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Summary. From the material form of constitutive equation of the isotropic elastic solid, using
absolute tensor analysis, the exact explicit formulae for the elasticity tensors up to the second
order for the solid in arbitrarily and infinitesimally deformed reference configuration are derived.

1. Introduction

A form of the strain energy function for elastic solids depends on the choice of
reference configuration {1, 2]. The response of a hyper-elastic material to deformation
from an arbitrary deformed reference configuration is different from the response
from the unstressed natural state. This fact, sometimes referred to as a deformational
anisotropy {3, 6}, can be taken into consideration by specifying the elasticity tensors
in a reference configuration. These elasticity tensors are, in general, different from
those defined in the natural state [2, 4].

In this note exact formulae for the elasticity tensors up to the second order
are derived for an isotropic elastic solid in arbitrarily and infinitesimally deformed
reference configuration. Appropriate formulae, relative to the deformed reference
configuration, are derived from a material form of the strain energy function, using
the constitutive relation involving the second Piola—Kirchhoff stress tensor [2]. The
absolute tensor calculus [2, 7, 8] and derivatives of tensor functions of symmetric
argument [5,13] are employed to this end. For an infinitesimally deformed reference
configuration the elasticity tensors have been expressed in terms of experimental
values of elastic constants of the first and second order in the natural state. There
is therefore no need to know an explicit form of the strain energy function of the solid.

The derived relations for the elasticity tensors can be useful in problems of
wave propagation, vibration and stability of initially deformed elastic solids, as
well as when studying the second order effects, superposition of deformations, etc.

2. Notations and basic relations

The absolute euclidean tensor analysis [2, 7—10] is used throughout the
paper, while the basic notations are those of [2, 5].

Let us denote the second order tensors by A, B, ..., H, S, T € 'C, and the metric
tensor of ‘C, by 1€ C,. The higher order tensors we denote by K, L€ ‘C,and M,
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N e ‘Ce. It is evident that tensors of the types 1®1, 1QE, BRB e T,, while 181®1,
BRB®B, GRK € Ce.

u,v
FortensorsPe C,, QeC,, p=g, the operation [8,10] P T denotes a transposi-
tion (u, v), tr P e T,_, —a contraction (g, v), | <v<u<p, while PQ= tr (PRQ)e

v p,p+1
€'C,,q4+2 —a simple dot operation, P-Q= r ... tr (PRQ)eT,_.,—a
full dot operation. p—a+1,p+1  p,p+g

The derivatives of a tensor function f:C,—C,, P=f(A) are denoted by S oas
f aa» .- and their values at A€ ‘C, by £ 4(Ag) € Cpis, [ aa(A0)€ Tpia, ... . When
A=g(B), g:(C,—>C,, the derivative of h=fog is defined as

) hg= tr tr (fa®g )
p+1,p+3 p+2,p+4

The derivatives of all tensor functions appearing in the paper, especially those
of symmetric argument A € *C,, have been given in [5, 8, 13].

Let us consider the body 13 in the three different configurations [2]: %, — the
natural state, unstressed; » — a reference configuration, arbitrarily deformed;
y— the actual configuration. For deformations yo=xox; ', y=yox~'and y*=yox; !,
with deformation gradients F,, F and F*, respectively, we have the relations [11]

) F*=FF,, E*=FIEF,tE,,
where for F we have

F=14H, B=FF",
()

1 ~ 1
E= (F'F-1), E=— (H+HD),

and similar relations for F, and F*.
The material constitutive equation for the elastic solid has the form

C)) S=p, 7 ),

where [2, 5]: S=JF1 Ty F — the second Piola—Kirchhoff stress tensor, =7, —
the strain energy function, both defined in respect to x as the reference configura-
tion.

For solids with a specified symmetry group the representation theorems are
known mainly for the strain energy function 7,=17,,, defined in respect to the natural
state %, as the reference configuration, where the following relation holds

(5 7 5 (E)=F, 70 5. (E*) Fg..
For an isotropic elastic solid 7, is an orthogonal invariant
©®) To (B*) =70 (Igs, Igs, [1Igs),

where Ig., IIge, I, are the principal invariants of E* € “C, [2, 5].
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3. Elasticity tensors

Expanding (4) into Taylor series in the neighbourhood of x, we have

1

) S=T+L-E+?M-(E®E)—}—...,
where

TETx=px T,E(O) s
(8) LELx:px T,EE(O)s

M=M, =p, 7 gee(0)
are the elasticity tensors (elasticities according to [2]) of the zero, the first and the
second order in the reference configuration x.

Let the deformation yx, be assumed a fixed one. Using (1) and the formulae for

derivatives of tensor functions [5, 8, 13], for isotropic elastic solids, we can define
the functions:

81 (E):IE.'EzBO >

1
©) 82(E)=Hg« g=B¢ I« — [Bo EB, +7(B3—B0)],

1
g3 (E) = IIIE., E— BO IIEn - [BO EBO +7 (B(Z) - Bo)] IE' +
1 , 1
-+ B, EB, EB, —%—? (B2EB,+B, EB})—B, EB, +Z (B3—-2B2+By) .
From (2), (5), (8) and (9), using (1) and the formulae for derivatives of tensor

functions [5, 8, 13], after transformations we arrive at the relations in the follo-
wing form [13]

