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FINITE ROTATIONS IN SHELLS

Wojciech PIETRASZKIEWICZ
Institute of Fluid-Flow Machinery PASci, Gdansk, Poland

A general theory of finite rotations in the non-linear theory of shells is presented.
The finite rotation tensor and an equivalent finite rotation vector of the principal
directions of strain are expressed at the shell middle surface in terms of two indepen-
dent vector displacement parameters. Some relations in terms of the finite rotations are
given.

"The total rotation of the shell boundary element is shown to consist of two
subsequent rotations: due to a pure stretch along principal directions of strain and due
to a rigid-body rotation of the principal directions. Exact formulae are derived for a
total finite rotation tensor and for an equivalent total finite rotation vector of the shell
boundary element. With the help of purely geometric considerations three general
forms of geometrical boundary conditions are formulated. ‘

By using additional simplifying assumptions some formulae concerning finite rota-
tions are derived for the Kirchhoff—Love shell theory, for the geometrically non-linear
theory of shells and for the first-approximation theory of thin elastic shells. Within
K-L theory three variants of statical boundary conditions are formulated. Each of
them is energetically compatible with the respective variant of geometrical boundary
conditions.

1. Introduction

The deformation of a neighbourhood of any continuum particle can be
exactly decomposed into a rigid-body translation, a pure stretch along
principal directions of strain and a rigid-body rotation of the principal
directions. The rotations are conventionally described by a proper orthogo-
nal tensor R [25, 26]. An alternative description of the rotations is possible
either by means of three angles (usually Euler angles) or a finite rotation
vector , [9, 21]. The rotation parameters appear explicitly in various
relations of the continuum mechanics and in the analyticai mechanics of a
rigid-body motion.

When strains are assumed to be small, only small rotations of material
elements may appear in a truly three-dimensional elastic body with
boundary conditions preventing a rigid-body motion, [10]. However,
within such geometrically non-linear theory of elasticity large rotations
may appear in thin bodies such as beams, thin-walled beams, plates and
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shells. The rolling of a sheet of paper into a cylinder 1s a trivial example.of
this phenomena. Therefore, there is a substantial qualitative difference in
the behaviour of thin bodies and of those of truly three-dimensional
nature. This suggests, that the rotational part of deformation should play a
more important role in the non-linear theories of thin bodies than in
general problems of continuum mechanics.

The shell literature 1s not free from confusions about analytical repre-
sentation of the finite rotations. Usually the linearized rotations or the
middle surface displacement gradients are used, apparently on the intuitive
grounds, to describe rotations also within the non-linear range of the shell
deformation.

Within the Kirchhoff-Love non-linear theory of shells Simmonds and
Danielson [23, 24] used the finite rotation vector £ as an independent
kinematical variable of the shell theory. The rotation of a shell boundary
element was described by Novozhilov and Shamina [11] in terms of a total
finite rotation vector §2, of the boundary. In these works the finite rotation
vectors were introduced in a descriptive manner, without relating them to
basic kinematical parameters of shell deformation, such as displacements
of the shell middle surface or components of a deformation gradient
tensor. The theory of finite rotations in shells subject to K-L constraints
was developed by the author [15-17], where also various relations between
the finite rotation parameters and midsurface displacements were pre-
sented.

The consistent classification of approximate variants of shell equations
n terms of restricted rotations was given in [16] for the first-approximation
theory of thin isotropic elastic shells. The rotations of the shell material
element were defined to be small, moderate, large or finite depending on
the order of magnitude of the rotation angle w as compared with a small
parameter f introduced in [5, 7] and for each of the cases the consistent set
of shell equations was given, [17]. Some results on a shell deformation with
small strains but unrestricted rotations were obtained by Wempner [27]
and Galimov [4].

In this report a general theory of finite rotations in shells is developed,
[15]. At the shell middle surface we define a shell deformation gradient
tensor G, which provides a complete and exact information about defor-
mation in a neighbourhood of the shell middle surface particles. The
displacement field is described by means of two independent parameters: a
displacement vector u of the shell middle surface and a vector B describing
the change of tangents to the material fibres initially orthogonal to the
reference shell middle surface. A polar decomposition theorem applied to
G allows to derive an exact formula for the finite rotation tensor R in
terms of u and B. The rotations are also described by means of a finite
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rotation vector €2, for which three equivalent exact formulae in terms of u
and @ are given.

A thorough analysis of deformation of a shell boundary element is
presented. The total rotation of the element consists of two subsequent
rotations. The first rotation appears as a result of a pure stretch of the
boundary element along principal directions of strain. The second rotation
is associated with a rigid-body rotation of the principal directions. Exact
formulae are derived for a total finite rotation tensor R, and for a total
finite rotation vector £, of the shell boundary element. Then purely
geometrical considerations analogous to those of [11] lead to three general
forms of geometrical boundary conditions expressed in terms of either u
and B, or €, and the physical components y,,, v5,, Y33 Of the Green strain
tensor or the vector k, of change of the boundary curvature and the strains
Y» Y30 Y33, respectively. The vector k, 1s shown to depend only upon the
shell strain measures.

The relations given in Sections 2-5 are exact at the shell nuddle surface
and are valid for unrestricted strains and unrestricted rotations of the shell
material elements. The main results are simplified in Section 6 by imposing
additional assumptions commonly used in constructing some variants of
shell equations.

