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Consistent Second Approximation to the Elastic Strain Energy of a Shell

For a homogeneous linearly-elastic solid the strain energy function o, per unit volume of an undeformed reference
configuration, and the Lagrangean constitutive equations, expressed in terins of the second Piola-Kirchhoff stress
tensor SY) have the forms
o= LB By, 89 = LEy, ()= 1,2,3). o)

Here K, is the Green strain tensor and L* is the linear elasticity tensor. :

In the undeformed reference configuration of an elastic shell of small thickness & we introduce a normal coor-
dinate system 9%, ¢ such that £ is the distance from thereference shell middle surface . The shell strain energy
function X, per unit area of J, is defined by
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where I/ and K are the miean and (Gaussian curvatures of i, respectively.
For a material having elastic symmetry with respect to the surface 4 we can eliminate Eyy from (1), by
using (1),, which together with Kgy = Hy; gives
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Let us expand the elasticities and strains in (3) into scries with respect to §
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Let @; and @a; be bases of the convected coordinate system 9%, { calculated at the shell middle surface in the
reference and deformed configurations, respectively. Note that the unit base vector a; = n, orthogonal to
deforms into the base vector @, which, in general, is neither unit nor orthogonal to the deformed shell middle sur-

face M, dy 5 . In the general case of deformation for @, we obtain
@ =} (1 + 2y5;)(1 — 2a¥ysp) W+ 2y550° Vas = Lggly—o - (7)
When a displacement field is assumed to be linear across the shell thickness, the shell strain measures y;;, 7y
and 0,; are exactly quadratlc functions of two independent displaceniental variables: u, the displacement vector of

M, and the vector B=a —mn,[1,2]
After substitution of (5) and (6) into (3), (4) and (2) we obtain
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and .z 1s the symmetric part of w,;. The formula (9) gives an exact representation for the shell strain energy
function in the form of an infinite series with respect to the shell thickness A.

Let us assume now the straing to be small everywhere in the shell: % << 1, o == max |£,|, where E, are three
cigenvalues of E;. Let us choose at .7 a coordinate system $* such that the metric and curvature tensors of o are
estimated by a,; = O(1) and b, = O(1/R), respectively, where R is the smallest radius of curvature of /. In the
case of an isotropic elastic shell, loaded only at its lateral boundaries, the stresses S in the interior domain of the
shell can be exactly estimated as follows [3]:

88 = O(nk) , 83 = O(End) , §33 = O(En9?) . (11)

Here £ is the Young’s modulus and the small paranieter ¢, redefined in [4] by using qualitative arguments, has the

L
tance from the lateral shell boundary. According to (1), the estimates of stresses (11) imply also the appropriate
estimates for strains: E.; = O(@), By = O(nd) and Ey; = O(vn), where v is the Poisson’s ratio. For the bending
state of strain 3,3 ~ k(.. Using (6) we are able to estimate the shell strain measures as follows:

v =00, haey = 0), v = 0@mP),  yu = O@Y) (12)
and estimates h2),; = O(nd?) and hnyy = O(ynd) follow directly from (12) in the case of approximately linear
distribution of displacement field across the shell thickness.

It is possible now to estimate the orders of magnitude of all terms in the shell strain energy function (9). In
particular, within an error O(#h7%9%) we obtain
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The orders of magnitude of all other terms under the sign of a sum in (8) are much smaller than O(&hy2d").
Therefore, within this error the shell strain cnergy function may be consistently approximated by the fol-
lowing expression
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The shell elasticity tensors appearing in (14), in the case of an isotropic clastic material, take the forms
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With the help of (7) we are able to interpret the shell strain measure a5 in terms of the tensor of change of
curvature of the shell middle surface »,; = -—(b,; — b,4) through the relation
Ty = 5 (o Wy 5 |- - @y ) — a, - N,
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where ()|, is the covariant derivative with respecet to the reference middle surface metric.
Admiting a greater error in (14) we obtain
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This is the well known consistent first approximation to the shell strain energy function [4, 5, 2]. The formula (17)
includes the main contributions to the elastic strain energy of a shell due to smetchlng and bending of the shell
middle surface as well as due to the transverse strains. The last one is included by using in (17) the modificd shell
clasticity tensor.

The expression (14) is the consistent second approximation to the shell strain encergy function. It refines in
a consistent manner the shell strain energy (17) of the first-approximation theory by taking into account also all
the secondary contributions to the elastic strain energy of a shell. These contributions come from the transverse
shear, fro%@,{ gll nge of curvature due to shear and from various couplings between the stretching, bending and
the second aw}é‘ e shell. The secondary contributions from the transverse strains are also taken into account in
(14) by using there the modified shell elasticity tensors. However, the actual distribution of the transverse strains
over the shell thickness can easily be recovered by using the inverse of (1),. In the case of isotropy we obtain
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The formula (18) is compatible with the consistent first-approximation theory while (19) is compatible with the
consistent second-approximation theory.

By differentiating the refined strain energy function (14) with respect to the proper shell strain nieasures we
obtain the constitutive equations for the stress resultants N7, the stress couples JM*’, the shearing forces 2N%/,
the stress couples due to shear M3 and for the secondary couples K*?, together with appropriate error estimates
of the constitutive equations:
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All these strain and stress measures should be included into the system of cquations of the consistent second-
approximation geometrically non-linear bending theory of thin elastic shells [1].
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