On the Multivaluedness of Solutions of Shallow Shells

by

W. PIETRASZKIEWICZ

Presented by R. SZEWALSKI on July 3, 1967

1. Introduction

Displacement vector \mathbf{v} of the middle surface of the shell and the stress function vector \mathbf{v}^* associated with the vector \mathbf{v} by a static-geometric analogy, are the general solutions of the set of equations of the linear bending theory of thin elastic shells [1]—[4].

The basic relations for the multivalued solutions of the shells with multiconnected region, have been given by Chernykh [5], [6] and by the author [7], [8]. By using the general considerations of papers [5]—[8] it is only possible to ascertain whether the multivaluedness of \mathbf{v} and \mathbf{v}^* exists. The problem of constructing the multivalued part of the solutions in a general case is not solved as yet.

In this Note the problem of multivaluedness of the solutions of shallow shells is considered. The way of constructing the multivalued part of \mathbf{v} and \mathbf{v}^* for the shells is indicated.

A more extensive treatment of the problem will be published in [12].

2. Geometric relations

Basic notations are those used in papers [8]—[11].

The quantities $\bar{\theta}^a$, $\bar{\mathbf{r}}(\bar{\theta}^a)$, $\bar{\mathbf{r}}^i$, \mathbf{a}_a , \mathbf{a}_3 , $a_{\alpha\beta}$, $b_{\alpha\beta}$, $\bar{\epsilon}_{\alpha\beta}$, ()||_a, $\bar{\Gamma}^a_{\beta\gamma}$, $\bar{\Gamma}_i$, $\bar{\Gamma}$, \bar{s} , $\bar{\mathbf{t}}$, $\bar{\mathbf{v}}$ etc. are associated with the middle surface M of the shell, (Fig. 1). The quantities θ^a , $\mathbf{r}(\theta^a)$, \mathbf{r}^i , \mathbf{e}_a , \mathbf{e}_3 , $e_{\alpha\beta}$, $z|_{\alpha\beta}$, $\epsilon_{\alpha\beta}$, ()|_a, $\Gamma^a_{\beta\gamma}$, Γ_i , Γ , s, t, r etc, are associated, respectively, with the plane II.

Using the approximate relations between the quantities associated with M and Π [9], [11], we have

(2.1)
$$\begin{aligned}
\overline{\mathbf{t}} &\simeq \mathbf{t} + z,_{a} t^{a} \mathbf{e}_{3}, \quad \overline{\mathbf{v}} &\simeq \mathbf{v} + z,_{a} \mathbf{v}^{a} \mathbf{e}_{3}, \\
\overline{t}^{a} &\simeq t^{a}, \quad \overline{\mathbf{v}}^{a} &\simeq \mathbf{v}^{a}.
\end{aligned}$$

For a space point i [8] associated with the internal closed boundary contour $\overline{\Gamma}_i$, we have (Fig. 1)

(2.2)
$$\vec{\mathbf{r}} - \mathbf{R}^i = \mathbf{\rho}^i + (z - z^i) \cdot \mathbf{e}_3,$$

$$\mathbf{\rho}^i = \mathbf{r} - \mathbf{r}^i, \quad z^i = \mathbf{R}^i \cdot \mathbf{e}_3,$$

$$625 - [877]$$

and for an arbitrary point k on surface M, we have

(2.3)
$$\bar{\mathbf{r}} - \mathbf{r}^k = \mathbf{p}^k + [z - z(\theta_k^a)] \mathbf{e}_3.$$

3. Multivaluedness of displacements

The multivalued part of the displacements vector \mathbf{v} on each internal closed boundary contour $\overline{\Gamma}_i$ (Fig. 1) has the form [5]—[7]

(3.1)
$$\mathbf{v}^{i} = [\mathbf{v}^{i} + \mathbf{\Omega}^{i} \times (\bar{\mathbf{r}} - \mathbf{R}^{i})] \cdot \boldsymbol{\Phi}_{i}(\bar{\boldsymbol{\theta}}^{\alpha}),$$

where the parameters of dislocation of displacements \mathbf{v}^i , $\mathbf{\Omega}^i$ have been expressed in [5], [6] by a vector \mathbf{x}_i of the contour curvature variation during deformation, by the following relations