Within the Kirchhoff-Love constraints the appropriate formulae reduce
to those given in [3, 11, 15-17]. Additionally, three vanants of statical
boundary conditions are constructed. Each of them 1s energetically com-
patible with the respective variant of geometrical boundary conditions.
Within the small strains the reduced formulae for rotation parameters are
derived with accuracy up to the second-order terms. Two limiting cases of
truly finite rotations and of small rotations are given, the later one 1is
shown to agree with [20]. Finally, some relations for the first-approxima-
tion theory of isotropic elastic shells are presented. In this case the change
of the shell thickness is also taken into account, [17].

2. Notation and preliminary relations

Let p(8") and p(8"), i = 1, 2, 3 are position vectors of a shell particle in
the reference and deformed configurations, respectively, connected by a
deformation p = x(p). Here ' are curvilinear convected coordinates with
the reference and deformed bases g, = p ; and g, = p ,, respectively.

In the Lagrangean description the displacement vector of the particle is
given by

v=x(p)—p=10g,. (1)
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Since the dp = g, d@' for differentials we obtain

dp =g, d¢' = (g, +v,) d' = F dp, (2)
F=1+gradv=g Qg (3)

where F is the spatial deformation gradient tensor and 1 = g, ;g ® g/ is
the metric tensor of the three-dimensional Euclidean space.

In the reference shell configuration we assume @' to form a normal
system such that p(8‘) = r(#*) + 0°a,(0°), a = 1, 2, where r is a position
vector of the reference shell middle surface 91, a;, = n is a unit normal to
M, #3=¢ is a distance from 9N and —sh<¢ <%h, where h is a
small shell thickness. With the surface 91U we associate standard covariant
base vectors a, =r ,, covariant components a,; = a, - a5 of the surface
metric tensor a and covariant components b,z = a, 5 n of the surface
curvature tensor b. Similar geometric quantities associated with deformed
middle surface IM = x(PN) are marked by a dash: a,, n, a,,, b-aﬁ, etc.
Other notation concerning the surface geometry follow that of [6, 16].

In this report we shall use mainly spatial bases a, and a_, a = 1, 2, 3,
calculated at the shell middle surface, which give covariant components of
the spatial metric tensor a,, = a, - a, and a,, = a, - a, with determinants
a =|a,| and a = |a,|, respectively. Note that the base vector a; =n
deforms into the base vector a, which, in general, is neither unit nor
normal to the surface 9N, a, # n.

By expanding v and F into series with respect to { we obtain

v=u+{B+---, F=(G-(AG+ --)g! (4)

where the shell deformation gradient tensor G is defined by

G=F;.,=3,®a° G '=a037 (5)
and

u=r-r=ua"+wn B=a,—n=B,a*+ fn, (6)

A= -2, ,023% g '=6%,0¢g. (7)

The Green strain tensor E =3 (F'F — 1) with (4) takes the form
E=g'[y+{i(@+a) +n+ - Jg! (8)
where the shell strain measures are defined by
vy=3(GTG —-1), «=—(G'AG—-b), p=;(GTATAG —b?).
)
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Within the linear approximation (4) the shell strain measures become
exactly quadratic functions of u and B and their derivatives [12,15]
2Yop = Pop + Ppa + PP + 0 Pp;
2Tapy = Yop + Vpa — b;‘(Pw - bZa‘(PAa + a)‘“(q))\a%/j + (Pw%a)
t @u¥p + Ppdys
2%3 = a}\wxa%ﬁ - b;\%\p - bg%\a + %‘Pﬁa (10)
230 = 9o + By + APy B, + 9B,
Tag = Yo — DIBy + a)‘P‘PAa,Bp + ¢,8.
25, =28 + aMB\B, + B?

Upg = Qupa” + @pn, B g = Y% + Ypn,
— — A
q)aB had ua|B - baﬁw, (Pﬁ - w,ﬂ + bﬂux, (11)
— — Ap
%ﬁ = ﬁa]ﬁ - baﬁB’ ‘I’B - :B,B + bﬂ'BA
and ( ),z denotes the surface covariant derivative in the reference surface
metric a,g-

Within the linear approximation (4) we have 7;, = y3; , and Hop aT€
expressible in terms of y,, and =4, according to

p=3[b—a)1+2y) (b m) —b?] (12)

From geometrical considerations we obtain

Sabcedef(aad + 2Yad)(abe + 27be)(arf + 2ch)> (13)

= 5 —abe a abc
Cabe = \/j Eabes € - — ¢
a a

where ¢,. and £“ are components of the spatial permutation tensor
calculated at 9.
The vector a, can be related to n by [18]

8y = 27;,8° +1/(1 + 2y3,)(1 — 28, &. (14)
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3. Finite rotation tensor and vector

According to (4) the shell deformation gradient tensor G defined in (5)
provides a complete and exact information about the deformation of a
neighbourhood of the shell middle surface particles. By applying the polar
decomposition theorem [25] the tensor is represented by

G=RU=VR, G '=U"'R"=RTV" (15)

where U and V are the right and left stretch tensors, respectively, and R is
a finite rotation tensor. Decomposition of G in terms of U is compatible
with the Lagrangian description preferred in this work, in terms of V it is
compatible with the Eulerian description.

