, _ FNr). (s.7)

The left-hand side terms in (5.7) can be eliminated from (5.6), and the shell
mechanical power is obtained in the form

p(P"t)= JJ"(- 1bi' . u + ci' . a)

* ry' . va - ad-1(NFr - FN') . a-t M .va-r .)ao (5.g)

_ Irrr^r([lru. u!+|Mv. a!)At + Jurw,dl ł Iur.rr,(w" _ w,)dl.

It is convenient to introduce explicitly the shell stress power density
o(x,t) defined by
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o = Iy' .vu _ 1ad-l1NFr _ FNr)}. a ł M .vQl,

and the power of the inerlial force and couple vectors

o'' =b''.u+ci'.a.
Thęn the mechanical power (5.8) takes the more readable form

p(P,t)= Jln (- o'' + o + w)da + Jrrw,dl

- Irrr^r(llru ' ul+lMv'a!)at + Iur^ur,(r.

Let us assume that the interstitial flux w" of the mechanical power obey
the Cauchy hypothesis and hence can be expressed in terms of the interstitial
power flux vector fi.eld w(x,t),

(s.e)

(5.10)

(5.11)
- w,)dl
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w,(x,t)=w(x,t) 'v(X).

Then applying the theorem (Ż.I3) we obtain

(s. 12)

(s.13)
lorwdl=Jrrw.vdl

= IlrrrrDivwda - Irur.,l' 'vldl '

Substituting (5.13) into (5.11), the effęctive mechanical power is obtained
in the form

p(lp,t) = - il ro'' da + Il r@ * w + Divw)da

- Ir,,r.ro 'dl 
+ Iur^urr(w* - w ' v)dl 

'

where

o,=lNv.?rl+tMv.al+lw.vl (5.15)

represents the mechanical power associated with the moving singular curve
c(t).

The first two terms in (5.15) may be written in the form identical to (4.35).

Then upon the use of the dynamic continuity conditions (3.2I) we obtain

6c: -t@. ipl. ((r)) - [(a. v)(s + y " Dl. ((r))

+ (Nv). [un + (Mv). flron - [y x I{v]. ((r)) +lw . vl.

Thus, under the assumption that the balance of linear and angular momenta
holds, the effective mechanical power (5.4) takes the form (5.14).

5.2 Local laws of energy balance

With the mechanical power (5.4) and the heating (3.33), the law of energy
balance reads

Jlrrt.,,,(- mou - o'' + 1'o + w + Divw)

-t {msr - Divq - (qt - q-)})da

+ Irę,^r(lq . ,l_ oc _|(u. v)mgul)dl

+ Irr.,ur,(.. - w . v)dl + Iur^urr(q . v - q.)dl = o.

(s.14)

(s.16)

(s.r7)
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At points of M away of the singular curve C(t), the balance of energy

(5.17) yields the local equation

_ moń_ o'' +(o +w + Divw)'l {mgr 
_ Divq _(q*_ Q))=0, (5.18)

where the stress power o(x,t) is given by (5.9).

The energy continuiĘ condition is

lq.rl-6c-l(u.v)msul=g (5.19)

at regular points of the singular curve CO in M ,with o. defined by (5.15).

The boundary condition for the heat flux

q(x,t). v(x) = q-(x,t) (s.20)

should be satisfied along the part 0M7, of the external boundary, with thę

complementary part being )Me - AM \dMh.
Additionally, we have the boundary condition

w(x,t). v(x) - w.(x,t)=g (5.21)

along the part 0M 7 of the shell boundary, where the external resultant forces

and couples are prescribed in consistency with the basic laws of mechanics.
Each term in (5.18) has a definite physical meaning following from the

integral statement of the energy balance. The first term represents the rate of
change of the total energy, and the sum of remaining terms represents the cause
for this change. The first of these terms represents the contribution to the rate of
change of the total energy due to inertial force and couple vectors, and o
represents the conversion of the mechanical energy into thermal energy due to
the action of contact forces and couples. The final term in the equation (5.18)

represents the rate at which heat is being added by conduction and radiation
from the outside environment.

It should be clear from the above steps that (5.18) is not a direct and exact
implication of the integral - impulse statement (1.4) of the energy balance. It is
the local form of the balance of energy under the assumption that the balance of
linear and angular momenta holds, and an additional mechanical power
representing the interstitial working has been taken into account. These
assumptions have been used in deriving the integral form (5.11) of the
mechanical power for the shell.
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Geometry, Iocal deformation and strains

6.1 Geometry of the reference configuration

Within the considered formulation of the theory of shells, an arbitrariiy
chosęn reference configuration of the shell is completely determined by the
base surface M with the field X of structure tensors defined on it. The
position vector x(x) specifies the location of each point x e M relative to the

origin of the frame of reference, and the unit normal vęctor z(x) determines
the orientation of M at that point.

In a fixed frame of reference, the position vector x and the structure tensor
X (an E@E -valued tensor field) determine compietely the sheil reference
configuration. The structure tensor X(x) associated with ęVery point of M is
non-singular, ldetX(x)l+0. Thus the co-domain of X is an open subset
GL(E) of the tensor space EaE. Whilę M neęd not be smooth but merely
Lipschitz continuous with almost smooth boundary 0M , the structure tensor
X(x) is assumed to be defined at all points x ę M including boundary points,
except possibly the corner points of the edge set f .

Let 7 be any curve on M given in the parametric form x = x(,ł), where ,ł

stands for an arbitrary scalar parameter. Then the position vector x = x(x(,ł)),
the unit normal vector n = n(x?)) and thę structure tensor X = X(x(A)) along
the curve y may be considered as functions of the parameter ), . If
differentiation with regard to Ź is denoted by prime, (.)'' infinitesimal changes
of these fields along this curve are

dx = x'd)= (V x)dx, dn= n'd): (Vn)dx, dX : X'd)= (VX)dx, (6.1)

where dx eTrM denotes the tangent vector to the curve 7 at the point x e M .

The surface gradient of the position vector x defines the inclusion
operator 1(x) , and the surface gradient of the unit normai vector n definęs the
Weingańen operator 

'K(x), 
both operators being the linear maps of the tangent

space TrM tnto the 3D translation space E:
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Vx=I=Il, Vn=-K=-IK. (6.2)

(6.3)

The extra geometry of the shell reference configuration is related to the
structure tensor X(x) . Noting that V X(x) :T*M -+ E @ E, it becomes clear that

4y - (V X)dx ts also the E @ E -valued tensor.

Since X is non-singular, we may define an associated tensor
X = X(x;dr) by

X = (dX)X_I = 1ęv x!dx!x_I

Let X =*(x;dx) and * =*$;dr) be the symmetric and thę skew-
symmetric part of X, respectively. and let ź = i(x ;dx) be the axial vector of
*,

X=*+*, X:+ęX+Xry, * = jfx - X')=adi. (6.4)

Al1three tensors X(x;dł), *(x;dri) and, *$;dx) as well as the vector
i(x;dr) depend linearly on the tangent vector dr for every curve passing
through the point x e M . Hence, there exists a linear map (the third-order
tensor) 9(x):T*M -+ Eq E suchthat

X(x;dx) =9(x)dr,

and there exists a tensor B(x) : TrM -+ E such that

*$;dx): adi(x;d'^) = ad(B(x)dt).

The tensor X mav now be written as

(6.s)

(6.6)

X =@X)X-t =gdx + ad(Bdx). (6.7)

It is obvious that the So definęd extrinsic curvature tensor B is
independent of the curve y . Moreover, this tensor should not be confused with
the more familiar tensors 1( and K.

6.2 Geometry of spatial configurations

A spatial configuration of the shell at time r is completely determined by
the base surface M(t) with the field I of structure tensors defined on it. In a
chosen frame of reference, the base surface M(t) and its unit normal vector
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m(t) are described by the position vector y = y(y,t), and Y =Y(y,t) is a

structure tensor field on M(t) with co-domain to be an open subset GL(E) ot
the tensor space E @ E . Thus, the mappings

y: M(t)xT --> E, m: M(t)xT -+ E, Y: M(t)xT -+ E@E (6.8)

determine completely the instantaneous shell configuration, and for
differentials we obtain

dy : (Dy)dy , 67n = (Dm)df , dY : (DY)dy , (6.e)

where D denotes the spatial gradient taken at the base surface M(t) .

