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Simplified Equations for the Geometrically Non-Linear Thin Elastic Shells *

The Lagrangean and canonical forms of geometrically non-linear shell equations have been simplified
under various restrictive assumptions. The simplified equations contain an error introduced by the
approximate constitutive equations only.

1. Introduction

In the geometrically non-linear thin elastic shell theory it is important to choose
the appropriate quantities as independent variables well suited to the problem solved.
The obvious choice — three displacements or three stress functions — leads to extremely
complicated sets of equations which are hardly readable and difficult to use in a general
discussion. The fully Lagrangean shell theory as proposed recently by Pietraszkiewicz
[1] contains explicitly some deflection and displacement components, while the set of
equations proposed by Simmonds and Danielson [2] is expressed in terms of finite
rotation and stress function vectors. All these quantities are not so easy to handle in gene-
ral shell discussions. :

More promising for many shell problems and equally general seems to be the so
called intrinsic approach suggested in the pioneering work of Synge and Chien [3], in
which the strain or the stress measures were suggested to be taken as independent variables.
For appropriate boundary conditicns the solution of a non-linear shell problem can be
divided into two steps. The problem for stresses and strains is solved first and displace-
ments, if necessary, are obtained by a direct integration of the strain-displacement re-
lations.

Using stress resultants and changes of shell curvatures Danielson [4] derived a new
set «f six intrinsic shell equations. For the first approximation small strain theory these
equations were simplified with the help of Koiter’s [5] estimates of the accuracy of two-
dimensional shell constitutive equations. Recently Koiter and Simmonds [6] intro-
duced, with the help of additional estimates for the stress derivatives in shells as obtained

* Praca wykonana w ramach problemu resortowego PAN-19, grupa tematyczna 2. Byla przed-
stawiona przez autora nahkonferencji GAMM Aunnual Meeting w Gottingen w kwietniu 1975 r. (Pre-
sented at the GAMM Annual Meeting, Géttingen, April 1 -5, 1975).
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by John [7}, some modifications to Danielson’s equations and obtained what they called
a ,,canonical form of intrinsic geometrically non-linear shell equations”.

In this note we discuss some of the possible simplifications of the Lagrangean and
the canonical shell equations for some important classes of the shell problems. Following
essentially the arguments used by Koiter [8] we restict here independently the following
parameters: the ratio between the bending and membrane strains, the ratio bétween the
length of deformation pattern and Gaussian curvature of the undeformed shell middle
surface, as well as deflections of the shell middle surface. Using the order-of-magnitude
estimates for all terms we assume it to be possible to omit all terms of the same order
as those omitted because of approximate character of the shell constitutive equations.
This simplifying procedure is somewhat different from that used by Koiter [8], where
the terms omitted were supposed to be small with respect to other terms in a particular
simplified equation. Our simplifying procedure does not introduce any other error to the
basic equations beyond that introduced already by approximate constitutive equations.
Thus the solution obtained from the properly simplified equations has the same accuracy
as that obtained by solving the full unsimplified set of equations.

2. Basic relations

1n this note we will follow the system of notation used by Koiter [8] and Pietraszkie-
wicz [1, 9, 10]. With the undeformed shell middle surface, defined by the position vector
(3, a=1, 2, we associate the standard surface base vectors a,=r,, the metric tensor
a,,=a,a,, the unit normal to the surface n=%e”’aaxaﬁ and the curvature tensor b,;=
=a, ;0. Similar geometrical quantities associated with deformed shell middle surface
will be distinguished by a dash, for example a,, G4, B, b,,, € etc.