By the formulae (4), and (15), the deformation of a neighbourhood
about a particle of the shell middle surface is decomposed analytically into
a rigid-body translation, a pure stretch along principal directions of U (or
V) and a rigid body rotation of the principal directions.

From (5) and (15) we obtain

a, = Ga, = Ra, = Va,,
(16)

a°=(G Ha"=Ra"=V~'a"
where two intermediate bases are defined by
a =Ua, =R, a,=Ra, =V '3 (17)
Using (5) and (16) the following formulae are obtained

v — 37
U=3a,Qa“ V=2a,Qa,

- v *
R=23a,®a =a, Ra’

(18)

In what follows it is convenient to introduce an extension tensor ¥y
defined by

y=U-1=V1+2y —1=7,2®2a (19)

in terms of which we have

ia = (8ab + }"ab)ab’ Yab = (6ac + %_?;-)?Cb’
20
| (20)

= _6_£abc£def(6: + }v'ad)(alf + '}V'be)(acf + ?cf)‘
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Note that y is exactly quadratic in terms of u and B, but many shell
relations contain \/(a/a) and therefore are non-rational in terms of vy,,.
On the other hand, y 1s defined to depend upon u and 8 through the
non-rational relation (19), but \/(a/a) in (20) and in the relations contain-
ing it become polynomials in v,,.

The symmetric tensor y has three real eigenvalues vy, in three orthogonal
principal directions defined by a triad of unit vectors h,, which satisfy the
set of equations yh, = y,h_, Zr. In the basis h_the tensor y takes the form

Y = 1ihy @ hy + v;h, @ by + y3h; @ b, (21)

It follows from (10) that y,,, and therefore v, and h,, depend only upon
u and B and the geometry of 9.

The symmetric tensors U and ¥y are coaxial with y and have therefore the
same eigenvectors h_. Their eigenvalues are related by

y=U-1=+1+2y, — 1. (22)

The exact formula for R follows from (18), (6) and (20) to be
R=[(a, +u_)a*+ (n+ B)a’] @ (§ + ¥;)a,. (23)

Since (23) involves y,, for unrestricted strains it is a non-rational expres-
sion in terms of u and f.

The proper orthogonal tensor R has one real eigenvalue equal to + 1 and
two complex conjugate eigenvalues cos w * 1 sin w. Let e be a unit vector
satisfying Re = +e. If e, Le and e, = e X e, are unit vectors of the
remaining principal directions then [1, 15]

R=cosw(e,®e +e,Re,) —sinwe, Ve, —e,V¢e,) +eRe
=coswl +sinwS + (I —cosw)e®e (24)

where S=e,®e; — ¢, ® e, = — ST is a skew tensor whose axial vector
is e and w is the angle of rotation about the rotation axis defined by e.
The parameters e and w are defined uniquely by the tensor R. If
R,; =i, ' Ri, are components of R with respect to the Cartesian frame then
(8]
m Ry

e= ——/——i_, cosw=%(Rkk - 1) (25)

2 sin w

where ¢, is a permutation symbol. Since

7 = ko 1 ap k I .
r=x%, a,=x,, =% x ey, (26)
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it follows from (23) that R,, depend only upon the geometry of 9 and the
displacement parameters u and f.

In what follows it 1s convenient to describe the rotational part of shell
deformation by means of an equivalent finite rotation vector £. The
direction of € is defined by e and the magnitude is taken here to be |sin w|.
For |w| < 7 we have

2 = sin we. (27)

Note that © defined in this way 1s not a vector in the usual sense. In
particular, the rules of superposition of finite rotation vectors [9] are
different from the usual addition rules of a linear vector space.

By using §2 we obtain

ﬁaER'a=éa+ﬂxﬁa+—————12 Qx (R xa,)
2 cos” w/2
1 (28)
= COS wéa + Q X éa + —'Z——-(Q . fia)ﬂ
2 cos” w/2

which also shows how the finite rotation is accomplished by means of €2.

The formulae (28) and (25),, expressing € in terms of R,, and therefore
in terms of u and B, give its components with respect to the Cartesian basis
i,. In theoretical considerations it is convenient to have { expressed
directly in the reference basis a,. Multiplying (28), by £*“4, and making
use of the symmetry we obtain [15, 21]

NTIEN

2Q = §%(a, - &,)a, =\/ (8¢ + )8 + 7/)G.a, (29)

where the components of G are defined by

/ B

— af3? @
G — . — . = s l = + . 30
»=a, - Ga, =a_-a, o 145 g = Qup T Pup- (30)

By using (20) and some other polynomial identities involving v, the
formula (29) is transformed [15] into an alternative simpler form

20 = 4, X a% = g, (87 + ¥7)a*Gsa’. (31)

When written partly in terms of the surface quantities (31) leads to the
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following formula
2Q = ¢, {(82 + ¥2)[ a1}, + a=*p*]

= (8 + W)@ + @1+ B) [ Jar
+e,,(8) + 7)) [a*1s + a”B*]n. (32)

According to (10)-(12) and (19) the exact formula (32) give us quite
complicated non-rational expression for £ in terms of u and B.

The rotation of the shell material fibres coinciding with principal direc-
tions of strains are described completely by R or . Other shell fibres may
suffer a rotation also during the pure stretch along principal directions of
strain. Sometimes it is convenient to replace these two rotations by one
equivalent total rotation. This approach is used in Section 5 to describe the
total rotation of the shell boundary element.