The underlying Euclidean structure of the ambient space makes it possible
to decompose the vector space E =TvE at every point y e M(t) into the direct

sum of the tangent Space TyM(t) and the ońhogonal complement TIMG).
Such a decomposition naturally leads to the canonical inclusion and projection
operators, and to the unit tensor defined on the tangent space TrM(t):

Iły"tl :TrM1t) -+ E. Pty.t): E -+ TrM1t). Tty.l 1 :TrM(t) -+ TrM(t). (6.l0)

These operators satisff the following relations:

Ir=P. PI=7. IP=l-m@m. (6.lll

Here I : E -+ E denotes the usual unit tensor of the Euclidean space E , and by
analogy to (6.2) we also have

Dy=l =li. Dm=-K =-IK. (6.12)

The structure tensor Y , tn analogy to (6.a)-(6.7), may be written as

Y = (dY)Y-t = 11DY\dy\Y-' . (6.13)

Y (y,t;dy) = t(y,t;dy) + y(y,r; dy) : 9 ęy,t)dy + adęB(y,t)dy). (6.14)

6.3 Resultant stress measures and work-conjugate deformation rates

The concepts of shell deformation and strain measures' likę the concept of
motion, are entirely geometric and associated with the shell base surface. They
are independent of physical laws which govern the motion and deformation of
the shell-like body. As such, these concepts may be discussed without any
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relations to mechanical and thermal effects associated with the shell. In seeking
appropriate measures for shell strains and bendings within the considered shell
theory, it is natural to begin by considering the effective mechanical power
p"(P,t), which in the referential description is given by (5.1). Provided that the

balance laws of linear and angular momenta hold, the stress power theorem
asserts that the mechanical power is given by (5.8), with the apparent stress
power density o = o(x,t) given by

o = N .Vu _ 1ad_lęNFr _rW')} . a ł M .va
= N. (Vu _ fJF)+ M .vrł.

Noting that ił :V1) ,we also have

o=7.(F'- AF)+H.Va.

Letus introduce notation A'(x,t) and @"(x,r) for

A'=F-AF, @':Vot,

so that the stress powerper unit aręa of M ts

o=N.,ł+M.@".

6.4 Local deformation of the shell

In terms of the position vectors we obtain

dy=(Dy)dy=Idy
:1V y)dx = Fdx = IFdr,

(6.r7)

(6.18)

where F(x,t)=V y(x,t) denotes the surface deformation gradient and F(x,r) is
the tangential surface deformation gradient. These two tensors are related by

F=IF. F=PF. (6.20)

Taking into account that dy =Fdx and VY = (DY)F, by the chain rule we

have

(6.1s)

(6.16)

(6.1e)

(6.2r)6Y = (DY)dy = (DY)Fdr = (VY)dr .

The tensor defined by (6.i3) may be written as
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Y : (dY)Y_\ = ((DY)dy)I_1 = ((DY)Fdx)Y-| - (VY)dx)YĄ .

On the other hand, for the structure tensor Y we can write

Y=QX, Y-'=X-|Qr.

Hence

dY = ((tVQ)dr)X + Q(V X)dr),

y = {((v Q)d r)X + Q(V X)d,Ą}XĄ Qr

= {((VQ)drclxx-19r + Q(V X)drc)X-'Q'},

f =(vQ)dr)Q' +QXQ' .

With some transformations we also obtain the relations

W Q)d x)Qr = ad 0 (x,t; dx) = ad(@(x,t)d r)'

i = ad(@dĄ + g*qr ,

Y :9 dy + udlBdY):grar + ud(BFdx\'

grd r + adęBFd x1 = Q{9d x + ad(Bdr)}Q' + ad(@dx),

grdx =g{&dr}Qr , ad(BFdr)=Q{ad(Bdrc)}Q' + ad(@dx),

(6.Ż2)

(6.Ż3)

(6.24)

(6.25)

(6.26)

(6'Ż7)

(6.Ż8)

(6.2e)

(6.30)

(6.31)

(6.32)Q{ad(Bd r)}Q' = ad(QBd r)} .

Therefore

BF = QB + O. (6.33)

6.5 Natural shell strain measures

The natural strain tensor A(X,t) and the bending tensor O(x,t) for shells

are defined by

A=F-eI=If-q, O=BF-QB, (6.34)
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so that the strain rates (6.17) can be given as co-rotational rates of the strain
measures

A" : e(#(e'A)), @" = e(#(e' o)). (6.3s)

Let us introduce another shell strain męasures E(x,t) and /((x,r) by

E=e'A, K=e'@. (6.36)

A simple calculation shows that

Q, .rf : ftłQ, ,tl = ft{Q, Qr) = E ,

Q'o' : j,tQ'o\= !,łQ'QK)= k. rc37\

Hence, we obtain the transformation rules

,4:QE, @=QK, A':QE, O'=Qk. (6.38)

Substituting (6.38) into (6.18), the stress power density is obtained in the form

o:N.eE + M.ek=erN. E +qrM. k. (6.39)

The form (6.39) suggests that there is a merit to introduce the new surface
stress and couple tensors S(x,r) and )(x,r) by

N=QS, M=QD. (6.40)

Then from (6.39) we obtain

mgo=N.,,f + M.@" =S.E +2. k. G.4I)
The tensors E and K can be directly defined as

E=e'F-I-grIF-1, K=erBF-8. (6.42)

Please note that the material time derivative of the strain tensor I is

I =it -eI =r - ogt = i- - a@ -A)=i, - aF +eA, (6.43)

so that

i, - pr = A- eA. (6.44)

We can also take spatial gradients of the velocity fields
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D=ev, a=ew,

V(Qw)=Q(Vw + Kw).

(6.4s)

(6.46)

which leads to

Then

V(Qv)=Q(Vv+Kv),

o=N.(vu_aF)+M.vcł
:.ly' . {Q(Vv + Kv) - QWF} + M . Q(Vw + Kw)

= Q' N . (vv ł Kv _WF) + Q' M . (vw + Kw),

o=N.(Va-AF)+M.Vct
= S . (vv ł Kv _WF) + Z . (7, + Kw).

It follows from (6.48), (6.18) and (6.39) that the pairs N,A and M,@ as
well as S,E and Z,K form two sets of work-conjugate shell stress and strain
measures.

(6.47)

(6.48)



Chapter 7

Gonstitutive equations and assumptions

7.1 Introductory remarks

The aim of this and two remaining Chapters is to complete the results
obtained in the previous Chapters by discussing the general structure of
appropriate constitutive equations in shells and pointing out some particular
forms of the equations. While the general theory of constitutive equations for
thermomechanics of the Cauchy continuum is well developed, no such a theory
exists for the thermomechanics of shells developed here. Apart of several usual
field variables appearing in the sheli local relations and requiring a constitutive
description, there arę also several non-classical terms appearing in the 2D
balance law of energy and in the entropy inequality. The role assigned to these
terms in shell theory may also be regarded as a part of the constitutive problem
itself, with several possibilities of how to treat them.

Contrary to the general formulation of shell thermomechanics presented in
previous Chapters, in what follows wę restrict our considerations to only
regular shell base surfaces, and no kind of singular curves for all the fields is
admitted as well. This allows us to concentrate here only on those problems of
the constitutive theory which are of primary importance for regular shell parts.
Additional constitutive relations associated with irregularities of the shell base
surface as well as the ones generated by moving singular curves are not fully
developed yet and should be the subject ofadditional research.

Specific forms of the constitutive equations can be established by two
different approaches. The first direct one consists of developing, for a restricted
class of thin shell-like bodies, a general structure of the constitutivę equations
satisfying some number of reasonable assumptions. Then we should devise a
suitable set of physical experiments from which we can directly establish the
appropriate constants or functions entering the constitutive equations. The
second approach is based on devising suitable mathematical methods which
would allow us to deduce the 2D constitutive equations for shells as an exact,
or asymptotic, or otherwise rationaily approximate consequence of a given set
of corresponding 3D constitutive equations. Whichever of the two approaches
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is applied, the 2D constitutive equations must be consistent with the general
structure of shell thermomechanics developed here.