The Lagrangean surface strain tensor y,; and the Lagrangean tensor of change of
surface curvature x,; are defined by

yaﬂ = %(aaﬂ - aaﬂ) s Kaﬂ = (Ea[} - baﬁ) (2'1)

and they satisfy the following compatibility conditions [8, 9]

Eaﬂelu["ﬂuu +a" (b —%,2) Vopput Yourp— )’ﬂulv)] =0,
Ky + Eaﬂelﬂ[?aﬂ pa— bouKpa 3 (K g2+
+ @ Valpe  Vruta = Yaupe) Popat Voap— V2 31=0. = (2.2)
In what follows we shall use, instead of x,;, the modified tensor p,; defined by
put=Kag+ 3B g B ie) (2.3)

the linear part of which is exactly the measure supposed by Budiansky and Sanders
[11] to be the ,,best” for the linear shell theory.

The fully Lagrangean equilibrium equations, expressed in terms of the Lagrangean
symmetric stress resultants N*# and stress couples M*, have been derived by Pietraszkie-
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wicz [1] in the form
(Q¥1%,+0n) ,— bE(Q™ 9+ Q°m) + PP =0,

2.9
(079, + Q) o+ boy(Q*, + Qn") + p=0,
where
zﬁ:Nqﬂ 112 Mx/}__ I'Eﬂ me
Q + 2 bk 2% s (25)
Q'az‘Maﬂlﬂ + 5zv('yvl|u + yvu|l _ylu|v) Mlll
and the other quantities are defined by the relations
a,=l,a.+9,n, mn=n‘a +nn. (2.6)

Danielson [4] showed that it is possible to express the Eulerian equilibrium equa-
tions derived by Koiter [5] in terms of Lagrangean quantities only, to obtain

Nlﬁla—l_(_lﬂu(z'})u“l_'ylm]u) Nla_%(gg Mfa"‘E‘:‘Mkﬂ)la—-—Eg M z+

- a _
~b’ "(27u1]¢—711|,,)M“+\/ o =0, (27

a —a, N a a -
M|+ (@ (27,218 — Vagp) M) jo+ bog N ﬂ+\/—a-p=0.

This form of equilibrium equations is particularly suitable in the intrinsic approach.
The approximate constitutive equations for thin isotropic elastic shells undergoing
small strains have the form [5, 6]

1
N i [ =7 e 40 (i,

M =D [(1 ) p™ + va® ] + O (B @5
or
' Yap=AL[(1+) Nog—vaoy Ny]+0 (%), (2.9)

1 - '182 .

p,ﬂ =le—_?) [A+v)M p—va, M) +0 (—h) )

where
1 Eh®
=@ P haony

h h o
cmax (2T, 2.10
e max(L y \/R \/11> (2.10)

and £ is the constant shell thickness, R — the smallest principal radius of the undeformed
middle surface curvature, L — the minimum length of deformation pattern, d — a distance
from the shell boundary, n — the maximum value of strain and the symbol O( ) means
,,the order of”,
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In the order-of-magnitude estimates we will use the following estimates for the various
parameters

ag~l by~ Opst)s
<ﬁ>2<<1, —»h <1, n<i, (2.11)
L " R ;
where
}x=£=min(L,d,\/hR,l,1>- (2.12)
e JH

Following the line suggested by the works of Danielson [4] and Koiter and Sim-
monds [6] it is possible to considerably simplify the compatibility (2.2) and the equili-
brium (2.7) equations and obtain the following canonical shell equations

Pl —Phat 31 +V) A(BEN,— b5 ND) [ — ABING 5+
_ 7184
+(A+V) APENG 3+ pi Njj) —vApy Nb  —24(1 +v)(bE — pl)p,=0 (H)

2
—0 <’77;~> . (213)

a]ﬂ ~1(1=v)D (b} p}— b;.Pa)m Db, Pagﬁ+D(PaP,1 153P1Px)|ﬁ+2A(NlN s~

AN+ b; pl— b3 pf—3p} pi+3p3 o+ A( +)p"

_ 84
—4A[(1—v) NYN 4+ vNi N7 .+ 24 [(1+v) N2p,~vNip )+ (1 +yD)p,= O (Eh '1/1) ,

2
a « - ne
Dpifs+(b5—p5) N+ =0<Eh2 Az) :

These equations differ from those presented in [6] by the sign convention for p,; and
by taking into account the surface forces p, and p.