(3.2)
$$\mathbf{v}^{i} = \oint_{\overline{\Gamma}_{i}} \left[(\overline{\mathbf{r}} - \mathbf{R}^{i}) \times \mathbf{\varkappa}_{t} + (a_{\alpha\beta} \overline{t}^{a} \overline{t}^{\beta}) \overline{\mathbf{t}} \right] d\overline{s},$$

$$\mathbf{\Omega}^{i} = \oint_{\overline{\Gamma}_{i}} \mathbf{\varkappa}_{t} d\overline{s}.$$

Expressing all the vectors in (3.1) and (3.2) by components in basis e_j , and introducing then the approximations of the shallow shells in accord with [9]—[11], for the components \mathbf{v}^i in basis \mathbf{e}_j we have

(3.3)
$$\begin{aligned} u_{a}^{i} &\simeq \left\{ u_{a}^{i} + \epsilon_{\beta a} \left[\varrho^{i\beta} \ \omega_{3}^{i} - (z - z^{i}) \ \omega^{i\beta} \right] \right\} \cdot \Phi_{i} \left(\theta^{\alpha} \right), \\ u_{3}^{i} &\simeq \left\{ u_{3}^{i} + \epsilon^{\alpha\beta} \ \omega_{a}^{i} \ \varrho_{\beta}^{i} \right\} \Phi_{i} \left(\theta^{a} \right), \end{aligned}$$

where

(3.4)
$$u_{3}^{i} \simeq \oint_{\Gamma_{t}} \in_{\alpha\beta} \varrho^{i\alpha} \varkappa_{t}^{\beta} \cdot ds,$$

$$\omega_{\alpha}^{i} \simeq \mathbf{e}_{\alpha} \cdot \oint_{\Gamma_{t}} \varkappa_{t}^{\beta} \mathbf{e}_{\beta} \cdot ds,$$

$$\varkappa_{t}^{\beta} \simeq -u_{3|\alpha\lambda} t^{\varrho} \delta_{\sigma\tau}^{\lambda\beta} v^{\sigma} t^{\tau}.$$

The function $z(\theta^a)$ describing the middle surface of the shell does not appear in the relations $(3.3)_2$ and (3.4).

4. Multivaluedness of stress functions

The multivalued part of the stress function vector \mathbf{v}^* on each internal closed boundary contour $\overline{\Gamma}_i$ (Figure) has, according to the static-geometric analogy, the form analogous to (3.1), [5]—[8]

(4.1)
$$\mathbf{v}^{*i} = [\mathbf{v}^{*i} + \mathbf{\Omega}^{*i} \times (\bar{\mathbf{r}} - \mathbf{R}^{i})] \Phi_{i}(\bar{\theta}^{\alpha}).$$

i

Parameters of dislocation of the stress functions \mathbf{v}^{*i} , $\mathbf{\Omega}^{*i}$ has been expressed in [8] by a total force \mathbf{F}^{i} and a total couple $\mathbf{B}^{i}_{(i)}$ of the external boundary loading, and by certain arbitrary surface forces $\frac{1}{L}\mathbf{p}_{i}$ acting on extended shell regions S_{Li} .

Expressing all the vectors in (4.1) (and in (4.5) to (4.7) of [8]) by the component in basis \mathbf{e}_j and introducing then the approximations of the shallow shells according to [9]—[11], for the components of \mathbf{v}^i in basis \mathbf{e}_j we have

$$(4.2) \qquad \begin{array}{l} \overset{d}{\varphi_{a}^{i}} \equiv \overset{d}{u_{a}^{*i}} = \{u_{a}^{*i} + \epsilon_{\beta a} \left[\varrho^{i\beta} \omega_{3}^{*i} - (z - z^{i}) \omega^{*i\beta}\right]\} \Phi_{i}(\theta^{\alpha}), \\ \overset{d}{\varphi_{3}^{i}} \equiv \overset{d}{u_{3}^{*i}} = \{u_{3}^{*i} + \epsilon^{\alpha\beta} \omega_{a}^{*i} \varrho_{\beta}^{i}\} \Phi_{i}(\theta^{\alpha}), \end{array}$$

where, according to [8], for instance for the loaded internal closed boundary contour we have

(4.3)
$$u_{3}^{*i} = -\frac{1}{kL^{2}} \left\{ B_{(i)3}^{i} - B_{(i)3}^{i} - L^{2} \iint_{S_{\Gamma_{i}}} e^{\alpha\beta} \varrho_{a}^{i} s_{i\beta} \cdot dS \right\},$$

$$\omega_{\alpha}^{*i} = -\frac{1}{kL} \left\{ F_{a}^{i} - F_{a}^{i} - L \iint_{S_{\Gamma_{i}}} s_{i\alpha} \cdot dS \right\}.$$

As in the par. 3, here also the function $z(\theta^a)$ describing the middle surface of the shell does not appear in the relations (4.2)₂ and (4.3).