In this report we follow the direct approach. We believe that thę general
formal structure of 2D constitutive equations should be studied first, before any
effort is undertaken to formulate specific forms of constitutive equations valid
for particular classes of shell problems.

7.2 Referential description of motion

Let us briefly remind that the governing shell relations may be formulated
in the spatial or in the referential descriptions. In this report the referential
description has been chosen as the basic one. Any shell configuration is
completely determined by the position of the shell base surface and by the field
of structure tensors. In the chosen reference configuration the base surface M
Serves to identiĄl shell material particles. The position vector of x e M relative
to the origin of a fixed frame of reference is denoted by x(x). The structure
tensor at the same place is the non-singular second-order tensor x(x). Thus,
the reference configuration of the shell is described by two fields given on M ,

x:M -) E, X :M --> E@E. (7.r)

where E denotes the usual three-dimensional Euclidean vector space (the
translational space of the physical point space 6 ). By an additional assumption
we require that det X(x) > 0 .

The spatial configuration of the shell at cument time / is determined by the
base surface M(t) having y(y,t) as the position vector of the place y eM(t)
instantaneously occupied by a typical shell particle, and y(y,t) is the structure
tensor associated with this place. The motion of the base surface relative to the
reference configuration is described by a time dependent mapping
x i M xT -+ Ći . Thus, y = x(x,t) is the spatial place of the shell particle whose
referential place was x e M . Accordingly, y(X(x,t),t) and y(y(x,t),t) may be
considered as time-dependent fields on M ,

y:MxT -) E, Y:MxT-+EsE. (7.2)

The first mapping in (7.2) describes the motion of the base surface
throughout the space, and the second one in (7.2) describes an independent
time change of the structure tensor. While the structure tensor X is any tensor
with positive determinant, the structure tensor Y in the current conf,rguration is
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not another arbttrary tensor, but is related to X through the rotation tensor Q .

In effect, motion of the shell may equivalently be described by the
displacement vector u(x,t) and the rotation tensor Q\,t) fields,

y(x,t):x(x) +u(x,t), Y(x,r)=Q(x,t)X(x). (7.3)

With the motion described by (7.3), the linear velocity u(x,t) and the

angular velocity ot(x,t) of the shell are defined by

u=i=ił, Q=YY_l =QQr =adal.

Here and throughout this work, the superimposed dot denotes time
derivative keeping x fixed. Moreover, the surface gradient and divergence
operators on M will be denoted by V and Div, respectively. Definitions of
surface differential operators and various differential identities may be found in
GunrrN AND CoHEN [1975]' MuRpocH [1990], and MłroWSKI AND Srulłpp
llee4l.

7.3 Summary of local laws of shell thermomechanics

In the referential description, the complete set of local laws of
thermomechanics for shells consists of the following equations and one
inequality (see Chapter 3):

balance of mass

(7.4)

(7.e)

(t.s)

(7.6)

ńg_cg=Q,

balance of linear momentum

DivN+b=b,

balance of angular momentum

DivM + ąd_I(NF' _ FN')tc = ś + a x p, (7.7)

balance of energy

_mou_ O'' +o +(w+ Divw)ł {mgr_ Divq_(q*_Q)}=O, (7.8)

entropy inequality

moT = moĘ _ {mos _ Divj _(l* _ l_)} > 0.
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All the surface fields appearing in (7.5)-(7.9) are functions of x e M and
t eT , and have the following meaning:

ms(x,t) - (surface) mass density,

cs(x,t) - (surface) mass production,

p(x,t) - (surface) linear momentum vector,

s(x, r) (surface) angular momentum vector,

b(x,t) surface force vector,

c(x,t) surface couple vector,

N(x,r) (surface) stress tensor (first Piola-Kirchhoff typę),

M(x,t) - (surface) couple tensor (first Piola-Kirchhoff type),

u(x,t) - (surface) specific total energy density,

r(x,t) * (surface) heat supply,

qł(x,t) - heat influxes on shell faces,

q(x,t) (surface) heat influx vector,
q(x,t) (surface) specific entropy,

s(x,r) (surface) specific entropy supply,
jt(x,t) * entropy influxes on shell faces,

i\,t) * (surface) entropy influx vector.

It should be noted that: ms, co , Q+ and j1 are scalar fields measured per
unit aręa of M ', U, / , 11 and s are scalar fields measured per unit surface
mass; p, s, b and c are spatial (E -valued ) vector fields measured per unit
area of M ; N and M are mixed tensor fields (linear maps of the tangent
space TrM into E); q and j are tangential vector fields on M (elements of
the tangent space TrM). Moreover, F(x,t)=Vy(x,t) denotes the surface
deformation gradient (the linear map of TrM tnto E),

o'' =b''.?)+c'' Ca)=_{b., +(ś+ ux p).a}

is the power of the inertial surface forces and couples, and

o = N .Vu _ 1ad-1ęxrr _r'N')} . ro ł M .va

(7.10)

(7.11)

is the effective stress power density. The remaining two fields in the equation
of energy balance (7.8), the scalar field w(x,/) and the tangential vector field
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w(x,t), represent the difference between the "true" and effective mechanical
power and are associated with the interstitial working.

If there is no mass production, then co = 0 , and the referential mass density
is time-independent, ms: ms(x). Then the balance law of mass is satisfied
identically. This is a typical situation in continuum mechanics, but there are
certain problems in the theory of materially inhomogeneous continua and in the
theory of shells where the conservation of mass may not be satisfied identically.
In the following considerations, the law of balance of mass plays no essential
role and no assumption in this respect is needed here.

7.4 Roles of various thermomechanical field variables

The local laws of thermomechanics (7.5)-(7.9) still do not provide the
complete formulation of the thermomechanical theory of shells, because the
inequality expressing the entropy growth at regular points of M is not related
to the remaining field equations. It is then necessary to take additional
assumptions which would make it possible to relate the entropy supply s and
the entropy influx 7 to the heat supply r and the heat influx q. Following
derivation of the entropy inequality (7.9) from three-dimensional laws of
continuum thermomechanics, we can conclude that the entropy influxes j1 and
the heat influxes Qł on the shell faces are related by

j* = (0*)-'qn, j- = (:o-)-'q-. (7.r2)

Here ds(x,/)>0 are the fields of absolute temperature assigned on the shell
faces.

In general, the entropy supply s and the entropy influx vector j may be
assumed in thę form

s=0-tr+), i=o'tq+ry, (7.r3)

where 0(x,t) > 0 denotes the absolute temperature at the base surface M . The
two new field variables, )(x,t) and ry(x,t), which may be called the extra
entropy source and the extra entropy flux, respectively, result from
impossibility to reduce exactly the Clausius-Duhem inequality written for the
3D shell-like body to a two-dimensional form represented on the base surface.
Both Ź(x, t) and ry(X,r) vanish if the temperature is constant across the shell
thickness, in which casę 0 - 0* = 0-. In the general case' these two fields

71
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should be taken into account and their role in the thermomechanical theory of
shells must be specified by additional assumptions.

The ro1ę of two fields w and w appearing in the balance of energy (7.8) is

also unspecified yet. These two variables have their counterparts neither in thę

classical theories of continuum thermomechanics, nor in the known

formulations of the theory of shells. Any meaning which may be assigned to

these fields is actually apartof formulation of the shell theory itself.

Let us note that with (7.12) and (7.I3) the complete collection of field
variables appearing in the local laws of shell mechanics and thermodynamics

consists of

(y,Y,p,m,0,01,0-,mg,b,c,N,M,u,w,1',Q+,Q-,II,rl,l,tl), Q.I4)

provided that cg:0 . This collęction of fields may be split into three groups

according to the role they should play in shell theory.

In most problems of shell theory, the fields

(ms,b,c,r)

may be assumed to have been specified as part of the problem data.

