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On the Lagrangean Nonlinear Theory of Moving - Shells*

The virtual work principle is used to derive two-dimensionally exact equations of the nonlinear
theory of shells. All the relations are presented in terms of symmetrical stress resultant and stress couples
defined with respect to some reference (undeformed) shell configuration. The theory is extended to small
perturbation problems of deformed shells as well as to dynamical shell problems in a non-inertial frame
of reference. '

1. Introduction

The basic problems of two-dimensionally exact nonlinear shell theory were reviewed
by Koiter [1]. He used the Eulerian approach in which all quantities are defined or re-
ferred to deformed shell configuration. The deformed shell middle surface geometry is
not known in advance and the simple Eulerian equilibrium equations in general cannot
be solved without any further simplifications. However, for small strains (but large displace-
ments) all Eulerian relations become referred entirely to the known reference configura-
tion and in principle can be solved [17].

In general nonlinear shell theory it is desirable to distinguish at the beginning between
Eulerian and Lagrangean formulation of the theory, as it is done in three-dimensional
continuum mechanics. In the Lagrangean approach all quaniities are referred at the be-
ginning to some known reference (usually undeformed) shell configuration.

Lagrangean shell theory can be constructed directly by integration of the appropriate
three-dimensional continuum equations over the shell thickness. Using the second Piola-
Kirchhoff stress tensor, Habip and Ebcioglu [9], Habip [10] and Pietraszkiewicz
[5] discussed various dynamical nonlinear shell theories, in which three displacement
~ and three rotation components of the shell middle surface were taken as independent
deformation parameters. Shrivastava and Glockner [6] and Iwao Oshima [11]
used the Piola-Kirchhoff stress tensors to obtain shell equations, in which shell deforma-
tion was defined by three displacement components of the middle surface.

The appropriate equations of shell equilibrium and natural boundary conditions
for the nonlinear shell theory can also be derived using two-dimensional virtual work
principle. Thin approach was used by Koiter {1], Sanders [3], Budiansky {4] and
Simmonds and Danielsen [7].
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‘92 W. Pietraszkiewicz

In this report we use the virtual work principle to obtain the Lagrangean nonlinear
shell equations. We assume here that deformation of the shell space can be represented
entirely by deformation of its middle surface. We do not restrict any strains, displace-
ments or deflections of the shell middle surface, thus obtaining two-dimensionally exact
equations of equilibrium and natural boundary conditions in terms defined with respect
to some reference (undeformed) shell configuration and along its natural basis. The theory
presented here is expressed in terms of symmetric stress resultant and stress couple tensors
-and is such that after linearization it reduces to the “‘best” variant of the linear shell theory

discussed by Budiansky and Sanders {2]. This Lagrangean shell theory is being ex-

tended also to small perturbation problems as well as to shells vibrating in a moving
non-inertial frame of reference [16].

2. Notations and basic relations

Let r(8%) and r(9%) be the position vectors of the middle surface of a shell in the re-
ference and deformed configurations, respectively. We will use here as far as possible
the system of notations used by Koiter {1] and the author [17]. Thus, for the reference
surface we will use the following geometrical quantities: the base vectors a,, the unit
vector normal to the surface n, the metric tensor a,g, the curvature tensor b,,, the permu-
tation tensors &,; and € the Gaussian curvature K, the Christoffel symbols [ 280 L :B
and by a single vertical stroke ( ), we will denote the covariant differentiation with respect
to the reference surface metric. The analogous geometrical quantities for the deformed
surface will be distinguished by a dash: @,, %, G,5, b, €4, K, fz.aﬂ’ T, f,',, and by a se-
mi-colon (),, we will denote the covariant differentiation with respect to deformed
surface metric.

During deformation we have the following relations [1, 17]

r=r+u, a,=a,+u,
a,="a.+o,n, a*=1%a"+n"n, 2.1
n=n"a,+nn, n=g¢,a"+nn,

where
u=t,a"+wn=ua,+wn,
Ie=0;+u",—bgw, (2.2)

(ouiw,a+b: Uy s

_ i ,

n, =E“pE;.x 15 2.3)
n=3e"¢, 1%, I .