It is important to point out here that the selection of N** and Pap as the independent
shell variables introduces the smallest error into the intrinsic equations. If we decide, for
example, to eliminate N** from equilibrium equations (2.7) the error introduced to
(2.7), by (2.8), happens to be O(Fhne?/l) and all terms, except the first one, should be
omitted within the same accuracy.

The approximate constitutive equations (2.8) and (2.9) may also be used to simplify
the Lagrangean equilibrium equations (2.4). Thus after elimination of M* and Yap from (2.5)
we obtain

Q=N +4D (1 —v) (b2 p™ — bl p™) + O (Ehne®),

2 2.14
Qa=Dp:|a+0( hZ _/7]'“> . ( )

which simplifies considerably the equations (2.4).
The relations (2.13) or (2.4) with (2.14) contain only an error introduced by
the approximate constitutive equations. However, there are many shell problems for
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which the type of solution expected can be predicted in advance. If for a particular shell
problem we restrict at the beginning the domain of some properly chosen parameters,
then the solution can be obtained with the same accuracy from a considerably simplified
set of equations. In the following chapters some possibilities of this kind will be discussed.

3. Restrictions on the strain ratios

Let y be the maximum value of extensional strains and p the maximum value of change
of curvature at certain shell point on the middle surface. Then ph/y describes the ratio
-between bending and membrane deformations.

In respect to the restrictions put on the ratio ph/y it is possible to distinguish the fol-
lowing types of shell problems:

ph
a) — <& membrane shell theory,
Y

.1 ph .
b) —~~5?58 bending shell theory,
€

h 1 :
<) %2—2— inextensional bending shell theory.
P

For the membrane shell theory order-of-magnitude estimation of all terms with p,;
allows to omit in (2.13) a lot of terms of the same order as the error of the equations,
and the canonical shell equations can be simplified to the form

4
) _ ne
PPl 3 (L+v) A(bENG — b ND,— ABL N —24(1 + v)bgpﬂ=0<“),

ne’
120(12)’ Gy

N2+ 24A(NEND —3A[(1 = V) NS NE+VNENG] o

ANZj+ A(1+v)p*

4
— — AN e
+24 [(1 +v) N;'p;‘—\‘N;:pa] +(1 +V;:)Pa:O(Eh 77) ’
2
a T 1]8
b,;Nf+p=O(Eh2»lz>-

It is easy to see that the membrane equilibrium equations (3.1); 4 can be solved in
terms of N* without any reference to the compatibility. Because of that the membrane
shell problems are sometimes called statically determined. The additional independent
equation (3.1), to be satisfied by N shows that within geometrically non-linear shell
theory the membrane state can occur under particular circumstances only. The most
interesting result to be noted here is that under the error of canonical equations it is ne-
cessary to take into account the linear as well as the quadratic terms in N*/.

For the inextensional bending theory order-of-magnitude estimation of all terms with
N* allows to omit in (2.13) a lot of terms of the same order as the error of the equations,
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and the canonical shell equations can be simplified to the form

4
s 8 _oflE
Pa|ﬂ_Pﬂla—O<”}a“> >

2
a a a 718
by pa —bips—3pipl +%pap§=0(»i~2>’
a|ﬂ (1—V)D(b1/’; bzpa)lﬂ ~Dbf P1|ﬂ+ .
&
+D(p;pi~ léfpip:).ﬁ(l+yi)§,,=0<Eh-’7-[>, (3.2)

82
wigeao(w')

In analogy to membrane equations it is easy to see that compatibility equations (3.2); »
can be solved here in terms of p,; without any reference to the equilibrium. Because of
that, the inextensional bending shell problems are sometimes called geometrically deter-
mined. The additional independent equation (3.2), to be satisfied by p,; shows that within
geometrically non-linear shell theory the inextensional bending state can occur under
particular circumstances only. Itis also interesting to note that under the error of canonical
equations it is necessary to take into account the linear as well as the quadratic termsin p,g.