The fields

(7. l s)

(y,Y,o)

constitute the basic thermo-kinematic independent variables of the shell
problem, which must be determined as solutions of the initial-boundary value
problem for given initial and boundary conditions. Let us note that according to

(7.3) the collection (7.16) consists of seven scalar fields: three components of
the displacement vector u, tllree independent parameters needed to speciĄl the

rotation tensor Q, and the absolute temperatute 0. That only seven scalar

fields can be taken as independent variables of the general shell

thermomechanics follows from the fact that there are only seven scalar field
equations to determine them: three scalar equations (7.6) representing the

balance of forces, three scalar equations (7.7) representing the balance of
moments, and one scalar equation (7.8) representing the balance of energy.

With the above in mind, it may be assumed that the fields

(p,m,N,M,u,lł,4) Q.\7)

are the basic thermomechanical variables of shell theory, which have to be

specified by additional constitutive equations. In effect, the remaining in (7.I4)
field variables

(7.16)
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(0r0-,||,w,Q+,q-,)",ry) (7.18)

are the supplementary vartables, and thęir role may vary from one particular
formulation of shell theory to another.

7.5 General theory of constitutive equations

Within the continuum thermomechanics discussed in TRupsopLL AND Nor-l
[1965] and WłNc AND Tnupsopt-l U973l, the general theory of the
constitutive equations is based on certain assumptions, usually called
principles, which are believed to be physically reasonable for all kinds of
materials encounteręd in reality. The most important of them are:

(A) principle of determinism,
(B) principle of material frame-indifference,
(C) principle of local action,
(D) principle of equipresence.

The general procedure of using the balance laws and the entropy inequality
in the theory of 3D constitutive equations is based on the following
assumptions:

a) Field equations implied by the balance laws of linear momentum and
energy are assumed to hold for an arbitrary choice of thermo-kinematic
field variables (motion-temperature pair in the classical theories)
including, if required, an arbitrary choice of space and time derivatives of
these functions.

b) Fields of the stress tensor, the internal energy (or the free energy), the
entropy and the heat flux vector are assumed to be specified by
constitutive equations.

c) Values of the body force and of the heat source are calculated from the
balance of linear momentum and the balance of energy.

d) Equations resulting from the angular momentum balance and from the
entropy inequality are regarded as identities for all constitutive equations.

This procedure imposes ceftain restrictions on possible forms of the
constitutive relations. The advances in continuum thermomechanics made over
the last decades have been based primarily on the development of various
techniques for effective exploitation of the procedure.

While the general meaning of the constitutive equations in the theory of
shells differs substantially from their role in continuum mechanics of three-

/3
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dimensional bodies, we assumę here that the principles (A)-(D) as well as the
assumptions (a)-(d) remain applicable also to shell theory. The only exception
is that the balance law of angular momentum can no longer be regarded as
identity for the shell constitutive equations; in shell thermomechanics it gives
additional field equations for determination of independent thermo-kinematic
field variables.

7.6 Functional form of constitutive equations

Let X be a point or a vector space. Given a function

tp:MxT t X, (x,r)--> g(x,t),

the history qG) of q upto present time / is defined by

,pG)(x,s): p(x,r -s), s e [0,+-).

It follows that qQ)(x,O): tp(x,t) for all x ę M .

If the function (7. 19) is differentiable with respect to both arguments, then

V rp(') (r, s) =V cp(x,t - s) . (7.2r)

(7.22)

(7.23)

Y:Y(x,t), 0=0(x,t),

e(x,t) = (.y(x, t),Y(x,t),0(x,t))

as the independent thermo-kinematic variables of shell theory. Then, according
to the principle of determinism, a thermomechanical response of a shell particle
is mathematically defined by the constitutive relations

,n/(x, r) = Nio(c(')( z, s);2, X (z)),

M (x, t) = M?r(nQ) (2, s);2, X (z)),

u(x, t) = u?o@u) (2, s); z, X (z)),

ry(x, t) = t,'io(e1) (2, s) ; z, X (z)),

q (x, t) = q?o(e1) (2, s);2, X (z)) .

Here x e M denotes the place occupied by the shell particle for which the
constitutive equations are specified, and z e M denotes any other place in the

Let the fields

y : y(x,t),

be collective denoted by

(7.re)

(7.20)

(7.24)
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reference configuration. Moreover, Iy'p6 , M?0, il70,4|6 and Qis are given

response functionals of the history of motion and temperature in the entire
she11.

The explicit dependence of the response functionals on z and X(z)
indicates that the thermomechanical properties described by the constitutive
relations (7.24) may vary with shell particles, thus allowing for material
inhomogeneity. The explicit dependence of the response functionals on thę

structure tensor X indicates that the response of the shell particle may also
depend on the geometry of its reference configuration. It must also be noted

that the form of the response functionals in (7 .24) depends on the choice of the

referęnce configuration M of the shellbase surface as well.
As was already noted, the general theory of constitutive equations for

shells differs in several aspects from the theory of constitutive equations
developed in continuum thermomechanics. In particular, in the theory of shells
the constitutive equations are also needed for the surface linear momentum and

angular momentum vector fields. For the time being, we can only write
formally here that for these fields we should provide the constitutive relations
in the similar form as tn (7 .24),

p(x, t) = p|o(eo (2, s);2, X (z)),

s(x, f) = s?o(e(') (2, s);2, X (z)).

7.7 Additional constitutive assumptions

In general, in shell theory developed here it is necessary to make more
specific assumptions about the constitutive nature of the heat influxes Q+, Q-

and the temperature fields 0 , 0* and 0-. There are two possibilities: either the

fields 0 , 0* and 0- are independent of each other, or there exist relationships
between them. In the former case, the constitutive equations provided for q*

and q- must depend on all the three temperature fields as well as on their
spatial gradients and time derivatives of any ordęr. In the latter case' only the
surface temperature d (and its spatial gradients and time derivatives) may be
taken as the independent constitutive field variable.

Similarly, there are two possibilities how to treat the field variables
(w,w,),ry): either the fields are independent of each other, or there exist

relationships between them. If they are independent of each other, additional
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relations and constitutive equations are required in order to complete the shell

theory. Such additional relations and constitutive equations are needed even if
only certain relationships exist between them. Let us note, however, that the

fields (w,w,).,ry) appear in our theory of shells as a consequence of the exact

representation of the laws of continuum thermomechanics at the shell base

surface. This suggests some possibilities how to treat these fields.
In certain shell problems it may be assumed that contribution of the term

w + Divw to the balance of energy is negligibly small indeed, and hence this

term may be omitted in the equation (7.8). This would reduce our balance of
energy to the one considered by Simmonds and others (see StvvoNDS [1984'
20011 and reference cited therein).

Similarly, if it may be assumęd that )' and ry give only a small contribution

to the entropy growth, the relations (7.13) can be reduced to the form identical
with the corresponding relations in continuum thermomechanics of three-

dimensional bodies following from the Clausius-Duhem inequality. As have

already been noted earlier, this happens for example if the temperature is

constant through the shell thickness. Still other possibilities exist. For example,

it may happen or it may be assumed that the collective contribution of all four
field variables (w,w,),,t) to the respective equations of thermomechanics are

balanced by approximations made in other constitutive equations.

The above considerations indicate only some of approximations which may

be made in the constitutive description leading to special shell theories.

However, before such approximations are introduced into the general theory, it
is desirable to study first the restrictions imposed on the form of constitutive
equations by the principle of entropy inequality (7.9), with which all special
shell theories must be consistent.
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Thermodynamically consistent constitutive equations

8.1 Reduced dissipation inequalify

According to (7 .9), the rate of entropy production is never negative, 7 ż 0 '

Accepting (7 .12) and (7 .13) as a part of constitutive characterization of the
shell, y takes the form

moT:moĘ _ mg(0_|r + 7) + Div(0_|q + q)+ {(0*)_'qn _ @-)-'c1_}. (8.1)

The use of differential identiĘ

Div(0_| q + ry) = Div(g_| q) + Divł1

=0-1Divq _ 1-rq .v0 + Divł1 
(8'2)

allows us to modifu (8.i) into

moT = moĘ _ 0-I(mę,r - Divq) - 0_2q 'V0
+ {(0*)-'ctn - @-)-'q-} - (mal - Divt). 