The metric and curvature tensors for deformed surface can be found from

Gyp=a,"ag, Eaﬁ=—da:ﬂ' ;'-=Ea|ﬁ.7': ‘ (2.4)
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where in the referencq metric
' 8,5 =d'u @y +dogn=3p,
dlap=V1p — bf 0a=d'pa> (2.5)
Aup=Qaptbple.=dg,.

Let us define the surface strain tensor y,; and the tensor of change of surface curvature
K,p by the following relations

Yap = %(aaﬁ - aaﬁ) ’ Kap = _(Eaﬂ - baﬁ) > (2-6)
where from (2.4), (2.5) and (2.1) it follows

Vop =3 W bes + 9 09— ), @7

Kaﬂ = —(n,‘ l:‘ap +nd¢ﬂ - bap) .

It is important to note here that the sign in our definition for x,, is opposite to that
used by Koiter [1] for his analogous tensor of change of curvature p,z. Our sign conven-
tion when linearized agrees with that used by Green and Zerna [13], Naghdi [14] and
Chernykh [15] for the linear theory of shells and will correspond to the usual sign con-
vention for the stress couples. Sanders [3] and Budiansky and Sanders [2] over-
came the sign convention difficulties by using the opposite sign in their definitions of
curvature tensor bg,. -

These strain measures y,; and x,, satisfy the following compatibility conditions [1]

2 =m
Eape u[Kﬁllu +5‘v(b_xl - Kx}.) yvﬁu] =0 5

2.3)
Ky +€¢Bel"[)’¢:§|m —b,, K, +% Koy Kga +%5“)’xay Yvg1] =0,
where we denote
Yapa="Vapi2 tVar|g —Vga|a>
a =g"e"a,, =§e"“e"ﬁ(a,,,+2y¢), 2.9)

il

a
; = % ealeﬁ”(aaﬂ + 2)’aﬁ) (a}.u + 2)’1#) .

]
4

In what follows instead of x;, we will use mainly the tensor of change of curvature p,,
defined by

Pag=Kap+5 (D5 Vep+ D5 Var) - ‘ (2.10)

This tensor p,, differs only by sign from that used by Koiter [1]. This choice of the
measure has one advantage. When linearized, it gives us the tensor of change of curva-
ture discussed by Budiansky and Sanders [2] as the “‘best” choice of the strain measure
for the linear theory of shells.
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3. Eulerian theory

Koiter [1] discussed the basic set of equations for the nonlinear theory of shells using
Eulerian approach, what can be summarized as follows.

Let us assume that the shell is in equilibrium under the surface load p, per unit area
of deformed middle surface S, and boundary force F and couple K, per unit length of
deformed surface boundary contour C. Then for any further virtual (infinitesimal) displa-
cement field

' " du=du,a*+déwn 3.1
subject to geometrical constraints only, the principle of virtual work have the form
J§ 06y, +m™3p,g)da= [[p-ouda+ [ (F-ou+K-5®)ds, (32)
5 5 c

where B
0Vap =3 (Ollsp+ Oilg,s) —bp W,
5.01[3 =5Kaﬂ +% (B: 5)’1:/1 +E; 5)’1:::) ’ (33)
OK o= —OW,qp— b Oy — bl Oty — bE,p S, +bE by W,
SR =e"(69, a4y +3 605, 1),
F=F°a,+Fn, K’=§,,,IZ“E’, p=p'a,+pn. 3.9
The symmetric tensors #* and m®, defined in deformed configuration S as the coeffi-
cients in the virtual work principle (3.2), are called Eulerian stress resultant and stress
couple tensors, respectively.
Applying variational calculus to (3.2) we obtain the following Eulerian equations of
equilibrium (1)