5. Conclusions

It results from the relations $(3.3)_2$, (3.4) and $(4.2)_2$, (4.3) that, within the bounds of approximations of the linear theory of shallow shells [9], [10], the following conclusions are valid:

- 1. The existence of multivaluedness of displacement u_3 (or stress function φ_3), after integrating round the internal closed boundary contour $\overline{\Gamma}_i$ of the shell, depends only on three components u_3^i , ω_a^i (or $-u_3^{\bullet i}$, $\omega_a^{\bullet i}$) of the parameters of dislocation of displacements (or stress functions), and is independent of the remaining three components.
- 2. The structure of the multivalued part of u_3 (or $-\varphi_3$) for a shallow shell is the same as for a plate (or plane elasticity) with the same shape as shell projection on reference plane Π and with the same parameters of dislocation u_3^t , ω_a^t (or $-u_3^{\bullet t}$, $\omega_a^{\bullet t}$).

The foregoing conclusions allow to construct easily the multivalued terms of u_3 and φ_3 on the basis of known solutions of plane elasticity for multivalued regions [13]. By using the mixed method [9], [10] of solving the equations of shallow shells, with u_3 and φ_3 as basic unknowns, the multivaluedness of the solutions can be eliminated from further considerations where the problem reduces to a singlevalued boundary value problem.

DEPARTMENT OF DYNAMICS OF MACHINES, INSTITUTE OF FLUID-FLOW MACHINES, GDAŃSK, POLISH ACADEMY OF SCIENCES

(ZAKŁAD DYNAMIKI MASZYN, INSTYTUT MASZYN PRZEPŁYWOWYCH, GDAŃSK, PAN)

REFERENCES

- [1] A. I. Lurie, Prikl. Matem. Mekh., 4 (1940), No. 2.
- [2] A. L. Goldenveizer, Prikl. Matem. Mekh., 4 (1940), No. 2.
- [3] A. I. Lurie, [in] Problemy mekhaniki sploshnoy sredy [in Russian], [Problems of continuum mechanics], USSR, Acad. Sci., Moscow, 1961.
- [4] P. M. Naghdi, Foundations of elastic shell theory, [in] Progress in solid mechanics, vol. IV, North-Holland P. C., Amsterdam, 1963.
 - [5] K. F. Chernykh, Prikl. Matem. Mekh., 23 (1959), No. 2.
- [6] , Lineynaya teoria obolochek [in Russian], [Linear theory of shells], vol. I, Leningrad, 1961; vol. II, Leningrad, 1964.
 - [7] W. Pietraszkiewicz, Biul. IMP PAN, Gdańsk, (1966), No. 463,
- [8] , Multivalued stress functions in the linear theory of shells, Arch. Mech. Stos., 19 (1967), No. 6.
 - [9] , Rozpr. Inż., 15 (1967), No. 2.
 - [10] , Bull. Acad. Polon. Sci., Sér. sci. techn., 15 (1967), 256 [357].
 - [11] A. E. Green, W. Zerna, Theoretical elasticity, Oxford, 1954.
- [12] , Multivalued solutions of shallow shells, Arch. Mech. Stos., 19 (1967), No. 6.
- [13] N. I. Muskhelishvili, Niekotorye osnovnye probliemy matiematicheskoy tieorii uprugosti [in Russian], [Some basic problems of mathematical theory of elasticity], 5th ed., Nauka, Moscow, 1966.

В. ПЕТРАШКЕВИЧ, О МНОГОЗНАЧНОСТИ РЕШЕНИЙ ПОЛОГИХ ОБОЛОЧЕК

Рассмотрена проблема многозначности общих решений уравнений линейной теории пологих оболочек: вектора перемещений и вектора функций напряжений. Област оболочки считается многосвязной. Доказывается что, с точностью до основных упрощающих гипотез пологих оболочек, компоненты многозначного члена этих векторов по вектору перпендикулярному к плоскости проекции оболочки зависят только от трех (из шести) компонент т. наз. параметров дислокации. Вид многозначного члена этих компонент не зависит от формы оболочки и можно его строить так как строится для пластины (или плоского напряженного состояния) с граничным контуром проекции оболочки на плоскость и тех-же компонентах параметров дислокации.