(8'3)

From the equation (7.8) representing the local law of energy balance we
have

l'}Iof -Divq =mgńł o'' _lo +w+ Divw)+(qn_q-), (8.4)

which allows us to ęliminate these two terms from (8.3) and to get the rate of
entropy production in the form

rhoT = moĘ _ 0_1 {(mgit + O'"') _ o + 0_1q . v 0}

+ {(0*)-'q* - (0,)-'q-} (8.5)

_ 0_'(q* _ q-) + 0-'(. + Divw) _ (-r7 _ Divł) .

Since the absolute temperature is strictly positive, 0(x,t)> 0, the
inequality (7.9) is equivalent to

ó=0y>0' (8.6)
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The scalar ó(x,r) is often called the specific dissipation. In view of (8.5) it is

given by

mgó = moŻĘ _ {(moń + o'") _ o + 0_|q .V 0}

+ 0{(0*)-1q* - (0-)-'q-} - (q* - q-)

+ (w + Divw) - O(mol - Divt).
(8.7)

Because different groups of terms in (8.7) play distinct roles in shell

theory, it is convenient to introduce the following notation:

Q = 0{(0)-' q* - (0-)-' q-} - (q* - q-)

= {0(0)Ą _łq* _ {0(Q_)' _I}q_

H=w-moL+Divw+0Divt1.

The quantity Q defined by (8.8) represents the amount of heating through

the shell faces, and the quantity 11 contains all "non-standard" field variables.
The inequality (8.6) with the dissipation ó written as

moó = - (moń + oi' _ mo?ti + o _ 0_lq .V0 + Q + H

(8.8)

(8.e)

(8. l 0)

may be called thę reduced dissipation inequality. It represents locally the

principle of irreversibility under the assumption that the remaining four balance
principles are satisfied. According to the general theory of constitutive
equations, the reduced dissipation inequality should be regarded as identity for
all thermodynamically admissible forms of the constitutive equations.

8.2 Thermodynamic potentials and kinetic constitutive equations

The aim of this report is neither to study the possible forms of constitutive
equations in their full generality, nor to derive their very special forms for
narrow classes of shell problems. Our principal aim is to establish a general

framework for the constitutive equations, which would be consistęnt with the

2D laws of thermomechanics and within which special classes of constitutive
equations for shells could be discussed. With this in mind we first introduce
and study additional variables generally referred to as thermodynamic
potentials. The internal energy, free energy and kinetic energy are such related
concepts.

The problem associated with the one of the thermodynamically consistent
kinetic constitutive equations, i.e. the constitutive equations for surface linear
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and angular momenta vectors, is the existence of a kinetic energy. The related
problem concerns the possibility of splitting the total energy into the sum of the
internal and kinetic energies.

Let us assume that the total energy u may be written as the sum of three
parts

Ll=€łKłQ, (8.1 1)

where e(x,r) is the specific internal energy, and rc(x,t) is the specific kinetic
energy. In (8.11), p(x,r) denotes the additional coupling term introduced here

to point it out that in shell thermomechanics the splitting of the total energy
into the sum of the internal and kinetic energies can be done only
approximately, in general.

Substituting (8. 1 1 ) into (8. 1 0), the dissipation takes the form

mgó=_-o(b *7il_(mok +o'')+o _0_Iq.v0 +Q+ H _moÓ. (8.12)

Let us further recall that the surface inertia force and couple vectors have
been defined in terms of the surface linear and angular momenta by

b'' =_ il. c'' =_ 1ś+uxp).

so that the power of inertia forces and couples takes the form

o'' = _ {b. r_ (ś + u x p). a}.

Now the splitting (8.1 1) may be considered as the problem of constructing
some specific constitutive equations. Indeed, let us assume that a constitutive
equation for the total energy u be such that it may be written in the form 18.1 1)
without a priori identification of r as the kinetic energy.

Let us further assume that the constitutive equations for the linear
momentum p and the angular momentum s have the properties that

mgi + l'' = moi _ {b.U _ (ś + u x p). o} =0. (8.1 s)

Then r may be identified indeed as the kinetic energy.
Conversely, let us assume that all thermodynamically admissible kinetic

constitutive equations are such that there exists a scalar field r(x,r) such that
(8.15) holds. Then again, the field K may be identified as the kinetic ęnergy'
and the splitting (8.1 1) is obtained as the consequence, not as the assumption.

(8.1 3)

(8.14)
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Whether the condition (8.15) holds or not, the splitting (8.11) naturally
leads to the concept of the specific free energy V(x,t) defined by

V=t-?ry. (8.16)

Then s - Ory = V * b,l and the dissipation given by (8.12) can be transformed

into

lfigó = _ mo(i + 0ąD _ (mgk + o''1 + o

-0-'q.V0+Q+H-mob.
(8.17)

(8. le)

In the following considerations the kinetic constitutive equations will be
referred to as thermodynamically consistent if the condition (8.6) with (8.12) or
(8.17) holds. Inthis case the splitting (8.11) will be regarded as derived, not as

assumed. Within this class of shell theories, the constitutive prescription of the
total energy is equivalent to providing the constitutive equation either for the
internal energy t ' or for the free energy ł4 .

8.3 Local theories of shells

As is usual in continuum thermomechanics, various special cases of the
general constitutive equations (7.25) and (7.26) can be obtained approximating
the independent field variables by their successive surface gradients. To within
thę first order, the fields (7.25) may be approximated by their first surface
gradients alone. This naturally leads to a pańicular class of shell behavior
defined by the following constitutive equations:

N(x, r) = Nio(e(')( x, s),v 0(x, t);x,v X (x)),

M (x, t) = M ?o(e(') (x, s),v o (x, r); x,v X (x)),

u(x, t) = u?o(eG) (x, s),v o (x, t);x,v X (x)),

?t(x, t) = ry70(e@ (x, s),V 0(x, t); x,V X (x)),

tt$,t) = q?o@() (x, s),V 0(x,t);x,V X(x)) ,

(8.18)

together with similarly reduced kinetic constitutive equations (7.26), wtth
e(x,t) being now defined by

e (x, t) : (F (x, t), Y (x, t),V Y (x, t), 0 (x, t)) .

In consistency with terminology of continuum thermomechanics, the
constitutive equations (8.18) define the class of so-called "simple" shells. Let
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us note that the structure tensor Y cannot be omitted in the list of arguments in
the constitutive equations (8. 19).

An alternative to (8.19) list of arguments for the constitutive equations
may be obtained recalling that the effective stress powęr (7.11) may be written
AS

o = N. (F'- AF)+ M .Vo, (8.20)

where Q(x,t) denotes the skew-symmetric tensor associated with the angular
velocity vector a(x,r) by Q = ada.

The expression (8.20) suggests in a natural way that we can introduce the
surface strain measuresl (x,r) and @(x,t) defined by ( see (6.34))

I =F -QI =Ir -gl, @ =trr -QB.
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(8.21)

Here B(x) denotes the generalized curvature tensor of the shell reference
configuration derived from the surface gradient of the structure tensor X(x),
B(y,t) is the corresponding generalized curvature tensor of the current
configuration, F(x,r) is the tangential surface deformation gradient. and l(y,t)
denotes the inclusion operator in the current configuration. With the co-
rotational rates of the strain measures (8.21) defined by

l" =Q(*(Q'l)) ='łc' _ ś)F, @" =Q(*(Q'q)=va. (8.22)

the effective stress power (8.20) may be written concisely as

o=N.zf+M.@'. (8.23)

It is seen that the surface strain measures A and @ are work-conjugate to the
surface stress measures N and M , respectively.

As a result, the list (8.19) of independent variablęs in the constitutive
equations (8.18) may be replaced by

e(x, t) : (A(x, t), @(x, t), 0 (x, t)), (8.24)

and the gradient vX of the structure tensor in (8.18) may be replaced by the
generalized curvature tensor B.