B, 17 Bx 178 _ a B —5_
(na +_2'b:m —'z_bxmx);a_bxm“:a'i'pﬂ—o’ (35)

maﬂzaﬁ +Baﬂ n* +p=0

and four natural boundary conditions, which can be put in several forms. Let v and ¢
are unit vectors, outward normal and tangent to the deformed boundary C, respectively,
such that

’ VX;=

< v=y,a°, t=t,a (3.6)
Then for _
ou=0o6u,v+ou,t+oéwn 3.7

the following four conditions have to be satisfied on free C
(n* —bE m™) v, v,=(F* bl K*)7,,
(n** —b? m“")Vaa,:Fﬂ—l;fIE")?,, ,

_od - = d -
m*, v,+d—§(m etg)=F + d—E(K 1) (3.8)



On the Lagrangean nonlinear theory of moving shells 95

It is important to note the simplicity and certain symmetry of our first two boundary
conditions (3.8); 5(cf. [1]). If we introduce the normal curvature ¢ and geodesic torsion
Tof C as ' '

E=Faﬂ?“~tﬂ, T= —Eaﬁ 5P : (B9
these two conditions can be expressed also entirely in terms of physical components

(n*V, V) +T (M, ) = FPv, + 7K1, ,

- SO (3.10)
(v, 1)~ (m*V, 1) =FPt,—5K’1,. :
Introducing the stress resultant and stress couple vectors by the relations
17 17 - -
n*=(n" 3 by m’ 3 b mg) ag+m* ", T, 3.11)

ma = éﬂl maﬂ'&l

the equations of equilibrium (3.5) and the necessary symmetries imposed on n* and m*®
can be found from the following two vector equations

nutp=0, (3.12)
m',+a,xn=0 :
which are equivallent to the global equilibrium conditions about the origin
{n*v ds+ [§pda=0,
¢ s (3.13)

f(m*+rx n*)v,ds+ [[ (rxp)da=0.

¢ 5j .
It is important to note here, that the equations (3.5), (3.12) and (3.13) are two-dimensionally
exact, what can be verified by an independent derivation of the Eulerian shell equations
integrating three-dimensional continuum equations over the shell thickness [14].

4. Lagrangean theory

It is easy to note, that the Eulerian stress resultant and stress couple tensors #* and m,
defined in (3.2), are referred to deformed shell configuration. Thus the vectors n* and m®
are measured per unit length of the deformed coordinate curves §. Usually the geometry
of the deformed shell is not known in advance and it is not possible to solve the equilibrium
equations (3.5) without any further simplifications.

In the exact nonlinear theory of shells it is desirable to deal with the quantities associated
entirely with the known reference (undeformed) shell configuration.

Let us assume the shell to be in equilibrium under the surface load p, per unit area of
the reference shell middle surfaces, and the boundary force F and couple K, per unit length
of the reference surface boundary contour C. If the virtual displacement field (3.1) is
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resolved in the reference surface basis
Su="ou,a*+oéwn

(4.1)

then the principle of virtual work (3.2) can be put in the following Lagrangean form
4.2

(N®5y,,+M®5p5)da= ({p-Suda+ [(F-Su+K-5Q)ds,
S ¢ ¢ S c

where here we have (3.3), and
5713 =%(l:z 51):# + lxﬂ 5lx¢ + @a 5 (03 + ¢ﬂ 5 ¢a) s
4.3)

Seag = — 1+ 8y —1"8d 15— g O11 — gy 1%,
F=Fa,+Fn, K=ezKa"+Kn, p=pa,+pn.
The symmetric tensors N* and M*, defined with respect to the reference (underformed)

shell configurationin (4.2), will be called the Lagrangean stress resultant and couple ten-

sors, respectively.
Using the relations ‘
— a _ a '
da=\/—da, vad'§=\/—vads
a a

it is easy to establish the relations between the Lagrangean and Eulerian quantities to be:
N = \/ L, M= \/ 2 . (4.5)
a a

