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Varia t iona l  P r i n c i p l e s  in the  G e o m e t r i c a l l y  N o n - l i n e a r  T h e o r y  

of She l l s  U n d e r g o i n g  M o d e r a t e  R o t a t i o n s  * 

R Schmidt, Bochum and W. Pietraszkiewicz, Gdafisk 

S u m m a r y :  A general approach to the derivat ion of var iat ional  principles is given for the geometrically non- 
l inear theory  of thin elastic shells undergoing moderate  rotat ions.  S ta r t ing  from the principle of vir tual  dis- 
p lacements ,  a set of sixteen basic free functionals  wi thou t  subs id iary  conditions is constructed.  F r o m  these free 
functionals  a I num be r  of related functionals wi th  or w i thou t  subs id iary  conditions m a y  be generated. As exam- 
ples, the functionals of the total  potent ial  energy and tile to ta l  complementa ry  energy are derived. 

Obersicht: Die vorliegende Arbei t  enth~lt  eine sys temat ische  Her le i tung yon Variat ionsprinzipen far  die 
geometr isch nichtlineare Theorie dfinner elastischer Schalen, in der die Quadrate  der Rota t ionen yon gleicher 
Gr613enordnung wie die Dehnungen  sein k6nnea. Ausgehend vom Prinzip der virtuellen Verschiebungen wird 
eine Familie von sechzehn freien Funkt ionalen  hergeleitet,  die keinen Nebenbedingungen unterliegen. Von die- 
sen freien Funkt iona len  kann  eine Vielzahl ve rwand te r  Funkt ionale  mi t  oder ohne Nebenbedingungen abge- 
Ieitet werden. Als 13eispiele werden die Prinzipe vom station~iren Wer t  des Gesamtpotent ia ls  und  der komple- 
ment~ren  Energie angegeben. 

1 Introduction 

The rapid development  of computerized solution techniques makes it possible to calculate 
thin shell s tructures with a desired degree of accuracy within the linear as well as non-linear 
range of deformation. Some of the numerical methods used most  frequently (e.g. finite element 
and finite difference energy methods) are based on appropr ia te  variat ional  principles. 

In  the linear theory of thin elastic shells various variat ional  principles have been derived 
by  Trefftz [1], Reissner [2--4], Naghdi [5--71, Rtidiger [8], Chernykh [9], Washizu [t0] and 
others, which are analogous to the corresponding principles of the linear three-dimensional 
theory of elasticity. An extensive t r ea tment  of this subject was given recently by  Abovsky  
et al. It t], who also discussed the ex t remum properties of some of the functionals they  consider- 
ed. 

In the classical geometrically non linear theory of shallow shells [t 2--  1 4] several variat ional  
functionals have been constructed. The functionals given by  Alum~te El 5], Wang [161, Mushtari 
and Galimov [t 7], Grundmann [t8], Huang  [t9], Gass [20], Stumpf E2t], Harnach  and Kr~itzig 
E22] and Abovsky  et al. [23] are given in terms of various combinations of the displacements, 
strain measures, and stress measures or stress functions. In  the functionals given by  Aynola 
[24], S tumpf  [21, 25] and Washizu E26] linearized strain measures and rotations as well as 
associated stress measures are used as independent  variables. 

For  simplified var iants  of the non-linear theory of thin elastic shells undergoing moderate  
rotat ions dual ex t remum principles and complementary  variat ional  theorems have been pre- 
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sented by  Stumpf  [27, 28], while the principle of s ta t ionary  total  potential  energy was also 
used by  Stein E29~. 

For the general non-linear theory of thin shells with unrestr icted strains and rotat ions four 
variat ional  principles have been formulated by  Galimov [30]. In  these principles the independ- 
ent variables are referred to the configuration of the deformed shell surface, not usually known 
in advance. 

In this paper  a general approach to the derivation of variat ional  principles for the geomet- 
rically non-linear theory of thin elastic shells undergoing moderate  rotations is given. This 
theory, proposed in E31--331, is based on a consistent first approximat ion of the shell strain 
energy function. All shell quanti t ies are referred to the known reference configuration of the 
undeformed shell. The theory  contains as special cases the simplified versions of the non-linear 
shell equations derived by  Mushtari and Galimov [t 7~ (medium bending), Sanders E341 (moder- 
ately small rotations), Koiter  [35] (small finite deflections), Donnell [12], Marguerre Et3] and 
Vlasov [t4] (shallow shells) as well as the non-linear theory of plates of von K~irm~in [361. 

