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1. Introduction

The displacement vector v of the middle surface of a shell and the stress function
vector v* associated with v through the static-geometric analogy, are the general solutions
of the set of equations of the linear theory of shells {1, 2, 3 and 4]. :

For shells with simply connected region which are loaded with surface loading, these
solutions are obtained with accuracy up to the terms of “displacement of the shell as
a rigid body in space”. These terms do not, however, affect the uniqueness of deforma-
tions and internal forces in the shell.

For shells with multiply connected region (the points of application of the concentrated
loadings may also be regarded as internal beundary contours [5, 6]), the vectors v and v*
can have additionally other multivalued terms different from the terms of the type of
“displacement of the shell as a rigid body”, to which there also correspond unique defor-
mations and internal forces. The investigation, therefore of the multivaluedness of solution
is here the essential part of the process of construction of that solution.

The basic relations for multivalued solutions of the linear theory of shells were given by
CernykH (7). Unlike LUriE [1], he has presented the expressions for v and v* along an
arbitrary curve I" on the middle surface of the shell in the form of a single integral formula
(cf. also [9, 10]). In the paper [7] the terms multivalued with respect to the passage round
the internal closed boundary contour have been separated from the complete solution and
expressed by two vectorial, so-called, dislocation parameters(*) (6 scalar components) and
by the multivalued scalar function ®@(6).

The general considerations contained in [6, 7, 9, 10] are of qualitative character
only, because they make it possible only to state when the multivaluedness of the
solutions v and v* exists, But the problem of how to construct the multivalued term of
solutions [leading to construction of the function @(8*)] has not, so far, been sufficiently
investigated.

The object of the present work is to investigate the multivaluedness and to indicate
a manner for construction of the multivalued term of the solutions v and v* for the class
of shallow shells. In the present author’s works [11, 12] is given a variant of the linear
theory of shallow shells, in which all vector relations are presented consequently through

(") The multivalued displacements corresponding to unique deformations are called by some authors
“distortion”,
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the components on the basis of the fundamental vectors of the shell projection into the
reference plane IT (cf. [13]). The essential point of this conception is that the basic
vector e; is perpendicular to the plane I7, and the components of vectors v and v*
in the e; direction have constant direction which is independent of the shallowness
function z(0%). These components are the fundamental unknowns of the so-called mixed
method of solution for the set of equations of shallow shell [11, 12].

The simple geometric transformations presented in this work make it possible to
show that, within the framework of simplifying assumptions of the linear theory of shallow
shells {11, 13], the multivalued part of the components of v and v* in the e; direction
depends only on three (from among six) dislocation parameters. It is also shown that the
form of the multivalued term for these components does not depend on the function
of shell shallowness, and this term may be constructed similarly as for plates or for
the plane stress state of a disk with the boundary contour of the shell projection into
the plane I7 and with an appropriate loading [14]. These results have been compared with
the known solutions for the shallow shells of revolution characterized by the two-connec-
ted region, which were obtained by REeissSNER [15], LARDNER and SIMMOND [16] and the
present author [8,17]. In the works cited above, the possibility of appearance of multival-
ued stress functions in the solution was taken into account.

2. Geometric Relations

The fundamental denotations used here agree with those introduced by GREEN and
ZEeRNA [13] and used in [11, 12, 6]. The following geometric quantities are associated

with the surface M (Fig. 1), (cf. [6]): 6% T(6%), T%, a,, a5, dup, bup, €aps Oia» L35 I3, T,
5,t,9, etc. With the plane I7, the following quantities are associated correspondingly:
6%, r(0%), r*, e,, €3, €xp, €2py (Viar Ly I, I, 5, t, v, etc. If we assume the systems of
coordinates in such a way that for the corresponding points 0% = 0%, the vector T can
be presented in the form

@.1) ¥ = 70%) = r(0) (6% -, .