To transform (4.2) let us note that in vector form
0yap=%0(a," ag)=%(0u," az+a, uy) (4.6)

(4.4)

Oap=—8(agp- W)= —[(On)}p— @ V10p00,.] 7
and the left-hand side of (4.2), representing the internal virtual work (IVW) can be transfor-

med to the form
1IVW = g [(Q%a,+Q°n) - u—M“n- 5 4] v, ds— js § (@*a,+Q"n),," ouda, @7
where
Q=N +1by M —1bi M™
0= M 37 MY, | 9
E: =E¢v(bvx — Ky
The second part of the line integral (4.7) can be transformed further as follows
— § M*n-8u,pv,ds=+ [ [M*n, 6u—M*(n-5u) ;] v, ds=
¢ ¢
— [ BEM™a,- Suv,ds+ [ [(MPv,tp),m- Su—
¢ ¢

- (Maﬂvu tﬂ n 5"),t - Mapva vﬁ(i ' 5"),v] ds ’ (4'9)
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where by ( ), and ( ), we denote directional derivatives at the reference shell boundary C,

in directions defined by the unit vectors v and ¢, outward normal and tangent to the reference
boundary C, respectively.

To transform the right-hand side of (4.2), representing the external virtual work (EVW)
it is necessary to transform only the last line integral as follows

{K-6Rds=1 | K-(a"xda,+nxdn)ds=~— | R°n-6upds=
C C c
= Cj bER*a,- Suds+ Cj [(R%tp) ,m* Su—(R%t, m" Su) ,—

~RPvy(n-6u),]ds, (4.10)
where
R? =Z’“K-Tz¢=\/% (e, K%+ Kop,). 4.11) ‘
Using (4.7), (4.9) and (4.10) it is easy to show that the Lagrangean form of the virtual work
principle (4.2) gives us the following Lagrangean equilibrium equations
(Qa;'l.p).-l_Qanﬁ)h-bg (Q11¢A+Qan)+Pﬂ=09 (4 12)
(0% 91+ QM)+ bo(@1, +Q*n") + p=0

and four natural boundary conditions, which we present here in the form similar to that
of (3.8) for the Eulerian theory. Thus if at the boundary C

Su=206u,v+dult +éwn (4.13)
then the following conditions have to be satisfied on free C
{(Q* —bE M™) v, Uy + 10", +(M*Pv, 1) J 1} v, = {F* BRI+ (RP15) ,n*} v,
(@ —BEM™) v, Ly + [0, + (M Py, 1) I n*} 1, = (F* B R + (ROt ¥} 1y, (414)
(Q¥- -I;g M™)v, 95 +[Q%v, +(M e tp) Jn=F— Ef Rfps+ (Rptp),: n,
My, v;=RPv,.
If we introduce the Lagrangean stress resultant and stress couple vectors by the relations
N*=Q%a,+Q"n, M*=g,, M*q*, 4.15)

where (4.8), (2.1) and (2.9) should be used, it is easy to show that the Lagrangean equations
of equilibrium (4.12) and all the symmetries imposed on N f’"’ and M®. can be found from
the following Lagrangean vector equilibrium equations

Niatp=0, (4.16)
M®,+3,x N°=0
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which are equivallent to the Lagrangean global equilibrium conditions about the origin

£Nv1d3+j§[pda=0, @17

[(M+¥x N v, ds+ ([ (rxp)da=0.
¢ $

It is easy to show that under (4.4) and (4.5) we have

a a a_
N“=\/—n", M“=\/—m“, p=\/—p (4.18)
a a a

and (4.17) can be obtained directly from (3.13).

The equations (4.12), (4.15), (4.16) and (4.17) are also two-dimensionally exact,
valid for arbitrarily large strains, displacements, deflections and rotations of the shell
middle surface.

The vector equations (4.16) enable us to discuss the obtained results from purely geome-
trical point of view. Indead (4.12) can be looked at as the component form of (4.16) along
the reference basis a,, n.

