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1. Introduction

In [1] some completion and extension of the linear theory of shallow shells,
based on the approach suggested by Green and Zerna [2], have been given. In this
approach vector e; normal to shell projection is constant, and its direction is
independent of the function describing the middle surface of the shell. Resulting
equations are written in the system of basic vectors e; of shell projection (basis e;)
and expressed by components of unknown vector quantities, also in basis ;. In this
way simple geometric links are possible to establish between the relations pertain-
ing to shells and some of the known relations of the theory of plates and plane
elasticity. This may also be useful in designing multivalued solutions for shallow
shells with two- or multi-connected regions [3].

In the present Note three methods of reducing the system of fundamental equations
for shallow shells obtained in [1], to a single solving equation, are considered. Tliese
are the solutions: in terms of displacements, in terms of stress functions, and by
a mixed method. With the additional assumption of small variation of the shell
curvature, all the three methods lead to solving of the same complex partial
differential equation of fourth order, particular integrals of which are determined
in various ways.

The problem has also been discussed in [1).

2. Assumptions

Basic notations are those used in [2].

Relations for shallow shells have been obtained in [1] with the following assump-
tions:

a) Relations of linear shell theory are based on Kirchhoff — Love’s hypothesis,
[4], [51.

b) For the shell geometry there is

€2.1) z,ol <1, |z <1.
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c) For the state of stress and displacements there is
(2.2) g% < 1™, oyl <lesl.

In the reduction of equations in terms of displacements and stress functions
to a single solving equation, the additional assumption is made:
d) The variation of shell curvature is small, so that

2.3) (21f - A5 )ls =~ 2l - A5 5.

3. Fundamental equations

The fundamental equations of the linear theory of shallow shells have been
derived in [1] by representing all the vector relations of the linear shell theory in
basis e;. Using then the simplifications resulting from (2.1) and (2.2) the equations
can be written as [2]:

equation of equilibrium:

k| +5° =0,

3.1
G-l (k% z Js+h) 5+83 =0

compatibility equations:

(eay % Auyﬁ)[a. =0,

3.2)
(e“y eﬁﬂ Hyﬁ . Z.a)la - (e“" eoﬂ avﬂ)laé — 0’
where ‘
1
3.3) Cyp = 5 W latugly 2, ~u3 552 5 - 13,),

Pyp = —Uslyp

constitutive equations:

1
kof — D,Haﬂql Uy a = Fil H;;sé;.'kel,
(3.4)
af afoh 12 -1 _y0h
B =B-H* py, g =mHa691'h :
where [1]

1
Hobh = 3_ {e“g em—{—e‘ﬂ eﬁg—l—v(e"g 3ﬁ1+eal eﬂe)} ,

1
-1
Hopg = 5 {ene epit€un sy — ¥ (6ug €p3t€qa €59}

12(1 —»2) B EL EJL

2 , B 0 D=———~—1~v2, k —————'/Z.
The first static-geometric analogy follows from (3.1) and (3.2)

3.5 Eere? ey, hPer —e¥ e 8
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_ Symbols u,, u3 appearing in (3.3) denote the components of displacement vector
v in basis e;
(3.6) v =v,a%}v3 a3 =u, e"{uzel.

The expressions (3.1) to (3.5) contain only the components in basis e;.

4. Three ways of solving the fundamental equations

The set of Egs. (3.1), (3.2) and (3.4) can be solved in three different ways:

a) in terms of displacements u,, us,

b) in terms of stress functions ¢, @3,

¢) by a mixed method, with u3 and ¢; taken as unknowns.

A similar method has been used by Duddeck [6] in his investigation of the
homogeneous equations of edge effect in the linear shell theory, with v,, v3 and
¥, w3 as unknowns, and with quite different initial simplifying assumptions.

5. Solution in terms of displacements

By using (3.4) and (3.3) Egs. (3.1) are expressed in terms of displacements u,,
u3, and take on the following form [1], [5]

1
H*"a,, + o £ =0,
(5.1) ,

A 1
Hw {(a;w 2, a)]d + 72- luuv!ad} + _b—‘ $3=0.

A system analogous to (5.1) and written in terms of displacements v,, 73 and
in lines of curvature coordinates, has been considered by Vlasov [7] and other
authors. They solve it in a specific coordinate system using the method of operator
determinants or the elimination of v,. An alternate way is to represent z,, v3 by
a displacement function chosen appropriately to the coordinate system and shell
shape.

There exists the possibility of invariant reduction of the system (5.1) to a single
solving equation, without representing it in a specific coordinate system, provided
the additional assumption of small variation of shell curvature (2.3) is made. This
assumption is met for shell shapes encountered most frequently.