In the following consideration we shall often simplify notation and omit
the argument x in all the fie1d variables. Thus, for the class of "simple" shells
the constitutive equations can be written as
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N(r; : N[o(e(')1s),v o(t);x, B),

M (r1 = Mis(eu) (s),v o(t);x, B),
u(t) = uis(eQ) (s),v o (t);x, B),

ryG) = q?o@G) (r),v o(t);x, B),
q (t) = q?o@() (s),V O(t);x, B) .

(8.2s)

Thesę constitutive equations, supplemented by appropriate kinetic
constitutive equations and other relations pointed out in the previous Chapter,
describe a large class of inelastic shell behavior. We generally call such
theories as spatially local shell theories, because no higher gradients than the
first one of the independent variables are present as arguments in the
constitutive equations.

Possible forms of the constitutive equations (8.25) as well as of other
constitutive equations and relations, which are needed in order to complete the
initial-boundary value problem of shell theory, are further restricted by the
principle of material frame-indifference and the entropy inequality (7.9). The
explicit form of such restricted relations can more easily be obtained if the
basic shell relations are expressed in the material representation.

8.4 Surface strain and stress measures in material representation

One of the most characteristic features of shell theory discussed here is the
appearance of the rotation tensor a as the independent kinematic field
variable. Rotation tensors, being elements of the linear tensor space, belong at
the same time to the Lie group so(3). This purely geometric feature has many
important implications. without going into all details to be found in the
mathematical literature, let us only note that the tangent space at any "point" of
the Lie group is isomorphic with the tangent space of the group at the identity
in two ways (this has direct relation to the left and right invariant vector fields
on Lie groups). In the theory of shells, this implies the existence of two entirely
equivalent forms of all shell relations and equations. This is well known from
the theory of rigid bodies, and has recently been exploited also in the context
of rod and shell theories. Below we only list the relations which are needed in
the following considerations.

Noting that time derivative of the rotation tensor Q$,t) may be written in
two forms
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Q=QQ=QW, ś)=QQr=ada), W=Q'Q=adW, (8.26)

we can introduce the material velocity vector v(x,r) and the material angular

velocity vector w(x,t), which are relatęd to o(x,r) and a(x,t) by the formulae

a=Qv, (!)=Qł!, ś)=QWQ'. (8.27)

The definitions (8.21) and (8.22) of the surface train measures and their
time rates as well as the expression (8.23) for the effective stress power suggest
that it may be convenient to introduce the material surface strain measures

E(x,t) and K(x,t), and the material surface stress measures S(x,r) and

E(x,r) defined by

E=Q'21, K=Qr@, S=Q'N, z=Q.rM. (8.28)

Then it immediately follows that the strain rates (8.22) are given by

A" -QE, @'=QK,

and the effective stress power may be written as

(8.2e)

o:N.A+M.@"=S.-E+2.k, (8.30)

thus showing that the surface stress measures ,S and Z are work-conjugate to
the surface strain measures E and 1(, respectively.

8.5 Momenta and equations of motion in material representation

A closer look at the power of ineńia forces given by (8.la) and results of
the previous Section suggest that in the material representation the linear and
angular momenta densities, q(x,t) and r(x,t), should be defined by

P:Qq, s=U.
Then with the use of vector identities

(8.31)

Q' b = Q' (Qą + Qil : Ą +Wq = Ą + w x q,
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(8.32)
Q' (s + 1) X p) = Q' (Qł + Qr) + Q' u * Q' p = i + Wr *v x q,

we easily find that

b.u + (ś + o x P). a=(ą+w xq).v + (i +w xr łv xq). y;.

Noting further vector idęntities

(8.33)
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(wxr)'tu=0,
(w 

" 
q). v -r (v x e). w = (u x w). q + (w xv). q = 0,

(8.34)

we find that the stręss power of thę inertia forces and couples can bę expressed
in the form

o'' = b'' . ?) ł c'' . a = _(q.v + i . w), (8.3 5)

which is simpler than the form (8.1a).
Using the relations (8.28) between the surface stress measures, and making

use of definition of the bending tensor 1( we obtain

DivN = Div(QS): Q{DivS + ad_lęKsr _,s'(.)}, (8.36)

with the same formula for the surface divergence of the surface couple tensor
M.

Noting fuither that F = QQ + E), we easily find that

NFr - FNr : es(I + E)' e, - ee + E)Srer
= Q{S(I + E), - (I + E)Sr\Q, .

(8.37)

(8.3e)

(8.40)

The term in bracket of (8.37) is necessarily skew-symmetric, and by the
fundamentalpropeĘ of the ad map we obtain

ad-11TF' - FT'\ = gad-l{s(I + E)r -(1+E)s'}. (8.38)

With these relations and definitions, the dynamic equations of motion (7 .6) and
(7 .7) may be rewritten in the entirely equivalent form

DivS + ad_|ęKsr _ s1(') + Q' b = Ę + w x q,

DivZ + ad_l(KZ' _ zK')+ adĄ1Sęl + E)' _ (I + r1sry+gr
=i+wxr+vxq.

In the material representation of basic shell equations, the local equation of
energy balance (7.8), the entropy inequality (7.9), and various inequalities
derived from (7.9) preserve their form with the only difference that the inertia
stress power and the effective stress power are given now by (8.35) and (8.30),
respectively.

It can next be shown that the linear and angular velocity vectors, v and w ,

the linęar and angular momenta, q and r , the surface strain measures' E and
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K , as well as the surface stress measures, S and J, remain unchanged under
the change of frame of reference. The advantage of using these field variables
and the material representation of basic shell equations in formulation of the
constitutive equations is now apparent: they satisĄi identically the restrictions
imposed by the principle of material objectivity. In effect, in what follows we
can concentrate our considerations only on restrictions imposed on the form of
constitutive equations by the principle of entropy inequality.
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Ghapter 9

Heat conduction and thermo-visco-elasticity

9.1 Constitutive equations in the material representation

In this Chapter we assume that the kinetic constitutive equations
(considered later on) are thermodynamically consistent, i.e. they satis$ the
condition (8.6). Thus, the splitting (8.11) of the total enęrgy can be used, and
the total energy in the constitutive equations may be replaced either by the
internal energy or by the free energy. With these assumptions, the subsequent
considerations are restricted to a class of shells dehned by the following
constitutive equations :

's(/) = s (e(r), b(t), o(r),v o(t);x, B),
Z(D = Ż@Q),b(t),O(t),V 0(t);x, B),

V/(r) = ty(e(t),b(t),0(r),V O(t);x, B) ,

ryU) = Ę(e(t),b(t),0(r),v 0(t);X' B),
q(t) = Ę(e(t),b(t),0(t)'V O(t);x, B),

with e(x,r) and b(x,t) being a concise notation for

e:(E,K), a=(i,k). (e.2)

In (9.1), the overbar is used to distinguish the respective response functions
from the thermomechanical fields themselves determined by the constitutive
equations.

The constitutive equations (9.1) are local in space and time. Yet they are
general enough to describe not only an elastic shell behavior, but also to take
into account heat conduction and viscous effects. In general, the relations (9.1)
have to satisff the reduced dissipation inequality

D=ms6=ms?y)Q, (e.3)

with ó being given by (8.17). Under the assumption that the condition (8.6)
holds, the dissipation functiofl D, measured per unit area of the shęll base
surface M ,is given by

(e.1)
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D:S. E +Z. k -molll _mo?Ę_e_1q.v0 +Q+ H _moQ, e.4)

where the expression (8.30) for the effective stress power has been used.

9.2 Special shell theories

In order to derive the restrictions imposed by the dissipation inequality
(9.3) on the response functions in (9.1), let us assume the free energy
function ł4 to be differentiable with regard to all its arguments. Then

v =@rD. E + @6y). k + @uD. E +@pĄ. k
+ (d1yĄb + @v1lłĄ.va,

and the dissipation function (9.4) can be transformed into the form

o = (Ś - moTrV). E + (Ż _ moT rV). k _ mo(Ę + a0llĄ0
_ mo@ tV). E _ mg(O 7D . k _ m()(0v6lł/) .v0

-?-Iq.V0+Q+H-moe.