It is easy to note that our equations (4.12), (4.15) are different from those proposed
‘before for the Lagrangean shell theory. Our theory is formulated entirely in terms of symme-
tric stress resultant and stress couple tensors. This results here directly from defining them
as the coefficients in the virtual work principle (4.2), and not by integration over the shell
thickness as it is done in [5, 6, 9 - 12]. Our equations are two-dimensionally exact. It
means that, as yet, we have not restricted any strains, displacements or deflections of the
shell middle surface. The equations are written entirely in known reference shell geometry
by means of quantities defined with respect to the reference configuration. For any parti-
cular shell problem our equations in principle can be solved without any further simplifi-
cation.

On the other hand our equations are much more complex than those of the Eulerian
theory (3.5) and (3.8). Although the full discussion of various consistent simplifications of
our equations will be published separately, it is interesting to note here the following two
extreme special cases. If the flexural strains are supposed to be much smaller than the
extensional strains, all stress couple terms can be ignored, and the resulting membrane
equations are those derived by Budiansky [4] for the Lagrangean membrane nonlinear
shell theory. Complete linearisation of our equations for infinitesimal strains, displacements
and deflections leads to the ,,best” variant of the linear theory of shells [1, 2].

S. Small perturbation problems

Large class of problems, such like dynamical stability or small vibrations of deformed
shell, can be solved using the exact theory of small deformations superposed on the large
finite deformation [13]. Let us assume that the deformed shell S undergoes some small
perturbation and becomes S".
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Thus

—_— x — * — *
r'=r+en, a,=a,+‘ea,, N =n+ten,

(5.1)

— * - >
a;ﬂ=aaﬂ +8aaﬂ’ b;ﬂ::baﬂ +8baﬂ’

* *
Vap =VapFEVap> Kap=Kep+eKeg, e€tC.,

where all geometrical quantities with star can be found easily in terms of undeformed
geometry and perturbed displacement field. Thus, for example, from (5.1) and (2.1) to

(2.3) we find

a,=Ia+¢.n, n=n‘a+g.n, (5.2)
I =u*,—biw, 0o =W o +bE 1,

Vap= (1 lxﬂ"'l Leg+ @0 05+ 0o 0p) (53)‘

*

* * * *
Kop=—0op—dogn—dyygn™ —dygn®,

1 = —2n*g® y +\/ e ;'K((”al;.ﬂ' (”alzﬂ)’ (5.4)

* — R a »
n=—2na"y,, +\/§ e®e*l,, 1y,

* *

&aﬂ=2§aﬁ’ baﬂ= —Kap> (5.5)

a*’ = —2a""a*y, ﬂ+2—e e’ yaﬂ, etc.

Let us assume also' that
' p'=p-|-8pik F'-——F+ i‘-', K'= K+8k'
’ ¢ ’ i (5.6)

NP =N*+eN*, M"“F=M*4eM*.

If we now write down the e_quilibrium equations (4.12) for deformed perturbed shell §'
and substract (4.12) valid for S, we obtain the following Lagrangean equations to be satisfied

for the perturbed quantities

(OB, + Q%P = BE (0% 3+ O%n) + (O + Q%P) ,— bE(Q™ , + Q%) +

+ [%(l;z Mlx - l;i Max) lf-l_ (a‘aly,lux + Eal‘;lyx) M‘mnp]]a -
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— b3 (B M — b M™) 0, + (8 2 + @5 00) MP] + 57 =0, (.7
(0% 9+ 0yt bey( Q2 +0°) +(Q 6, + 0 ) o+ b Q1% + Q%) +
LA LEBE M — B M™) 0, (0 8 1) MP 1] o+

+ bap[_;'(l;: Mlx - I;fc’ M“) lpl +(&M‘)’Mm +aaﬁ.)‘;‘m‘) M‘mn#] +i’ =0 3
where we denoted
Aa e 17a agix  1TA pgax
Q=N +3bi M —3bx M™,
07 =M, + 3%y, M, 58)

b; = aapb,‘ﬂ +aapb,‘ﬂ 3

‘);Amc =).’).u|x +);Ax|u _iuxll .