The approximate relations among the geometric quantities associated with M and IT
have the form [11, 13]

A X erp, AP e, by R zly,
ng ~ ng, éaﬁ N €aps
2.2) a, X e, tz,.85 a3 % e;—zf%e,
txttz,t%e;, v vtz e,
1 tr, v,
Let us assume that the origin of system O lies on the plane 7 (Fig. 1). For the spatial
point i, which is associated with the internal closed boundary contour I’ [6], we obtain
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_l:—Ri = pi—['—(Z-Zi)eg, N
(2.3) . . , .

' =r—r, z=R'e;;
and for an arbitrary point k£ on the surface M

(2.4) F—1* = gkt [z—z(0D)]e;.

Fic. 1.

3. Multivaluedness of Displacements

The multivalued term of the displacement vector v, after passing through the internal

closed boundary contour I'; (Fig. 1) [7, 9, 10, 6], has the form
d. ) Lo —
3.1 v =V QX (r—R)]-D,(0%),
where @,(6) is a scalar multivalued function of the contour I';, which after passing through

the contour I; causes a unit increment, but its derivatives in all directions are the
unique functions; v/, Q¢ are thc so-called displacement dislocation parameters of

the contour I, which are expressed through the vector x, of the contour curvature
variationn during deformation by the relations [7, 9]

Vo [ IE—RY X3+ (g 17911
(3.2) T
Qi = f:‘f/ d‘;
7
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The displacement vector v and the rotation vector £ can be expressed by means of
their components in the basis a; and e; [11, 12]
v =g,a" 0,2 =y, e’ ue’,

3.3
3.3 Q =0,a" 2% = w,e*tw;e’,

where with accuracy to the simplifying assumptions for the shallow shells [11, 13], we have

Uy ¥ u1+z,au3 > U3 A Uy,

3.4)

0, ~ wy; O3~ wy—0,z%.

da
Presenting the vectors v), ¥ and Q' in (3.1) analogously to (3.3), and taking into
account the geometric (2.2), (2.3), (2.4) and physical (3.4) relations, after transforma-

tions, we obtain

d. v . . .
(3.5) uy, = {1y +-€5, [0 0y — (z—2") 0]} D:(6%),

d . ) :

uy = {ui+e*b wj 0} } D (07) .

d
The component #} then depends only on the three components of the dislocation

parameters #% and w!. Within the framework of simplifying assumptions of the linear
theory of shallow shells [11, 13], after taking into account (2.2) and (3.4), we obtain

from (3.2)

(3.6) - TN feaﬂg"“xf ds, ol=e, Q~e,:- fxfe,,ds,
I, r,
1 .
where
3.7 w = efowy A —uy 182V

The shell shallowness function z(6*) is not involved in the relations (3.5)2, (3.6)
and (3.7).

4. Multivaluedness of Stress Functions

The multivalued term of the stress function vector ¢*, after passing through the internal

closed boundary contour I';, can be presented, in agreement with static-geometric analogy,
in the form analogous to (3.1) [7, 6]

d _
4.1) v =]v* L Q¥ (F—RYHD;(67),
where (13,(6’) is a scalar multivalued function as that in Sec. 3; v*, Q* are the stress
function dislocation parameters of the contour TI..

The dislocation parameters v* and Q*!, after passing through the internal closed
boundary contour /7, can be expressed by the following relations [6]

i 1 si S
Q= — [F‘—F —L!_fpiclS] ,
(4.2) 1 o l . _
v = kiz’!Bii)”"B(iif—Lz LJ (E*Ri)XPidS] :

i
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where Fi, Bi;, are the total force and the total couple vectors of the boundary loadings

on the contour I’ with respect to the point i; F' B(,) are the total force and the total
couple of the internal forces on the contour I with respect to the same point i, which
are contributed by particular integrals of the equilibrium equations for the simply

connected region Sf—l—Z‘Sf‘i of the shell, [6]; p: is a fictitious surface loading

1
L
assumed for the extended region Sp, of the shell when the particular integral was
being determined, [6].

When the contour I contains in its interior the point k at which the concentrated load-
ing with the force vector P* and couple vector M* is applied, the parameters v** and
Q** have the form [6]

ﬂ*k — _k_lL [Pk_Pk] ,

(4.3)
V= M M,

where 1;", l\s/l" are the total force and the total couple of the internal forces on the contour
TI'; with respect to the point i, which are contributed by the particular integrals of the
equilibrium equations.

