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Summary. The material description in the general nonlinear theory of thin shells is considered.
The only assumption made is the linearization of distribution of deformation over the shell thickness.
Equations of motion of the shell are derived by integrating the material form of the continuum
equations of motion over the shell thickness in the reference configuration.

1. Introduction

Equations of motion of a nonlinear shell theory in spatial description have
been derived in [1] by integrating the spatial form of the continuum equations of
motion over the shell thickness in a deformed configuration. Although the equations
in {1} are exact and simple in form, in fact it is not possible to calculate and to
interpret properly the introduced stress and couple resultants, because of the unknown
varying geometry of the middle surface of the shell in the actual deformed configura-
tion. In small strain (but large displacement!) theories it is possible to express
approximately the shell middle surface geometry in deformed configuration in
terms of the geometry in the reference configuration 2]. In this way one can obtain
the equations of motion which, though more elaborate in form, are useful for
applications.

In this note equations of motion of a nonlinear shell theory are derived by
integrating the material form of the continuum equations of motion over the shell
thickness in the reference configuration. Thus, the deformed shell geometry does not
appear at all in the equations of motion, and stress and couple resultants are
defined for the reference configuration of the shell, which is fixed and known in
advance.

The obtained equations of motion are very general and hence rather elaborate
in form, as the only assumption made is the linearization of the distribution of
deformation over the shell thickness. This approximation is usually accepted in
theories of thin shells.

The equations of motion can be used to investigate the behaviour in time of the
elastic and anelastic shells with large nonlinear strains and displacements. They
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may, under some additional assumptions, form a basis for deriving different
simplified versions of the equations of motion of non-linear theoiies of shells in
material descriptions, which may appear to be more useful for applications.

2. Notations and basic relations

Absolute tensor analysis [3—6] is used as the basis of the paper.

Let x and y be the reference and actual configurations [3] of a shell (body) o,
respectively, P=x (X), p=y (X, 1), where X e, Pe D=, pe P,cls. Let x
be a deformation with reference to x, x (P, )=y [k =1 (P, t)]. Equations of motion
of continua in material description with reference to x have the form [3,8].

Div T +pcb=p, a,

T=TT7,
where [3]: T,, T — the first and second Piola-—Kirchhoff stress tensor, T,=FT;
F —the deformation gradient, F=Vy(P,t); a —the acceleration vector, a=

(D

=7 x (P, t); p. — the mass density in x; b— the external body force vector.

The state of strain with reference to x can be described in terms of the displacement
vector u and the Green—St. Venant strain tensor E [3],
u=y(P,t)—P, F=1+Gradu,
E=1[Grad u--(Grad u)T+(Grad u)” Grad u].
Let (Figure): “/ denote the middle surface of the shell in x, Qe “/(; A;(Q) —

a unit vector field on M, |As|=1, Ay LW; {X¥} — normal coordinate system in
K such that [5]

(3 P=0+X° A5(0).
Greek indices will have the range (1, 2), while Latin indices will assume the range

(1,2, 3). Indices K, L, M and &, ¥, O refer to the quantities given at P e /7, while
A,B,C and I, 4, A refer to the quantities given at Q € W < .. This distinction

)

between the indices at P and @, which has not been used up to now in the theory
of shells, comes directly from the application of the absolute tensor analysis. It
enables an easy and consistent description of tensor fields on x.
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Let a set of three vector fields Gx(P)={Gy, G3} and A,(0)={A,, A;} form
a natural basis [3] of the normal coordinate system {X*} at points P and Q, respective-
ly, connected by (3) (see the Figure). Then we get the following relations [7, 1]

4) 1=17=Gx;, G¥Q G ' =A z, A QA = A, G¥= ;AR Gy;
K

u3=1, u3=pz=0,
Hh=AT-Gp=05 — X3 03 B!,

A2

(5) ﬂZI:AA'GW:AFA ﬂgG(M’,
y G
G=1|Gx;|, A=|A4sl, ﬂ:|ﬂxi = j .