The appropriate boundary conditions for the perturbed quantities can be found similarly
from (4.15) to obtain :

(0% — B8 M™)v, 1% — b My, 1%, +(Q — B M™) v, 1% +

+ 0%+ (M, 1) Tt + [ Q% +(MPv, 1), ] ¥} v, =

;{ﬁ*—(zg R+ BB R P — BB R, +(RP1p), m + (ROy) %) v,
(@~ B8 M=) v, Ty — B Mo, Iy +(Q — b M™) v, Iy +

0™, + (M, 1), T n* +[Q%, + (M, 1) 1 i} 1, =

= {F4— (B R*+ b R*) I, — B8 R*I%, + (RPty) ,n* +(RPty) ¥} v, (5.9)
(G~ B M=), y— B M, 0, +(@ ~ B M™)v, by +

+IQ Ve H(MPv,tp) 10 +[Qv + (M, 1) ] 1=

=F — (B! R* g+ bf R* ) — L R* oy + (RPty) . n+(R? ;,,),, ",

. "
M"”vav‘,=R vg-
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6. Dynamics of shells in a non-inertial frame

Up to now our Eulerian or Lagrangean equations can be used omly for statical shell
problems. It is easy, however, to extend them also to dynamical shell problems using the
vector equations (3.13) or (4.17). Thus if dynamical effects are taken into account then
(4.17) should be replaced by [8]

[ N*,ds+ [{ pda= [[ pada, :
c 5 s 6.1
f(M*+rx N9v,ds+ [§(m+Txp)da= |§ p(rxa+1-¢)da,
¢ 5 S

where p is the mass per unit area of the reference shell middle surface, m — external surface
moment per unit area of the reference shell middle surface, 8 — angular acceleration vector
of the shell deformation, 7 — moment of inertia tensor. Solving the dynamical problem
we should known p, m and I in advance. Here, looking only at the conventional shell theory,
we assume m=I1=0. ‘
Inertial frame of reference {O,, #;} can be defined [16] by choosing a point O, in three- -

dimensional Euchidean point space and three umnit orthogonal vectors i, m=1,2, 3.

_ In this frame the motion of the shell middle surface points P(¢) can be described by

Fo(1) =0 P(t) = Tor()im=(rE +uP) ay +(ro +w)n,

cd _ .8 .
v(t)=a r(ty=uaz+wn,
: ' (6.2)

dZ
a(t)=2t§70(t)=ﬁpap+i{m

and appropriate Lagrangean equations of motion follow easily as component representa-
tion in ag, n basis of

N, +p=a. (6.3)

Let us assume further the another moving non-inertial frame of reference {O(1), k,(1)},
defined by a moving point O(¢) and three moving unit orthogonal vectors kr), i=1, 2, 3.
In this moving frame the motion of the same P(¢) is described by

(1) =0 ()P () = () k() =(* +u*) @y +(r+w)n. (6.4)

Let the motion of the inertial frame {O,, i,} with respect to the moving frame {O(z),
k{(t)} is defined by a vector function ¢(f) and an orthogonal tensor function Q@(z) such
that [16]

c=c()k;, Q=0,(NkQk;, T=c+0r,. (6.5)
Then for absolute acceleration in the moving frame we can prove [18, 16] the formula

a=F—E—24(F—)—(A—A)(F—c), (6.6)
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where here _ ' '
A=007, A=4>-Q0",

o (6.7)
A=—AT, A=-AT

and the dot means the time derivative with respect to the moving frame, keeping k; constant.
The orthogonal tensor components Q;; can be expressed in terms of only three functions,
Euler angles y (¢), @(t), 0(t) for example [16]

cos pcosy —sin gsiny cos§, —sin pcosy —cos psinycosf,  sinysind
Q;;=|cos psiny +sin pcosy cosf, —sin gsiny +cos pcosycosf, —cosysinf| (6.8)
sin psin @, cos psin g, cosd

For any reference surface geometry, defined in the moving frame by r=r(6%) we can easily
express k; in terms of ag, n and Lagrangean equations of motion follows as component
representation of (6.3) in ag, n basis, using (6.6) for absolute acceleration.