The simplified sets of equations (3.1) and (3.2) are not supposed to be used for
solving problems of shells with singular middle surface points, because in such problems -
they occasionally may lead to inadequate results, For example, if we apply the membrane
equation (3.1) to a flat membrane, for which #£=0, then equation (3.1), becomes indefi-
nite. The similar problem appears also within the linear theory of shells, where as typical
the following singular surfaces were noted: plate, infinite cylinder, cone, toroid. However,
the simplified equations are not supposed to be applied even to shells with points near to
singular such as very long cylinders or very shallow shells.

4. Restrictions on the length of deformation pattern

In the first approximation shell theory it is possible to solve problems in which the
length of deformation pattern is at least one order of magnitude greater than the thickness
of the shell (2.11). For some problems it is still desirable to put an upper bound on the
length of deformation pattern by the relation [8]

K| <é. 4.1)
This type of deformation is typical for bending shell problems for which we do not
need to use N* and p,, as independent variables and so high accuracy in (2.13); 5. This
allows us to reduce the canonical equations. If we admit the use of other quantities then
the error introduced into the equations (2.13) from constitutive equations (2.8), and (2.9),
is larger than indicated in (2.13), and equilibrium (2.13); and compatlblhty 2.13)4

equations reduce to
B _ B ne’
28~ =0 ]
Pajp— PBla ( WA )

42
Ne o +7 =0<Ehﬁ) 2
alp Pa ) ‘
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Now it is possible to use the fact that under (4.1) the order of the surface covariant
differentiation is approximately immaterial. Thus it is possible to introduce a curvature
function W and a stress function F by the relations

2
=W +0 (%) ,  NE=3% F|*+ P40 (Ehyd (4.3)

which satisfy the equations (4.2) within the same error. The remained equations (2.13), 4
have, in terms of W and F, the form
2
ne
2]=0 (72‘) ;

Flg— o5 (bi—2W
ﬂFK. o a 8, — h27)82
DF[5+(b—-W[D P, +p=0(E )

Wi+ AP~ (1 +v) P}

(4.4)
DW |25+ 85 (bs =W

and these are, with accuracy up to different sign conventions, the quasi-shallow shell
equations as obtained by Koiter [8].

5. Restrictions on deflections

In the general case the deformation of the shell middle surface can be divided into
three successive steps: rigid body translation, rigid body rotation, and pure deformation.
Geometry of the surface deformation with the use of the finite rotation vector has been
discussed by Simmonds and Danielson [2]*). Here we usedeflections rather than
finite rotation vector components, since they are already included in our Lagrangean
equilibrium equations (2.4).

For the shell deformation we have [8, 9]

]uﬂ=amﬂ+9azﬂ_waﬂs ¢a=w,a+b:ux9 (5'1)
where
Saﬂ =%(ua[ﬂ +uﬂ[a)— bzzﬁ w,

(5.2)
Dyp z%(uﬂla.— ua]ﬁ)’:eaﬂ w,

and u,, w are the Lagrangean components of the displacement vector.

Let ¢ be the greatest deflection of the normal to the shell middle surface and w be the
greatest rotation about the normal. For the small finite deflection shell theory we use the
estimates *

w~g, @~ (5.3
which leads to the following estimates

yaﬁ=‘9aﬂ +’%(aaﬂ o’ + 9. q)ﬂ) +0 (7)8)’
— e (5.4)
P~ ot onet o) +0 7).

n*=—¢"— 9’0+ 0(e), n=1+0(). (5.5)

*) General theory of finite rotations in shells has been developed recently by Pietraszkiewicz [12].
Consult also [13, 14].
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With the help of (2.14), (5.4) and (5.5) the simplified Lagrangean equilibrium equations
(2.4) can be obtained in the form

[N*1+3D (1 =)(b} p** = b ™ (0] — 0" 0,2)— D (0 + 9 0*)] o~

84
— b (N9, +Dpi|)+p’=0 (Eh ﬂi’) ., (5.6)
Nm). D Kla b ale sl fu _ . 2'782
Pajat DPifat boy N¥(0; — a™w,2) + p=O| Eh )

If we use a more restrictive assumption @~ &2 together with ¢ ~ ¢ then all underlined terms
may also be omitted.