Gradient and divergence operations on vector fields Gk (P) and u (P) and tensor
field T (P), written in basis Gk (P) or A, (Q), give us the following relations [7]:

Grad G Iy Gy © G- = Goy © i (45 -1 34 1) G 415, G},
Grad u=u¥, ; Gx ® G*=Gg ® ug {94 u€, G¥+u° ; G*},
©) Grad T=TX" ,, Gy R G, RG" =
=Gy @G, ® uf up {5 T*%, G°+T% 5 G},
Div T= tr Grad T=T*" | Gy=p5{d5 1 T*,+T*3 3} Gg,

(2,3)

where
(7) FﬁleGM'GK’L, F§A=AC'AA,A
and (), and ( )4 are the covariant derivatives of the components of tensor field,

calculated with the use of the I'}, and I'G,, respectively.

From (6) it is easy to derive many relations for tensor field components in the
basis G {P) in terms of their components in the basis A, (Q) [7]. For instance,.
from (6), we obtain [1]:

ity T p=(uply, T 6)| s— 1B 0 T3+ 5 ug T2,
®) HT¥ o =(UT> 0)|a+Bra puptg 0 T™ +u 3 T3,
Ue TP 3=(uh T%%) 5.

3. Shell deformation

The deformation y (P, t) can be expanded into Taylor series in the neighbourhood
of Qe N [5),

) (P ) =x(Q+X3 A5 )= x(Q, )+ X>Vy(Q,0)-As+

1
T (X2 V2 1 (0, 1) (As @ Aj) +...

o
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For thin shells only the linear approximation of (9) is usually taken into
consideration, and from (2); and (3) we have the expansion:

(1) u=v+X3B4..,
where
(11) V=X(QJ)‘Q,

B=Vy(Q,1)—1=(Gradv)-A,.
From (9), (10) and (11) we have an expansion for the acceleration

(12) a=u=v+X? fH~...,
where
d2
V= 20, 1),
(13)

2

B=FV){(Q, t)=(Grad V) A,.
Using the relations following from (6), as well as the linear approximation (10)
[7], the strain tensor E can be put in the form:
(4)  E(P,)=Ex (P, 1) GX(P)® G*(P)=0} 64 {oErs+X* 1Erat
F X 2Era} GPQ GY 485 {cErs+X3? 1Er} G®PR G +E53 G* @ G?

where:
2 0Er,(Q, t):(”ru ~Br4 ”3)+(”A|F_BAF v3)+
+ A ('UA|r—BAr v3) ('UIM —By4v3)+(v3, I'+B}1 v4) (93, A+Bj Uy)
2.Er4(0, f)=(,BrM —Br, .Bs)+(ﬁa|r—BAr B3)— B’,l(v,\m—&mvﬂ)— B/A‘(v/\l"e’/\r'v.%) ,
+AAE(ﬁA|1‘_BAr B3) ('U:M —B;4 713)+AA£(”A|F“BAF 3) (ﬂEM —By4 B3)+
(15) ‘{‘(ﬁs, 1‘+B}t B4 (7)3, A+Bj 7)2)-%(7)3’ r+B;} Vy) (.33 A+Bj Bs)»

2 2Er4(Q. )= = B (Bays~Bas )~ B2 (Buyr—Bar )+

+A"* (B4 —Bar B3) (Brja— Bz B3)+(Ps, r+B¢ Ba) (B3, 4+B% By,
20Er5(Q, )= Br+(vs5, B¢ v)+ A (0 r—Byr v3) P03, r+Bivg) Ps,
2,Er3(Q,)=P5, r+A4 Bar Ps+PBs,r Bs,
20E53(0,)=2f5 +A4" B4 Bx +(B3)*.

The expressions (15) furnish an adequate material description of shell deformation
when only a linear approximation of (9) is taken into consideration.