Received by Editor, February 1973.-
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O nieliniowej teorii powlok w ruchu
Streszczenie

Podstawowe zaleznoéci nieliniowej teorii powlok uzyskano z dwuwymiarowej zasady prac wirtu-
alnych. Przedstawiono teori¢ powtok zar6wno w ujeciu Eulera, gdy wszystkie zaleznosci formutowane
s3 w nieznanej geometrii konfiguracji odksztalconej powloki, jak i w ujeciu Lagrange’a, gdy wszystkie
zaleznosci formulowane sa w znanej geometrii ustalonej konfiguracji odniesienia powloki. Przedsta-
wiony w pracy nowy wariant nieliniowej teorii powlok w ujeciu Lagrange’a zawiera tylko symetryczne
tensory sit i momentéw wewngtrznych i stanowi naturalne uogoélnienie ,,najlepszego’ wariantu liniowej
teorii powlok. Uzyskane wyniki sa dwuwymiarowo Sciste dla powierzchni §rodkowej powtoki.

Podstawowe zaleznosci teorii powlok w ujeciu Lagrange’a rozszerzono réwniez na zagadnienie
malych perturbacji stanu odksztatconego oraz sformulowano podstawowe zwiazki nieliniowej dynamiki
powlok poruszajacych si¢ w nieinercjalnym ukladzie odniesienia.

K nemmeiinoli Teopun JBuxymmxca 000,104ex
PesomMme

OCHOBHbIE 3aBECAMOCTH HeNHHEHHOR Teopun 000JI0YEK MONYYEHE! M3 ABYMEPHOrO NPUHLKIA BHp-
- Tyansnoi paGoThl. PaccMoTpena Teopus o6oIouek B 3IIepOBOM HIPEACTABICHAN, KOT1a BCE 3aBUCHMOCTH
dopMyIEDYIOTCA B HEM3BECTHOM reoMeTpHH AeHOPMEPOBAHHOK cpenmsuioﬁ TIOBEPXHOCTA 000JI09KH,
a TaKxKe B JIATPaHKEeBOM IPEACTABICHHHA, KOTZAA BCE 3aBHCHMOCTH (GOPMYIHDYIOTCS B H3BECTHOM reo-
MeTpaE HenehOPDMHEPOBAHHON CpCIMHHOM HOBEPXHOCTH OGOIOYKH.

IlpennaracMast HOBas HelWHeliHaA Teopus o6ONOYEK B JTAarpaHXeBOM NPENCTABICHWHA BBIPAKAETCH
TOJIBKO depe3 CAMMETPHYCCKHE TEH30PhI BHYTDEHHHX CHII A MOMECHTOB H SBNgeTcs 00OOWICHEEM ,, Hali-
nyumero” BapmaHTa NAHEHHOM Teopud o60i0uek. PesymeTaTsl noiydeHnsie B paboTe sBRstorca OBY-
MEPHO TOYHLIMH JUIN CPEIMHHOM MOBEPXHOCTA 06OIOYKH,

OCHOBHEIE 3aBACHMOCTH Teopud 0000Y€K B JIATPAHKEBOM IPEACTaBiIeHHMH 0600meHsl Ha npobne-
MEl MAJILIX nepTypGarmii nedopmuposanEOoro coctosnua oGomouxd. ITosygensl Takke OCHOBHBIE 3aBHU-
CUMOCTH HENMHelHON MuHAMAKA 000JIoYeK IBHKYIIWXCA B HEMHEPIMAIbLHON CHCTEME OTCYETa.