Equations (5.6), can be simplified even further for problems which are supposed to
be solved in displacements. In such a case the constitutive equation (2.8), introduces

82
an error O (EhﬂA ) and equations (5.6), become
A

2
[N(8 ~ aa,,)] P =0 (Eh %) - G-

Finally, introducing (2.8);, (5.2), (5.4) and (5.5) into (5.7) and (5.6), we obtain the .
set of equations for small finite deflection shell theory to be solved in displacements,

It is worthwhile to point out at the end that the classical von Karman-type non-linear
shell theory is based on simultaneous restrictions of the following quantities

p~e, o~ IKILZsaz,

2
Y ve, pP<ER ?;« (5.8)
v A

-under which
yaﬂ = Saﬁ + %W,a W,ﬂ ~+ 0 (’782) ’

ne
aﬂ+o(7>, (59)

and the classical non-linear shell equations may be shown to have the known form

2
. ne
k=() — ]
32
vl N

. 1
:z—ézi(bﬁ+wl£)Fl§=p+0<Eh2l )

p:zﬂ:_w

AF|8 46522+ 4w w

N

Dw (5.10)

These equations, called also the shallow shell, equations, are used most frequently
in the up-today literature.

Received by the Editor, November 1975.
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Uproszczenie rownan geometrycznie nieliniowej teorii cienkich powlok sprezystych
Streszczenie

W pracy rozwazono mozliwosci uproszczet rowpafn podstawowych, geometrycznic nieliniowej
teorii cienkich powlok sprezystych. Uproszezefi dokonano przewidujac charakter nieznanego rozwia-
zania, a w szczegllnosci stosunck migdzy odksztalceniem membranowym i gigtnym, diugoscia fali
deformacji i krzywizna Gaussa powloki, a takze uzywajac roznych ograniczen na obroty otoczenia
powierzchni $rodkowej powlok. W kazdym szczegdlnym przypadku, rownania uproszczone uzyskano
pomijajac male czlony rzedu bledu zawsze wprowadzanego do réwnan podstawowych w przyblizonej
postaci rownan konstytutywnych.

¥Ynpoueawe ypaBHCHHE reoMeTpPAYSCKM HETHACHHOH TeopuM TOHKNX
YEpPYTUX 000109eK

PesoMme

B pabore paccMaTpHBalOTCS BO3MOXKHOCTH YIPOLIEHHH OCHOBHBIX YPABHEHMH I€OMSETPHYECKH He-
JMHEHHOH TeOpWH TOHKHX YNPYTHX 00OJIOYeK. YHPOMICHHA MPOBOAWINCE NPENABHALIBAA XapaKTep Heu3-
‘BECTHOTO PELICHHs, & B OCOOCHHOCTH OTHOIZEHHS MeXay MeMOPaHHON U u3rubuoi AeopMAUMAMHY, JITTHHOK
AehopMaHOHHOM BOJHBEI W KpWBH3HOH I'aycca 060J10YkH, 2 Takxe NOMB3YACh PA3NHYHBIMH OrpPAHH- -
HGeHHSMHE HA 000POTHl OKPECTHOCTH CEPENMHHOM MOBEPXHOCTH 000JI0YKH. B KaXOOM OTAECITEHOM Cllydae
YOpOLICHHBIE YPABHEHHs NONYYANHCH Ipewebperas MajibMh WICHAMY MOPSUKE IOTPEIIHOCTH, Leerna
BBOJMMOI B OCHOBHBIE YPABHEHHSA M3 NMPHOMMKEHHOH (OPMBI KOHCTUTYTUBHEIX ypABHEHMI,