4. Equations of motion

Let us write Eq. (1), in basis A, (Q) in order to form three component equations.
After using (8) we have

(uph TS 69) 4— By uTYF G+ puly TP +py utly b®=py ity a®,

(16)
(UTYY 6)a+Bra pptg TS 04+UTY) 5+pe ub*=py pua®,
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Multiplying (16) by X? we arrive in turn at:
(i TY 0 X *)|g— By pTY 03 X2 — g TP+
(17 Fupa TP X3) 5+p pug b° X>=p, ppig a® X3,
(T 33 XY B sty T2 63 X3 — uT3 -1
+(uTY? X3) 3-+p ub® X3 =p, pa® X°.
With the help of (2), and (6), we have for the components of T, in the basis
GG,
a8) TRE=[0g+ur (u"l4a—By “) Jel T9L+ﬂ?~“,rs T,
T35 =[(u® y4-Bar uF) 05) TO 4-(14-1,) T3~

The relations (16), {(17) and (18) are exact. The linear approximation (10) in the
basis A, (Q) takes the form:

(19) ud (P, )y=v4(0, 1)+ X3 p1(0,1).

Let us integrate Eqgs. (16) and (17) with respect to X3 across the thickness H=
= H (Q) of the shell in the reference configuration x. Using (18) and (19), we obtain
the following equations of motion:

{07 +ot | r—Br o*) N[ r—BE (1-+53)) MT4-pA N4* 3, —
~ B4 (2 1 +-Brs vF) N4 (B 1+ Brs f7) M +(1+ %) N*3}+
+PA:0P%A+1PﬁA,
{(i’?r+3r2 @E) NFA+(ﬂ’3r+B” ﬂx) MFA+(1 +ﬁ3) NAs}]A"l"
+Ba {07 +0Mr— B v®) N[ B4 r— B (14 B3] M+ B4 N3} +
(20) FP¥=opt* 4 pp?,
{(0f +or = Bfv*) M+ [BAr—Bf (1+ )] KT+ B4 M2}~
— B (v + Brs v®) M+ (BP 4By %) KT+ (14 %) M*3} -
— (@R 0 = B o) NTSH A= B (B2 M7+ AN+
+MA: lp;)A+2p/3‘)A3
{(”,3r+3r£ v%) MrA+(ﬁ,3r+Br2 /) K 4-(1+6%) MAS}’A'{‘
B {6 0|~ Bie®) MU (B4 — By (14 5%) KT pt M43} —
- {(v?erBm v%) Nr3+(ﬂ?r+3rx By M7 (14-f°) N33}+
+M3 = 1P53+2Pﬁ3 ’

where:
NI‘A H/2 1 NAI‘
M =6 0y uTo? § X3 dx3=| My,
a1 ‘KI‘A —i2 (Xs)z KAr

NA3 Hj2 1
[MA3}=(5; | utes [XS] dx?,

—H/2
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H/2 of Hj2 1

<34 4.kl 5 _ s ,
Wal = fﬂxﬂﬂxb X2 dax3, L= fpxy X ax?,
—H/2 2P _hy2 (Xs)z
(?r r A r r 3 A I T
[Qr]:{[/‘¢+5¢(v a— By v>)+05 (f" 14— B, ) X3]vT*3 +
1 H/2
a4
—H/2
3 ~
[133]: {[‘SGA)(U,BA+BFA o)+ (ﬂ,3A+B1-A B X3 ul®34-
1 H/2
+(1+ﬁ3)u733}[X3] ‘ ;
—H/2

PA=(CA4LO034, MA=LCA49004.

The Eqgs. (20) obtained form the general set of equations of motion for the non-
linear theory of thin shells in the material description.
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B. Tletpamkesuy, MaTepuanbHele YpABHEHHS IBWKEHHS HEJIHHEHHOH TeOpHH TOHKHX 000.04YeKk

Conepxanne. B paboTe 00cykmaeTcsi MATEPHAIBHOE OMMCAAWE OOIICH HETWHEHHONH TEOpHHU NBH-
KEHUS TOHKMX OGOMOYEK, MpeArmosaras JWHEHHOCTL pacnpenesieHuss neopmalMKd Ha TOJIIKMHE
0007104KH. VpaBli¢HUs ABHKECHUS OCOJOYKM TMOJyYECHBI NMyTEM HHTEIPHPOBAHMSA MAaTepHabHOM
$opMBI ypaBHeHHI IBHXKCHHMS HEMPEPBHIBHOW Cpeanl MO TOJIIAHE OOOJOYKM B HAYaJbHOM He-
1eOPMHUPOBAHHOM COCTOSTHHH.