3

10 L= 3 (oKt b G5
s=1

r=1
> 3 3,5 4,6
M= Z {Tr Nr+ Z [Trs(Kr®GS+{K,.®GS} T T +Gr®Ks)+
r=1 s=1 \
+ D G@G@G,]},
t=1 R

where

Gl:gl (0)=B07

1

(D G,=g,(0)=B, IEO__z_(B(Z)'_Bo),

1 1
G3=g5(0)=B, Ilg,— 2 (B3 —Bo) IE[*“I (B3 —2B3+By) ;



346 W. Pietraszkiewicz [644]

K, =g1,E(0)=0,

1 14
(12) K,=g, g(0)=B.®B, Y [B,®Bo) T +(By@Byg) 1,

1 1,4 1,3
K3 =85, £(0)=Bo®Bo /g, ~ 5 [(Bo®Bo) " +(Bo®Bo) "] (g, +1)—

1
— 5 [Bo®(B5—Bo)+(B; - o)®Bo]+ - [(B32Bo+Bo@BY) T +

+(B29By+B,®B3) T].
N1=g1,EE(0):0a N2=g2,EE(0)=0;
(13) 1 1.4 13
N; =£3,EE (0)=B;,®B,®B; — ?{Bo®[(B0®B0) T +(Bo®By) T]+

+[(Bo®Bo@Bo) T +(BO®BO®B0) d ]L[(Bo@u o) T +(Bo@Bo) *]@Bo}+

+—= {(Bo® (B0®Bo) +(B0®Bo) 1+[(B,©B,®By) T +
+(Bo®B,@By) T ])T+(Bo®[(Bo®Bo) +(B0®Bo) ]+
[(B0®B0®B0)T+(B0®BO®B0) D” }
31‘0 8 To
TP oL o T T G ol e g

(14) 7=

The obtained relations (10) represent the exact form of the elasticity tensors
of the isotropic elastic solid in arbitrarily deformed reference configuration .
The relation analogous to (10); is known in the literature (see [2] for references).
Explicit absolute forms for L and M given in (10), 5 seem to be novel ones.

If % is the natural state, x=x,, then B,=1, E=0, T=T,=0 and

Lo=2(1@1)+u[121) T +1e1) 7],

(15) 1,4
M, =7, 1Q1Q1)+v, {1@[(1@1) TL1R1) T] '
+[(1®1®1)T+(1®1®1) ]+[(1®1)T+(1®1) ]®1}+
+v3{(1®[(1®1) raent ]+[(1®1®1)T+(101®1) DT+
(1®[(1®1)U(1®1) ]+[(1®1®1)T+(1®1®1) DY,
where
1
1=0y,16, , ﬂ=-—?92,
(16) 1 1
vy =0y,,+-30,,%0,, V2=_7(612+63), v3=703,
(17) gr’=7ru=x0"'-a0rst Trsru %o
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The second order elastic constants v, v,,v; and the relation (15), written in
components in respect to the natural basis of a coordinate system given in %y, has
been introduced in [12].

4. Infinitesimally strained reference configuration

Although the relations (10) and (15) are exact, they can be derived analytically
only in the case when the explicit form of the strain energy function 7, is known.

For a wide class of elastic solids the explicit form of the strain energy function
has not been established as yet. The elastic constants of the first, and sometimes
also of the second order in the natural state %, have been found by experimental
tests.

In such a case, for a deformation y, with small displacement gradient H,,
[Holi~e<«1, it is possible to derive analytically the approximate values of the
elasticity tensors in %, expanding them into Taylor series in respect to Hj in the
neighbourhood of %y. Omitting the details of the expansion procedure {5, 11, 13],
we present here the results for isotropic elastic solid [13].

If only the 2 and u are given, we obtain the results known from the classical
linear theory of elasticity

T=Ailg 1+24E,
L=LO .

(18)

When aiso the constants v,,v, and v, are given, we obtain

v ~
T={i+(71+v2 —i) 117:0} g, 142 {ut (v -2~ ) Iy } Eo+

A

+ (71};0}1;— 2, II]‘;:'O) 1+uHo HI+4 (u+v;) EZ,

(19) L= {340, —2) Ig,} AR+ {u+(a— ) I, } [ASD T +A@D T |+
F20 4D (AQE,+ Ee@1) 42 (v341) [ARE,+E,@1) T +

+IRE,+ER1) T],
M=M0 .

The result analogous to (19), with other second order constants is known from
[14, 2]. The explicit absolute form for L given in (19), seems to be a novel one.
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B. Iletpamkesmy, O Tem3opax ynpyroctu Jae¢opMHpPOBAHHBIX M3OTPONHEIX TBEDPABIX Tea

Coaepxamie. Omupasch, Ha MaTepHalbHYIO GOPMY ONMPENENAIOMEro YPaBHCHHS Al H30TPONHOTO
YIIPYTOro TeNa, MIPW MOMOLIH abCOMOTHOIO TeH30pHOro awanmusa. B HacTosmieit paboTe BbiBe-
JCHB! TOYHBIC POPMYITBI Jist TEHIOPOB YIPYIOCTH O BTOPOTO MODSIKA BKIIOMUTENLHO MO OTHO-
IIEHWIO K TPOM3BOJILHO H MHPUHHUTE3IMMaNbLHO aedopMUpOBaHHON KOHGMTypauwmy ynpyroro
TBEPAOTO Tela.