4. Relations in terms of finite rotations

By using the finite rotation tensor R or the finite rotation vector £ it is
possible to obtain many identities and geometrical relations [15] which are
very useful in the non-lincar shell theory.

From (28) it follows that

du va
W—(R—l)aﬁ+yﬁka“
=+via + Q2 Xa,+ Q X (2 X a,),
Vg a £ 2 cos? w/2 ( ) (33)
B=(R-1)n+ y;Ra,
= yia, + @ X a; + Q X (2 X a,).

2 cos® w/2

When (6), and (11), are used this leads to the formulae for ¢, ;, ¢4, 8, and
B 1n terms of £ and v,,.

Differentiation of R and € along convected coordinate lines of a
three-dimensional continua was discussed by Shield [22] and Shamina [21],
respectively. Describing rotations by 2, at the reference shell middle
surface we have

1
—d%=coswkﬁ+—ﬂ><kﬁ—

4 5 Q % (2 X kp). (34)

4 cos® w/2
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The vector kg is expressible entirely by means of the shell strain measures

kB = Eaef(YeB;a - Aea[})éj’ Aeaﬁ = %agh‘?eg}\;ah;ﬁ (35)

where (). , is the spatial covariant derivative calculated at 9l by means of
a.

The integrability condition of the equations (34) can be expressed in
terms of kj by

eP(kgy, + 1K, X kg) = 0. (36)

When (35) and (20) are introduced into (36) we obtain three compatibility
conditions in terms of vy, and 7z, They assure the existence of displace-
ment parameters u and 8 compatible with the two independent shell strain
measures.

Since at 9N
Yapi3 = Tap) T OaYep T DgYear Yies g = Y3alp + OpYea = bup¥3s;
Yauis = Yaulp = Pap¥Yan = BupYsw  Yizp = Yap t 2b5va  (37)
we are able to solve (35) with respect to 7,5, and obtain
—1(z = A1 K
T(aB) = E(ehi\kﬂ + e3ﬁ>\ka) tan = E(b:YxB + bBYxa) = byp73;
1
+%(73a|3 + Ysma) + E(Aaw + A,B3a - A3a,8 - AB,Ba)' (38)

By inverting (34) we can express kj entirély in terms of the finite
rotation vector

dQ 1 dQ
+ X Q
dg? 2 cos? w/2 dfP

dw
k, = +th w/2Q (39)

which together with (38) leads to an exact formula for 7,,, in terms of
finite rotations and strains.

5. Deformation of a shell boundary
Let C be a boundary curve at 9 defined by 8¢ = #%(s) where s is the

length parameter of €. We assume, that in the reference configuration the
lateral shell boundary surface 9% is rectilinear and orthogonal to 9L
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along C. The position vector of any P € 0% is given by

p=p(s,{) =r(s) + {n(s). (40)

With each M € ( we associate vectors: t = dr/ds, the unit tangent to
¢, and v = t X n, the outward unit normal. B

After the shell deformation 9% is transformed into a surface 3% which,
in general, is neither rectilinear nor orthogonal to 91 along € . In the
neighbourhood of ¢ we have the following expansion for the position
vector of P € 0%

P="0(s§) =T(s) + {ay(s) + - - - (41)

which allows us to use the rectilinear approximation to 3% in the
neighbourhood of €.

During the shell deformation the orthonormal triad t, n, ¥ transforms
into a skew triad

dr a " a,=n+p
= —— =2 , = ,
t dS @ 3

- (42)
a, =3 xa,=\/- a%,.
a

The lengths of the vectors are

5t=|§z|=\’l+2ytt’ 53=|531=V1+2'Y337
g, = @, =\ (1 + 2v,)(1 + 2y3;) = 493,

where v, = yaBt"tﬁ, Y3, = Y3.t" and vy, are physical components of strain
at the boundary.
In what follows it is convenient to introduce a vector

(43)

Em = ﬁ‘, X 5, = 5,253 - 2Y31§1? a, = laml = al'af (44)

which together with a, and a, forms an orthogonal triad along C.
From the polar decomposition of G it follows that there are intermediate
vectors a,, a,, 4, and 4, such that formulae (28) hold, for example

a,=Ri =4 +Qxa + Q x (Q x a,). (45)

! 2 cos? w/2
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The vectors follow from (20), to be

ﬁt = ?MV + (1 + }\;M)t + ?3{“:
a; = Y3,V + Y3t + (1 + ¥33)m, (46)

a, =a, x4, a =a, Xa,

Since », t, n do not coincide, in general, with principal directions of
strain, the transformation of », t, n into a,, a,, 4,, consists of extensions by
appropriate factors (43) and (44), and of a finite rotation performed by an
orthogonal tensor R, or a finite rotation vector §, = é, sin @, They are
computed with the help of (46) from the formulae analogous to (28) and

(31):

v

R,=7rQr+t®t+m&n,

(47)
2Q, =pX P+t Xt +n X
where
a A a,,
r=—, t =—, m=—. (48)
aV at am
Therefore, for a typical vector 4, we obtain, for example,
- _ x 1 Y <
8 =aRt=a|t+Q Xt+ ———Q x (2, xt)| (49)

2 cos® @,/2

It i1s convenient to replace the two successive rotations performed by ﬁ,
or s'z, and R or {2 by a single equivalent rotation performed by a total finite
rotation tensor R, = RR, or a total finite rotation vector @, = sin we,.
Applying the superposition rule of finite rotation vectors [9] for £2, we
obtain

Q=|1- T [cos2 10}, + cos? 3o, +3Q X Q,].