(e.s)

(e.6)

Recalling now that Q and H in (9.4) are defined by (8.8) and (8.9),

respectively, it becomes apparent that any conclusion which may be drawn
from the reduced dissipation inequality (9.3) strongly depends on assumptions
taken for the field variables appearing in the expressions for Q , H and for the
term p. Some possibilities described below, each one leading to a different
formulation of shell theory, are worth of being considered.

The simplest class of shell theories, subsequently referred to as the
classical theory of shells, is obtained by assuming that

H(x't)_ mę1p(x,t)=Q, V (x,r) e M xT. (e.7)

In other words, we omit as negligibly small all the "non-standard" terms in the
balance of energy and in the principle of entropy inequality, and set to zero the
coupling term a in the expression (8.11) for the total energy. These
simplifications lead to the version of shell thermomechanics obtained by
slvvoNos [1984] using the reduction procedure. There are advantages and
limitations of using the simpliĄ'ing assumptions. Let us point out below some
of these limitations.

Already Noll [1958] developed the mathematically rigorous and unified
theory of mechanical response of a variety of matęrials, which was effectively



88 THERMOMECHANICS OF SHELLS WITH SINGULAR CURVES

applied in various studies of continuum mechanics. Advances in continuum
thermomechanics made over the last decades have been based primarily on the
development of techniques of how to use effectively the restrictions following
from the second law of thermodynamics in thę form of the Clausius-Duhem
inequality.

ColplłłN AND NoLL [1963] succeeded in clariĄ'ing and making rigorous
the procedure by which the laws of mechanics and the Clausius-Duhem
inequality could be used to deduce constitutive restrictions on a vast variety of
materials, see also ColplłłN |1964l, and Cot-ptrłAN AND Mlzpl- [1968,1968'Ą].
However, it began to be clear almost from the beginning that the procedure of
ColplłłN AND NoI-l |1963), when applied to the usual laws of
thermodynamics (such as those for shells following under the assumption (9.7)

), impose extraordinary restrictions on the long-range spatial interactions
allowable in the constitutive equations. while in 3D continuum
thermomechanics the long-range interactions may often be ignored indeed, they
cannot be taken for granted in shell thermomechanics.

If we are not using the assumption (9.7), many possibilities are then open
for discussion. Please note that according to (8.9) there are four terms in the
definition of H, and each of them may be significant in a particular class of
shell problems. In general, it may be assumed that all field variables in the
definition of H should be given by appropriate constitutive equations having
the same list of arguments as the constitutive equations (9.1). The common
feature of all such shell models is that they would allow to incorporate long-
range interactions into the description of shell behavior. However, the resulting
shell models would apparently become quite complex and they would require
additional and thorough studies. Therefore, let us restrict further considerations
to the version of shell thermomechanics in which (9.7) is satisfied.

9.3 Reduced forms of constitutive equations

Under the assumption (9.7), the dissipation function (9.6) reduces to the
form

D = (S _ mo1rV). E + (Ż _ moTrV). R _ mo(i + 04Ą0
_ mo! tV). E _ m6(l 1r/Ą . k _ mg(\vB,ł/).V0

- ?-tq .V0 + Q.

(e.8)
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To proceed further it becomes necessary to make certain assumptions
about the constitutive nature of heat influxes Q+, Q- and the temperature fields

0 , 0* md 0-. As it was already pointed out in Section 8.7, there are two
possibilities here. If 0 , 0+ and 0- are independent of each other, what is
actually the most general case, then it may be assumed that the heat influxes q*

and q- are given by the constitutive functions having e(x,t), b(x,t) and the

temperature fields 0* and d-, including their first surface gradients, as the

arguments. This would lead to Q being given by the constitutive equation of
the form

Q = Q(e,b,0,e*,0-,V 0,V 0+,V 0- ;x, B).

Since the list of arguments of the constitutive equations (9.1) and (9.9)

does not contain E , k or V b, these quantities may be varied independently of
each other and independently of all quantities appearing as arguments in the
constitutive equations. Accordingly, the reduced dissipation inequality (9.3)
with (9.6) will be satisfied if and only if the following conditions hold:

0tW =0, 0*V =0, \rerlt =0.

(e.e)

(e.10)

(e.11)

(e.r2)

As a result, the constitutive equation for the free energy function reduces to the
form

V = W(e,0,V0)= V/(E,K,0,V0).

Here and in the sequel dependence of the response functions on x and B will
not be indicated explicitly for brevity.

Now the response function (9.11) for the free energy serves as the
thermodynamical potential for the entropy,

r7 = Ę(e,O,V 0) = - 0 ev(e,e,v 0) .

Other constitutive equations must still obey the dissipation inequality (9.3),
with D being now given by

o =(ś _ moTrV). E +(Ż _moTxV). k _ 0_'q.v0 +Q. (9.l3)

The constitutive equations for the surface stress and couple tensors may
now be written in the form
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.S = ś(e, b,0,V0) = lfloTrv@,0) + ś-1e, b,0,v0),
Z = Ż@.b.0.v0) = ffiol rty(e.0) + Ż -@.b,0.v 0).

in which case

D =S- . E +Ż-. k _ 0_'q.v0 + Q. (e.1s)

Those pańs of the surface stress measures that are determined by
derivatives of the free energy are called the equilibrium stresses, and the ones

determined by ś- and ź- are called the dynamic stresses. It is seen that the

equilibrium stresses are not of dissipative type, because they do not contribute
to the total dissipation given by (9.15). In contrast, the dynamic stresses are
responsible for dissipation, but they are not derivable from a thermodynamic
potential.

It follows from the above discussion that the constitutive equations for this
class of shell theories consist of (9.11), (9.1.2) and (9.14) together with

q = q(e,b,0,V0)

(e.14)

(e.16)

(e.18)

(e.1e)

and (9.9). Moreover, the total dissipation (9.15) can be written as the sum of
the term

D,=S-.8+E*.6,
internal dissipation due

D,=-e-'q.V0+Q.

which takes into account dissipation due to heat conduction.
It is clear that two separate assumptions Di ) 0 and D 

" 
> 0 imply that the

principle of entropy inequality is satisfied. The converse is not true, in general.
Fuńhermore, even if it may be assumed that D 

" 
) 0 , we cannot conclude from

(9.18) that

q.V0 <0,

(e.11)

to viscous pańs of the stresswhich represents the
measures, and the term

unlęss Q=0.
Please note that the relation (9.19) is well known in thermomechanics of

three-dimensional bodies. This is still another difference between the theory of
shells discussed here and the theory of the 3D Cauchy continuum.
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9.4 Thermoelastic shells and other special shell theories

Under the additional assumption that viscous parts of the surface stress
measures vanish, the constitutive equations (9.14) reduce to the form

.S = Ś(e" 0l= moTty@.?l^ Z = Ż@.0|= moTxIłJ@.il. (9.20)

These constitutive equations together with (9. II), (9.I2), (9.16) and

e: Q@,0,0+,0-,vo,vo+,vo-) (9.21)

define the class of thermoelastic shells, in which case the dissipation inequality
takes the form

D--0-'q.v0+Q>0. (e.22)

Other special classes of shell theories may be derived from the constitutive
equations presented in this Chapter under various additional assumptions. For
example, if the temperature fields 0, 0n and 0- are not independent of each
other but there exist relations between them, the heat influxes q* and q_ on the

shell faces may be given by the constitutive equations of the form
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and consequently

This would be the case when the temperature fields on the shell faces are given
in tęrms of the temperature field 0 and possibly of its surface gradient, e.g. by
the relations of the form 01 = 0*(e-tr0) .

A very special class of shell theories can be obtained if the influence of
shell deformation on the constitutive equations is totally disregarded. Then the
constitutive equations for the problem of rigid heat conducting shells are
obtained.

9.5 Isothermal theory of shells

Returning to the general case, let us consider possible simplifications of
the general constitutive equations obtained under the assumption that the
temperature field be constant throughout the whole process of motion. Thus,
assuming that

q1= Q1(e,0,V0),

Q = 0@,0,v0).