The relations analogous to (3.3) and (3.4) hold also for v* and Q*. For the
components of the vector vt in the basis e;, the relations analogous to (3.5) (cf. [11, 12))
have the form

d. d. . - . . . .
s § = i = (Ut} cp, [P i — (2= I, (09,
P = it = [ P g} 6,(0°)

d,

In this case the component ¢} depends also only on the three components of the
dislocation parameters u¥' and w?*!. These components can be obtained by writing the
components of, e.g., the relation (4.2) in the basis e

W= — lez {B(,)3 B(:)S—L JFJ o mdS}
(4.5) 1
wk = kL{Fl F Lffs dS}.

The shell shallowness function z(6%) is not 1nvolved in the relations (4.4), and (4.5).

5. Conclusions
It results from the relations (3.5), and (4.4), that, within the framework of the assump-
tions of the linear theory of shallow shells [11, 13], the following conclusions are valid:
1. The existence of the multivalued term of the displacement u,, after passing through
the internal closed boundary contour T"; of the shell, is associated with the existence of
only three (from among six) components of the displacement dislocation parameters #} and
o' it does not depend on the remaining three components,
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2. The existence of the multivalued term of the stress function g3, after passing through

the internal closed boundary contour I'; of the shell or the point k of the concentrated
loading application, is associated with the existence of only three (from among six)
components of the stress function dislocation parameters uf' and w¥'; it does not
depend on the remaining three components.

The shell shallowness function z(6%) is not involved in the relations (3.5),, (3.6), (3.7)
and (4.4),, (4.5), which define the form of the multivalued term of u; and ¢;. This
means that, within the framework of the assumptions of the linear theory of shallow
shells [11, 13], the form of the multivalued term of u; and ¢, is identical for shells with
different shapes of z(0%) but with the same shell projection into the plane I7, as well as
with the same dislocation parameters u}, o) and u}, w#. In particular, this is true
for z(f*) = 0, when the equations of shells are decoupled into the equations of plates
and the plane elasticity. Thus we arrive at the following conclusion:

3. The form of the multivalued term of u; and ¢; for shallow shell is identical with that
for, respectively, plate or the plane stress state of a disk with the shape of the shell pro-
jection into the plane 77, when the same dislocation parameters u}, o} or of u}', w*' are
assumed correspondingly.

The above three conclusions enable us to construct effectively the multivalued terms
of u; and ¢; making use of the plane elasticity solutions for the multiply connected
regions [14]. Applying the mixed method of solution of the shallow shell equations, -
in which u; and ¢@; are fundamental unknowns (11, 12], the problem of the multivalu-
edness may thus be eliminated from consideration, and the solution reduces itself to
solving the unique boundary value problem.

6. Concluding Remarks

It is interesting to compare the conclusions | and 2 of the present work with
some known multivalued solutions for shallow shells of revolution, characterized by
the two-connected region. For spherical, conical and logarithmic shells the form of the
multivalued term of u; and ¢; may be obtained analytically direct from integration of
the constitutive equations [8]. On the other hand, in the polar system of coordinates
g, 0, the function @ in (3.5), and (4.4), may be assumed in the form @ = 0/2x due to
the rotary symmetry of the shell geometry.