N —

@, COS

4 cos? %

(50)
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Therefore, the transformation », t, n 1nto a,, a,, a,, takes the final form

a, v LV v
a |[=R| at |=| at |+ 8, X]| at
a, a,n a,n a, n
| a,v
+ —8, X [, X| at |]|. 51
2 cos? w, /2 ' ! G
il
From (44), 1t follows that
- 1 L
a3 = 72(273:*’: +a,) (52)

!

which together with (51) gives an exact relation for a, as well.
Let us remind differentiation rules of », t, n along ¢ and along a curve
@, orthogonal to €, whose length parameter is s,, [2, 16]

drlv v d [PV v
—it| =0 X|t t| = —a, X|t|, (53)
ds | p n ds,| n n
w, =or+ 7t+ kn w,=T17r+ ot+ kN
where
= bst°t?, 1, = — btk K, = t,v° 41",
o, = b Yild V T, = Tp K, = Vatalﬁvﬁ' (54)

Here o, is the normal curvature, 7, is the geodesic torsion and «, is the
geodesic curvature of , respectively, and o,, 7,, k, are similar parameters
of C,. _

Differentiation rules of ¥ =1a,/a, t =a,/a, m = a, /a, along C it is
convenient to construct in a form similar to that of (53). Since ds = g, ds,
where § is a length parameter along €, let us assume that

d

—_ X
ds

= = a,(6,7 + 7t +km). (55)

14

Bl = =
Bl = =

Note that m as defined here is not orthogonal to M and ¥ does not rest
on a plane tangent to 9. Therefore, the parameters a,, 7,, k, cannot be



458 W. Pietraszkiewicz

related directly to the geometry of M, although they do describe the
curvature properties of the boundary curve (0. This makes a significant
difference when compared with analogous relations at the shell boundary
deformed under K-L constraints, which were discussed in [11, 16].
Differentiating the identity m - » — v - n = 2§, - t and introducing the
vector &, such that
&, = al(opr+ 7t+ kn), | (56)
@, =0+ Xo,+—, %X (R, X&
! ' t t 7 cos? w{/z t t t)
after involved transformations (see [15]) we obtain the formula analogous
to (34) for differentiation of the total finite rotation vector

dQ? | 1
O o coswk + -0 Xk — —— @ X (2 k) 7
1 _ coswk + o8, (T A ool /2 ¢ X (8, 0) (57)

Here k, defined by

o, —w = —kwv+ k,t— kn
a

! ’ ( )
58
1t

Il
I

0, — O, k,, T T T - knt = a,k, — K,
is the vector of change of curvature of the shell boundary contour.
In order to calculate (58), let us differentiate a,, a, and a, to obtain

da, _ -
—d—S—’ =8, 1P +a,1%:% = 1°| 1P, + o3, + A%y ,rtFa,,

% =8 41F = —bptPa) + v5,t"0, (59)
Yeab = Yea; b + Yeb:a ™ Yab; e

da, = da, X a, +a, X da,

ds ds 3 7 ds

E A —Ac, = 5 -
= \/—a-_e.\u(t |/1 + a Ycaﬁza)tﬁa# —\/;Tras'

and from (44), we also get

da, _dy,_ . _,da, _dvs,_ da,

+ — 2y —.
ds ds B 7 4Ty ds ™ 273, ds (60)
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It follows from (55), that the curvature parameters of C are defined by

da da
7 725 =83 + -t = _7 .__™m
amaf ot - am dS - at dS ’
da da
- — = = . m _ = v
al’ 1 mTy = 4, dS - a, dS ’ (61)
_ _,_ _ da, _ da,
avarxt = at d.S' _av dS

Combining (58)-(61) the following formulae for components of k, are
obtained

| d d
—_ k = {512(2 731 + Ot _ ‘ﬂ'”) — 2.Y i] — O-”

ds 3 ds

k, = _1_ \/CZ‘ [ﬁ,z('r, + VAC_I'AC'Y(GBtB)
o (62)
r

+2y3,(x, — VAE)‘C}'C“BI"IB)] —

1 . [a N
- T—c;zj\/;("t — Vh\a CYcaBtatﬂ) - K

In order to have expressed (62), ; also by means of physical components
of strain measures the following extended formulae [15] may be used in

(61) and (58):

_ da a a d » d
A, 2 das V;T e /t Y3 . Y3z + T + KT,
a Sy

+ 20,7, — 27y, — "1731} [(1 + 29,)(1 + 2v33) — 47%1]

dy
- ( d;3 + 20,75, — 27‘:73!’)[273"(1 + 2}’") - 4},”’73’]

- (Wu + 20:7:: - 2Ttyrt)[2th(1 + 2733) - 473»73:] }’

(63)
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460
_ da, a a dy,, dy,,
A SV N S A N B Tk 7
» s \/a—"' \/; {[ ds,  2ds
[(1 + 27, (1 + 2v33) — 47%1}

+ 20,’}’31, + 2KI(Y“ - Yw)

= T 20:733 + 2K173v)

d73t
+ (2 3

X [273;/(1 + 27::) - 47:4731]
20:73t + 2Ktht)