(e.23)

(e.24)
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0 = 0* = 0_: COnSt)

we find that the extra entropy source and the extra entropy flux vanish,

)"=0, Ę =0.

From (8.8) and (8.9) we then obtain

Q=0, H=w+Divw.

Moreover, V0=0 andwemusthave 8=0, sothatthe dissipationfunction D
given by (9.a) reduces now to the form

D=,S . i + Z. k _-oV +w+ DivW _moÓ. (9.28)

Under isothermal conditions the constitutive equations for shells may be
assumed in the lorm

^s = ś(E, K, E, k) ,

z = Ż(E,K,E,kl,
w = t[(E,r,i,k).

(e.2e)

Like in the general case, any definite conclusions which may be dęrived
from the entropy inequality will depend on the assumptions made for the last
three terms in (9.28).

In order to illustrate cerlain possibilities, let us simply assume that all these
tęrms collectively vanish,

w ł- Divw _ moÓ = 0. (9.30)

Then it follows at once that for the entropy inequality to be satisfied by the
constitutive equations (9.29]l we must have 0;r/l =0 and 0łw =0. so that the

free energy function can depend only on the surface strain measures,

V = W(E,K),

and the constitutive equations for the surface stress measures are given by

S = ś(e. b.0.V0|= ffioTe V@.01+ ś-1e. b.O.V0).

Z = ż@.b.0.V0\= fi1o0xy@.0)+ Z*(e.b.0.V0s.

with their viscous parts satisĘing the inequality

D=S-.E+Ż-.Ii>0.

(e.32)

(e.2s)

(e.26)

(e.27)

(e.3 i)

(e.33)
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With the additional assumption that S* = 0 and ź*= 0, the classical
theory of non-linearly elastic shells is obtained.

9.6 Higher-grad shell theories

For simplicity, in this Section we restrict considerations to the isothermal
case, so that the dissipation function D is given by (9.28). Let us assume that

w - msQ = Q, (9.34)

so that now

D=,S - E + 2.6 -moV + Divw. (9.35)

With a view for allowing non-local interactions, let us assume the
following form of the constitutive equations:

,s = ś(.E,r,vE,vK),, = Ż(E,K,vE,vK),
ty =ty(E,K,VE,VK).

(e.36)

These constitutive equations delrne the elastic shęlls whose mechanical
response depends not only on the surface strain measure but also on their
spatial gradients. With (9.36), the dissipation function (9.35) takęs the form

D = (S _ mo7 rtłl). E + (Ż _ mg\ *,ł/1. k
-(dtD.E-@*w).k+Divw.

If we additionally assume that w = 0 , then for the entropy inequality to be
satisfied we must have ó'q =0 and 0łv =0. and the constitutive equations
(9.36) reduce to the former ones of the classical non-linearly elastic shells.
However, if we assume that the interstitial flux vector ry does not vanish but is
prescribed by the constitutive equation of the type (9.36),

lł :W(E,K,vE,vK), (e.38)

then the non-local interactions are not excluded by the entropy inequality.

9.7 Kinetic constitutive equations

As it was already pointed out earlier, the surface linear and angular
momenta vectors must also be given by appropriate kinetic constitutive
equations. Thesę constitutive equations should be considered in the general
setting based on the total energy, without its a priori possible splitting of the

93

(e.37)
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kind (8.11). Accordingly, let us assume that the total energy be given by the
constitutive equation (for simplicity, all thermal effects will be ignored in the
following considerations)

u = u(e.v.w). e: (E. K). (e.3e)

where u(x,r) and w(x,t) are the linęar and angular velocity vectors in the
material representation. Consistently with (9.39), we can take the kinetic
constitutive equations in the form

q = ą(e,V,W), r = F(e,v,w).

Although the forms of (9.39) and (9.40) are rather special, they suffice to
illustrate basic concepts of the kinetic constitutive equations.

The reasonable assumption, which can be made about the form of the
response functions in the kinetic constitutive equations (9.40), would be that Ę
and F are linear with respect to the velocity vectors,

q: ą(e,v,w) = A1(e)v + A3(e)w,
r = F(e,v,w) = Aa@)v + A2@)w,

(e.40)

(e.4r)

where Ar(e),...,Aą(ę) are second-order tensor functions of the surface strain
measures alone. Special cases of the kinetic constitutive equations (9.41) were
derived by Lmłr łNo StvtrłoNDS [1983, 1998] and applied by CunoŚcIELEWSKI
et al. 12000,20021 to analyze highly non-linear dynamic problems of the
flexible shell structuręs.

Further restrictions of the constitutive equations (9.39) and (9.41) may now
be derived from the entropy inequality. This principle leads to the dissipation
inequality (8.10), and since the considerations are restricted here to the
isothermal case with the additional assumption f1:0 (introduced here for
simplicity), we have

D =mgó:_ moUtq., * i. w + o ) 0, (9.42)

where it was taken into account that the inertia power is given by (8.35)2.
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Summary

We formulate rigorously the global and local laws of mechanics and
thermodynamics for shells with singularities at some stationary or moving
curves in the shell base surface (itself not necessarily smooth). The laws are
derived in an exact manner from underlying laws of continuum
thermomęchanics written in the integral - impulse form for the shell_like body.
Our formulation is sufficiently general to include not only traditional
applications to ręversible problems of regular shells, but also those modeling
irreversible and non-smooth processes in irregular shells.

We assume that the shell-like body is represented in the physical space by
the base surface, which in a reference configuration is only Lipschitz
continuous with almost smooth boundary. By a moving singular curve we
mean a one-parameter family of piecewise smooth surface curves which
transvęrsę the reference configuration of the shęll base surface and across
which various thermomechanical field variables may suffer jump
discontinuities. However, all the fields are assumed to be regular enough for
the generalized surface transport and gradient-divergence theorems to be
applicable.

As a result of complex transformations presented in the repoń, at regular
points of the reference base surface and for almost ali time instants we obtain
five local laws of shell thermomechanics: the balance of mass, linear
momentum, angular momentum, and energy as well as the entropy inequality.
From the transformations we also obtain, corresponding to the laws of shell
thęrmomechanics, five continuity conditions at regular points of every singular
surface curve. Additionally, we discuss exact 2D shell kinematics and exact 2D
sheil strain measures.

The principal features of the derived field equations and sidę conditions
are: 1) the classical expressions for the linear and anguiar momenta are not
assumed from the outset (they must be given by appropriate constitutive
equations), 2) there is no classical splitting of the total energy into thę sum of
internal and kinetic energies (such a splitting is considered as a part of
constitutive theory), 3) the entropy source and the entropy influx are not
directly related to temperature, 4) there are two additional terms in the equation
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of energy balance which represent the interstitial working (they require a
suitablę constitutive prescription).

We show that within the general shell thermomechanics the constitutive
equations are needed for the surface stress tensor, the surface couple tensor, the
specific total energy, the specific entropy, and the heat influx vector fields. But
additionally we need the constitutive prescription for the linear and angular
momenta vectors, as well as possibly for several other supplementary field
variables. General expressions for the constitutive equations are given through
response functionals of the histories of motion and temperature fields. For
spatially first-grad "simple" shells we propose reduced forms of constitutive
equations in the spatial and material representations. We also discuss additional
constitutive assumptions which would allow us to eliminate temperatures, heats
and entropy influxes at the upper and lower shell faces, as well as fięlds
describing the interstitial working, the extra entropy source and the extra
entropy flux.

We derive the reduced dissipation inequality for shells and use it to
develop thermodynamically consistent constitutive equations appropriate for
heat conducting and thermo-visco-elastic shells. Pańicular forms of
constitutive equations for thermoelastic, isothermal or higher-grad shells are
proposed. By introducing thermodynamic potentials we also discuss
constitutive nature of representing the total shell energy density as the sum of
potential, kinetic and interstitial energy densities. Finally, we propose general
and some specific forms of the kinetic constitutive equations for the linear and
angular momenta.

The results presented in this repoft may be considered as an introduction to
a variety of thermomechanical problems of the regular and irregular shells,
which might be formulated and solved already in the near future.
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