RessNER [15] investigated the solution of the first state of asymmetry (expansion in
cosfl) of a spherical shell and obtained the multivalued part of stress function ¢;
of the type C.0sin0, which agrees with the relation (4.4), written for this case.
In the work [I5] the spherical shell, loaded on the internal boundary by the loads
reducing to a pair of vertical forces, is considered as an example of using the
general relations obtained. In agrcement with the conclusion 2 of the present work,
such load does not cause the appearance of the multivalued term of ¢;. Indeed, after
performing numerical calculations and computing the constant C, we find that it is
in this case equal to zero. In the author’s papev [8, 17], among other problems, the
shallow shell of revolution with the meridian in the form of the logarithmic curve has
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been solved. It is shown in [8, 17] that for the asymmetry state with vertical surface
and boundary loading, the constant C is equal to zero, which agrees with the
conclusion 2. For the horizontal surface loading and boundary loading the constant
C is equal to that obtained directly from (4.4),.

Lastly, LARDNER and SiMMONDS [16], by reducing the order of the equation of asym-
metry state, have obtained the form of the multivalued term ¢, which coincides with
that obtained directly from (4.4).
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Streszczenie
WIELOZNACZNOSC ROZWIAZAN POWLOK O MALEJ WYNIOSEOSCI

W pracy rozpatrzono zagadnienie wieloznacznosci wektora przemieszczen oraz wektora funkcji naprezen
w liniowej teorii powlok o malcj wyniostosei o obszarze wiclospdjnym. Wykazano, ze w ramach zalozen
upraszczajacych powlok o malej wyniostodci, wieloznaczno$é sktadowych tych wektoréw w kierunku
wektora prostopadlego do plaszczyzny rzutu powloki zalezy jedynie od trzech (sposréd ogolnie szesciu)
sktadowych tzw. parametrow dyslokacji. Wykazano, Ze posta¢ wieloznacznego cztonu dla tych skladowych
nie zalezy od ksztaltu powloki i mozna go zbudowaé jak dla plyty i ptaskiego stanu naprezenia tarczy
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o konturze brzegowym rzutu powloki na plaszczyzng odniesienia oraz tych samych parametrach dyslokacji.
Whioski te skonfrontowano ze znanymi rozwigzaniami analitycznymi powlok obrotowych o obszarze
dwuspdjnym.

Pesmome

MHOT'O3HAUHOCTE PEHIEHUN ITOJIOTMX OBOJIOUEK

PaccmaTpasaeTcsa BONPOC MHOTO3HAYHOCTH BEKTOPA ICpEMELIeHHH B BEKTOPa (YHKIKUH HampsyKeHui
B NMHEHHONW TEOPMM HOJOTHUX 0DOJIOYEK MHOTOCBA3HOM oOiacTH. YKa3blBaeTCsA, YTO ¢ TOUHOCTRIO MO
OCHOBHBIX YIPOLAIONIMY THIOTE3 IOJIOTHX OOOJIOUEK, KOMIIOHEHTBI 3THX BEKTOPOB IO BEKTOPY TIEp-
NEHUKYIAPHOMY K IUIOCKOCTH IPOEKITHH O00JIOUKH 3aBUCAT TOJIBKO OT TpeX (U3 OOHIero umcma IIecTH)
KOMIIOHEHT TaK Ha3. HapaMeTPoB AUCIOKaNuu. BuJ MHOTOSHAYHOrO WIeHA 3THX KOMIIOHEHT HE 3aBHCHT
0T popMBI 0BGOTIOUKHM B MOYKHO €r0 CTPOUTH KAK JITIA ITACTHHBI M [ITIOCKOTO HAIIPSYKEHHOTO COCTOSIHHS
C FPAaHUYHBIM KOHTYPOM IIPOEKI[HH OOOJIOUKH HA IITIOCKOCTh U TEX-KE KOMIIOHEHTAX MapamMeTPOB [JHCIIO-
Kamuu, OTH 33K/EOYEHHMA CPAaBHHBAIOTCA C HM3BECTHBHIMH 3HANHTMYECKHMU PEUICHHAMH IIOJOruX 0060-
JIOYEK BPAIECHHS B ABYXCBA3HOH o6macTu.
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