X [2Yw(l + 2733) - 4‘Y3v731]}

(64)

where
= l + 2(YVV + 'Ytr + Y33)
+4(Y,,,,Yn + Yo Y33 + YuYaz — th - 'ng - 7321)

2 2
+8(7, Yu Y33 + 2V Y30 Y3 — Yo Yo — YuYay — Y33Ye)-

Q|Q|

The relations (62) show that the vector k, is expressible entirely by
means of the shell strain measures at the boundary. _
According to (41) and (6) a rectilinear surface p = p(s, {) tangent to 9%
(65)

at C is uniquely defined if we assume two vector functions

u=u*(s), B=p*s) atC.
This gives a general form of the displacemental boundary conditions in the
The same rectilinear surface may be defined implicitly, with an accuracy
(66)

non-linear theory of shells.
up to a constant translation in space, by differential equations

da,  op
’a{

a + ds
According to (51) and (52) the equations are uniquely established if €2, and

_QE__
ds ~
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Y Y3 Y33 are known along C. Therefore, within the general non-linear
theory of shells the kinematical boundary conditions have the following
form

Q = Q*(s),
t (s) (67)
Yo = Ya () Vi = YR(5),  ya=7vh(s) atC.
Let us differentiate again the equations (66) to obtain
82§=d§,+§d253, —82l—) =.@, d_zf-_-gf_‘_’ (68)
9s? ds ds? dsd¢ ds ds? ds

These differential equations also define implicitly the same rectilinear
surface p = p(s, {) tangent to 39 at (J, with accuracy up to a translation in
space linearly varying with s (that is, up to a rigid-body motion). The
equations (68) are uniquely established if the values of da,/ds and da,/ds
are known along . According to (55), (58) and (62) these vectors are
expressible in terms of k, and vy,,, v;,, ¥5; which are sufficient for establish-
ing (68). Therefore, within the general non-linear theory of shells the
deformational boundary conditions take the following form

k, = k}(s),
Yo = Y (8), Y3 = ¥5(5), v = vH(s) atC.

(69)

When values of u and B are known along C, the values of €,, v,,, Y3;5 Y33
and k, can easily be calculated by differentiation procedures (see [15]).
However, if only values of k, and y,, v;, v3; along C are known in
advance, in order to obtain values of €, the differential equation (57)
should be solved. The structure of (57) i1s analogous to that describing the
motion of a rigid body about a fixed point [9] and the methods of solutions
developed in analytical mechanics may be of assistance in calculating €2,
from the known k,.

It follows from (42) and (52) that

ws) =+ (M@ -0 ds BO) == Crd, +3,) —n (10)

!

Therefore, if only values of €, and v, v3,, v3; are known along C, (51) and
(70) give the values for u and B as well.



462 W. Pietraszkiewicz

6. Some simplified results

All the formulae presented in Section 2-5 have been obtained by taking
into account the linear terms in the expansions (4). The theory of finite
rotations in shells developed there is three-dimensionally exact at the shell
middle surface, since higher-order terms of the expansions (4) cannot
affect the change in slope of tangents to material fibres calculated at the
shell middle surface.

Here the main results of Section 2-5 are simplified by using additional
assumptions. Some of the simplified formulae are related to those already
known 1n the literature,

6.1. Kirchhoff-Love theory

According to K-L constraints, the material fibres that were orthogonal
to the reference shell middle surface 9N, after the shell deformation
remain orthogonal to the deformed surface 91U and do not change their
lengths. Therefore we assume a; = n.

Although the results obtained under K—L constraints are meaningless
within a large-strain shell theory (since the first-order effect due to change
in the shell thickness is ignored), they are quite useful as a starting point
for further simplifications towards the first-approximation geometrically
non-linear theory of thin isotropic and elastic shells.

Under K-L constraints we have [13, 14, 16]

a 1_[a
n, =\/;s Bsxptpal_?‘,, n== = e SN‘IAI’L, (71)

3 (G = aup) = 3 (Labs + @ty = ),

Tap) = Kag = = (bap = bup)

= — [n((pa|ﬂ + b[);lAa) + n}\( «| B bB(Pa) baﬁ]q (72)
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The formulae (23) and (32) reduce to
R = a*(8) + 7))(a, + u,) ®a, + (n,a% + nn) @ n,

(73)
20 = &, [t = @F(8) + V7)), lat + &,a*P(8) + 7)) %n
which are exactly the same as derived in [16].
By simplifying (35) and (38) we obtain
/a av  \x | S
k/} = E 5)\“[(’%)\ + bﬁYax)a,L + (Yppp\ - EY,LYNM[J)H},
1,_ _ y 1 . .

The formulae have been given in [15, 16] and independently by
Chernykh and Shamina [3].

Under K-L constraints m = n, m = n. If B = ,a, + B,a, + Bn, then
1 du
b= —via, o™ 75)

B=1-y1-(1+2y,)(B>+ B

and at C only u and B, are independent. Therefore, in the three variants of
geometrical boundary conditions we can assume values either for u and f3,,
or for &, and v, or for k, and vy, at C. The simplified formula for the
vector §2, follows from (73) and (50), where now

'y ( S—
V1+2y,
VT 2y, + 147 e
2 cos*@,/2 = Ve T T T
\/1 + 2v,
The components of k, are simplified to
|
- ktt = ————‘-—(G, — Ky) 7 Op
VI1+2y,
o = ———1~— g [T, + ra (K“B + Zb[}"y’m)t ] T
V1 + 2y,
(77)
—k = l
nt 1 + 2y,
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The relations (75)-(77), ; agree with those derived by Novozhilov and
Shamina [11] (see also [16]). The formula (77), differs in form from that
obtained in [11], since in definition of 7, we have used the second scalar
product in (61),. Using the first scalar product in (61), we would obtain
here an equivalent relation

k, = - 1

" V1+ 2y,

which agrees with that of [11].