With the assumption (2.3) the set of Egs. (5.1) may be fulfilled identically by
introducing the displacement function F in the form [6]

u,= 22|} Fl — 2 FI8,+v05 I} FI2, — 2, Fi%+u,,
(5.2)
Uy = FJQ;’
where u, satisfies the set of equations
1
aduy
H** uﬂlm—l- *53" =0,

Eq. (5 1), leads then to the following solving equation
FI2881 A8 63521, 212+ FIgi = p,
(5.3)

A
r= EE {SH—DHOW Uy zlaﬁ}
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0
Having determined the particular integral F of Eq. (5.3); we can find a general
solution from the relation

0 — 0
54 FIPeFiV A% z|2-F|2=0.

e

6. Solution in terms of stress functions
According to the analogy (3.5) the solution of (3.1) may be put in the form
kad — ]ia&_i_k.eay edﬂ /u*ﬂ
% ,

(6.1)

8
B = B foc®¥ ¢ o,

$ 8
where k*°, h*’ — particular integral of (3.1), u',, «); — expressions analogous
to (3.3) constructed on components ¢,, ¢3 of the stress function vector (cf. (3.6))
(6.2) V¥ =1y, @ ty38d = g, e g3 3.

Eqs. (3.2) written in terms of stress functions ¢,, ¢3 by using (3.4) and (6.1)
rearrange themselves to [1], [5]

1
H*ad;w ;;1a+ 5 s*6 = O,
(6.3) e 2, 1
H** (o, 2, )6 T Puvias) D 5¥3 =0,
where

1
H*aa,w :_2_ {eay eav+eav eéu - v(eay ebv+€av €0/1)} i

Since the tensors H** and H*** differ only in the sign of the Poisson’s
coefficient, we can state the validity of the second static-geometric analogy [5]

(6.4) () o (— ),

Hence, with the additional assumption (2.3), the system (6.3) may also be reduced
invariantly to a single solving equation by introducing stress function @ in the form
(5.2), with ¢, ¢,., ¢3, (—v), @ written in place of u,, u,, u3, (+»), F, respectively.
Final solution consists in the solving of Eq. (5.4) together with the determination
of a particular integral of Eq. (5.3);, with the expression (5.3); appropriately
constructed on the quantities s*3, H****, and ¢,, [1]

7. Solution by a mixed method

As follows from the analogy (3.5), Eqgs. (3.1); are fulfilled identically by substitut-
ing
(7.1) kab — 1‘(a6+k e 65;3 ‘u”,‘yﬂ ,

where k% satisfies the set of equations

k¥ s =0.
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From (3.1); and (3.2), we obtain the solving equation

Vik=iy 405 2P = q,

’1?

s

4 % 1_T.ad ] 4 A 7019 a
a2 97 ppp T 2SR ) £ QR kil
. . 120 FAL
=uyt-igy, A= Py . = ]/Z .

The Airy stress function ¢ introduced by Vlasov [7], Green and Zerna {2] and
other authors, has not the geometric sense of the component of v* vector. It may
be represented by the relation

1 1
¢ = k Y3 = k v3
) 1
giving also the function ¢ a geometric sense of the component of — - A v* vector.
Alternate forms of mixed method solving equation can also be derived by

1
defining, e.g. complex functions ¢1--ius, (pj:i?ug,, etc.
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B. IHETPAIIKEBUY, O PA3SPEIRIAIOINEM YPABHEHHHM ITOJOI'UX OBOJIOYEK

PaccMaTpUBAIOTCA YPABHCHUS HOJOTMX O0OMOYEK BHIPAXKECHHBIE JMILbL KOMIIOHEHTAMM HEl3-
BECTHBIX BEKTOPHBIX BEIMYMH B §azuce mpoeximy 0GOIOYKY HA ILIOCKOCTh. YPABHECHHSA PEITAKOTCS
B ICPEMEIICHNAX, B (YHKIMAX HAIIPSKEHMM M CMeINaHHBIM MeToZoM. IIpH MOMOIHUTENBHOM
YCIIOBMH MAalloil M3MEHSEMOCTH KPHUBU3HBLL OGOMOYKH, BCE TPU METOMA IIPUBOAT K DEILEHHIO
OJHOTO M TOTO-Ke pa3peldarouiero KOMIUICKCHOTO YPABHEHUS 4-T0 MOpAAKa I[IPU DPa3IMYHOM
BBIYHCIICHHH YACTHOI'O PEUICHHUS.