Let N*# and M** are components of the Lagrangian stress and couple
resultant tensors of the shell in equilibrium. For any additional virtual
displacement field du subject to geometrical constraints the Lagrangian
internal virtual work takes the form

V)\E?\L!(baﬂ - a,B)tB - 'T, (78)

vw= [ f%(zvﬂﬁayaﬂ + MPou,;) da = — [ f%(cx\lﬂ)l g dudd + J,

J, = f (P, du + M,a,-6Q,) ds + M,h -suj, (79)
c
where
NP = (N — beM™M)a, + [ M°P|, + @2y, — g M™]n,
d, — _
P, = GNy, + a;(M,,,n),

— 1
Mo =157,

— 1 a
M =———"\/[— M®
w4 27,,\/: YaP:

M, b -8ulg= 3 [ M,(s, + 0) = M,(s, — 0)]n(s,) - du(s,)

MeB(8) + 2y} tyv, 4 (80)

n

and M,,n=1,2,..., N are corners of © labelled by s = s,,.
Since 88, = (8, X n) - v = §R, - t it follows from the structure of J, in
(79) that the effective internal force P, and the moment \/1 + 2y, M,,

are statical quantities at ¢, which produce work on vanations of displace-
mental variables u and j,.

Let F, and B, (0) be a total force and a total couple, with respect to an
origin 0 in space, of all internal stress and couple resultants acting along a

part of the boundary. In the Lagrangian description these vectors are
defined by
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M M, —
F=F+ [ P ds, B,(0)=B0)+ f (M,3, +F xP,) ds
My My

(81)
where F? and B?(0) are initial values of F, and B,(0) at M = M,,

Differentiating (81); and B, = B,(0) — 1t X F,, the total couple with re-
spect to a current point M of the deformed boundary, we obtain

& _p B, Ma-a xF 82
dS - v? dS - vvat al v ( )

Let us differentiate éu and 62, and take into account that ds =

V1 + 2y, ds, which gives

RE1o T —
W =\/ 1 + 2'}'” Skt,

déu _ _
—ds— = §y,a, + 682, X a,. (83)

Here 87, = 8y,¢°1" = 8v,/a} where 8y, = 8y, ",
[t 1s possible now to transform the boundary part of (79) as follows

= (M(iMa -a : _a F,
Jc - fMO[(Mvvat a, x Fu) 891 1+ 27,; 8'}’,,](1.3‘

+(M,a +F,)- Sulj:

- F,
= (\/1 + 2y, B, 8k, + 7 5 6y,,)d

u

+[(M,a +F,)- 6u +B,- 52,

(84)

0

The relations (84) show that during the virtual deformation some statical
parameters produce work on variations of geometrical parameters £,, v,
and k,, y,, of the shell boundary. Therefore within K~L constraints to each
of the geometrical quantity there corresponds a statical quantity as follows

[19]:
ueP, B,V 1+ 2y, /Ww,

Qt < Mwﬁt o ﬁt X Fv’ Yie € — _—P— > (85)
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Assuming the statical parameters to have prescribed values at (7, three
variants of statical boundary conditions for the K—-L non-linear theory of
shells are obtained. They are energetically compatible with the displace-
mental, kinematical and deformational boundary conditions, respectively.
The constant terms appearing outside the integration in (84) lead to
additional discontinuity conditions to be satisfied at each corner M, of €.

6.2. Geometrically non-linear theory

Let us take the coordinate system at 9 such that a, ~ O(1), where q,
are eigenvalues of the spatial shell metric tensor 1. Suppose the strains to
be small everywhere in the shell: n <« 1, n = max,E,, where E, are three
eigenvalues of E. All strain parameters are supposed to have here the same
order of magnitude:

Yap ™~ Y3p ™ V33~ O("l)a hW(aB) ~ O("i)'

Under these conditions it is permissible to omit in the exact relations
some terms which are small with respect to unity. In the process of
simplification it is suggested to keep also the second-order terms in some
intermediate formulae. Many shell relations are calculated as a difference
between terms of the same order and in such a case the second-order terms
become of primary importance.

Under small strains we have

aab = day + 2Yab = Qg + O(T’)’
a*’ =a" -2y, + 0(n?) =a® + O(n),

1+ 2y2+ 0O(n?) =1+ O(n), Ve = Yu t O(n?), (86)

2y = 2y§8, + (1 + yp)0 +O(n?).

The formulae (23) and (32) are simplified to

R =[h,(87 = ¥5) + Bulas. = v3) ]2 @ a°
+ @ (88 — ) + (1 + B)a3. — v3.) ]n ®a® + O(n?),
20 = M = Loy + Bl = v3) — (87 — v + (1 + B)rn]a,
+ M @, (8% — ¥5) — B,ys m + O(n?). (87)
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By simplifying (47) with (46) at the shell boundary we obtain

R =1+7,r@®n-—-n®r)— y,(tOn—-—n&t)
+y,(r®@t —t®r) + O(n?) (88)
€ =y +vt— 70+ O(le)> cos’ (:J,/Z =1+ 0(772)

and the superposition formula (50) reduces to

. 1 3 Q- QF
R =cos?wt /20, + Q2+ Q% xQ, — d Q+ +0(n?
‘ / 2 " 4costwt /2 ()
(89)
where
Q+ = %gku[(ﬁz}\ — cp}\)a# + qJMn], (90)
cos? wt/2 = ,(tr G + 1).
By omitting quadratic terms in (35) and (38) we obtain
ks = e*[(7(an + B5Tan = Yapn + bpaYn)a,
+ - b n|,
(.Yﬂp.')\ pﬂ’sp) ] (91)

1 K K
W(aﬁ) = %(Sa)\kﬂ + eﬂ}\ka) ) aA - 5(ba‘Yx,B + bﬁ‘yxa)
- ba/g‘r’ss + %(Y3a|B + Yama)-

The relations (62) and (63) are simplified by dropping terms which are
small with respect to unity [15]

d'Y3,

k= m, —12 ds + ox(Ytt + 733)’
d.Y3 dY3V
kyt = Ty — ds : + ds + K, Y30 + 2(0t - wtt)yvt
—TI(YVV + 733) + K Y3 (92)
dy,, _ dy,

km = 2 dS dS + 2Kv.th - 2(01 - Wrt)‘Yl’w - Kt(ytt - .Yw)'

14

Let us interpret (91) and (92) by means of k.4, the change of middle
surface curvature. It follows from (86), that under small strains [18]

Tap) = Ka/i + Y3a|ﬁ + Y3ﬁ|a - ba/j733 (93)
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which gives

ky = €[ (kg + b5¥a = Yanp)a, + (Vg = baavan], (94)
ky = Ky + 2673, + 0,7,
dY3V
kw = er + 2 dS + 2(01 - Klt)yvt - T(me'f‘ (95)
dv, _ v,
Kk = dst - ds + 26,7, — 2(01 - KII)Y3V — & (Ye — Yo )-

14

Some further simplification of the relations given here is possible pro-
vided the order of magnitude of rotations with respect to 1 is known. Two
limiting cases may be considered.

For truly finite rotations the rotation angle w ~ O(1) and thus ¢, ~ @,p
~ B, ~ B ~ O(l). Therefore, in (87), and (89) we can omit strains as
compared with rotations and obtain

Q=0 +0(n), 9 =8*+0(1). (96)

Within small rotations w ~ O(n) and therefore ¢, ~ @3 ~ B, ~ B ~
O(n). Then all the relations can be linearized and the formulae (87),, (88),
and (92) reduce to those obtained in [20] for the Reissner-type linear
theory of shells.

6.3. First-approximation theory of isotropic elastic shells

For an isotropic elastic shell loaded at its lateral boundarnes the exact
error estimates for stresses given by John [5] allow to obtain also the
estimates for the shell strain measures [15]:

Yag ~ 7 apy ~O(M),  pos ~ O(b?),

14

Yop ~ My ~O(f), vy = — v + O(nf?) = O(m).

Here » is the Poisson’s ratio and the small parameter 8, redefined in [7]
by using qualitative arguments, is given by € = max(h/L,
h/d, \/(h/R), \/n), where L is the smallest wavelength of deformation
patterns at 9L, d is the distance from the lateral shell boundary and R is
the smallest radius of curvature of M.

According to (86); we have

B =+ vy)n, +Omb), 1+ B =(1+7vy)n+0m) (97)
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which allow to simplify (87)-(90) to the forms

R = h, (8 = y)at ®a* + (1 = y)(@/% — pul2)a* ®n
+ (8% — v )n ® a*
+2(1 = yO(ISE — 1%%)n ® n + O(nh),
2@ = M{[(1 = v N @uls — oal3) — 2(87 — v¥) ]a,
+ @ (8% — v¥)n} + O(n8), (98)
R =1+7v,rQt-—t®r) +0(n8), &, =—y,n+0(nd),
QF =32+ D)o — 9"pala, + gan}.

By omitting terms with v,, in (95) for deformational quantities we obtain
[15, 16].

ky, = Kk, + 0,Y,

kul =k, + 2(01 - Ktt)yw = T Yo (99)
dy, dy
km =2 dst - dS” + 2"»7;:1 - Kt(Yu - er)'

14

Simplifying the statical values in (85), within the first-approximation
geometrically non-linear theory we can assume along © either P, and M,
or Mt —txF, and —t-F, or —B, and —t - F,, where

- (M
P=Ppy+Pi+Pn, F =F+| P, ds
My
M -
B, = B%(0) +f (M,t +F XP,) ds — F XF,, (100)
M,
va = Nw o (0',, - Kw)Mvv + Z(Tt + KVI)MW’
Ptv = va + (Tl + KVI)MVI’ - 2(01 o Ktt)Mtv’ (101)
dMm,, dM,,
P =—"+2 + & (M, — M,) + 2k, M,

n ds ds

The formulae (101) were obtained in [16].
Linearization of relations of the first-approximation theory leads to the

formulae which agree with those presented by Chernykh [2] for the
classical linear theory of shells.
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