Star t ing from the principle of vir tual  displacements and applying the t ransformat ion proce- 
dures of Courant and Hilbert  [37], a set of sixteen basic free functionals (without subsidiary 
conditions) is constructed. The functionals are formulated in terms of various combinations of 
displacements, strain measures, stress measures and reactive boundary  loads as independent 
free field variables which are subject to variation. Among them are the Hu-Washizu principle, 
the Hellinger-Reissner principle and the principle of generalized total  complementary  energy. 

The free functionals are given in two different but  equivalent forms, which exhibit  certain 
s y m m e t r y  properties with respect to the geometric and static variables. The functionals denoted 
b y / 1  - -  I s are part icular ly convenient  to apply, when the independent  fields are additionally 
subject to certain geometric constraints.  Similarly, the functionals J1 - -  J s  are useful in appli- 
cations when the independent  fields are addit ionally subject to static constraints. F rom each 
of the basic functionals a var ie ty  of other, related functionals with or without  subsidiary con- 
ditions may  be generated. As an example,  the functionals of the to ta l  potential  energy and the 
total  complementary  energy are derived and a mixed functional, in which the membrane  par t  
is t rea ted  differently from the bending part ,  is constructed. For  each of the functionals the 
appropr ia te  independent  fields subject to variat ion are clearly indicated and the full set of 
subsidiary and s ta t ionar i ty  conditions is given. 

Most of the functionals derived here are new even for the case of the classical non-linear 
theory of shallow shells. Those which have already appeared in the l i terature for simple ver- 
sions of the non-linear shell theory are generalized here for the theory of thin elastic shells 
undergoing modera te  rotations. Fur thermore,  the general case of mixed boundary  conditions, 
with mutua l ly  complementary  geometric and static quantit ies prescribed on the same par t  of 
the boundary,  is taken into account. The shell boundary  m a y  also have corner points, where in 
general additional concentrated forces should be applied as a result of elimination of twisting 
moments  acting on the boundary.  Mixed boundary  conditions and corner effects are frequently 
omit ted  in the works on variat ional  principles for shell theories, bu t  are impor tan t  from the 
practical  point of view, unless some special shell problems are considered. 

2 B a s i c  S h e l l  R e l a t i o n s  

Let r(0 ~) = x~(O ~) i k and ?(0 ~) = x~(0 ~) i k, k = t ,  2, 3, be position vectors of the shell middle 
surface in the reference (undeformed) and deformed configurations, respectively. Here 0 ~, 

= t, 2, denotes a pair  of convected surface coordinates, while x ~ and ;c ~ are the spatial  
components  of r and r with respect to a fixed Cartesian frame i k in three-dimensional Euclidean 
space. With the reference shell middle surface J / w e  associate s tandard covariant  base vectors 
a~ = r,~, a unit  normal vector  n = {-e ~ a~ • a~ and covariant  components of the surface 
metric  tensor a~  = a~. a~ and of the surface curvature  tensor b~ - -  a~.~. n. Here ( ),~ = 
= 0( )/00 =, and e ~p are the cont ravar iant  components  of the skew-symmetr ic  surface permuta-  
tion tensor. Contravar iant  components  a ~8 of the metric  tensor, satisfying the relations a~'ar = 
= &~, where 6~ is the Kronecker  symbol,  are used to raise the indices of surface tensors defined 
on d/ .  By  a vertical  bar  ( )1~ we shall denote covariant  differentiation on d4 with respect to 0 ~. 
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The reference surface J//t is mapped  uniquely into the middle surface ~ of the deformed shell 
configuration by  a displacement field u = ~ - -  r = u~a~ + wn. The covar iant  base vectors on 

~r are ~ = P ~ - a~ + (0r - -  o)r a r + ~Gn, where for subsequent  use the linearized strains 
and rotat ions [3 t - -33,  35, 38] 

0~ = T (u<t~ @ u~/~) - -  b~aw, qG = w~ @ b~u;., (2.1) 

have been introduced. 
The components  of the symmetr ic  mid-surface strain tensor and of the tensor of change of 

surface curvature  are defined b y  

Y~ .2 (a~s - -  a ~ ) ,  ~r = --(b~t~ b~) .  (2.2) 

Here / /~  = a~. at~ a n d b ~  = a~, ~ �9 n are the covariant  components  of the metric and curvature  

tensors of ~ ,  respectively, while n = ~- ~ • ~ is the unit  normal  of ~ .  For  a detailed dis- 

cussion of the geometric relations on d/g and o4r we refer the reader to [32, 35, 39]- 
In  this paper  we are dealing with thin shells of constant  thickness h ~ R ,  where R is the 

smallest principal radius of curvature  of M//. The shell deformation is assumed to be such tha t  
h A ~ L 2, where L is the smallest wavelength of deformation pat terns  on J/r [35, 40]. In  general, 
the deformation of the neighbourhood of a point M ~ or m a y  be decomposed exact ly  into a 
r igid-body translation,  a pure s t retch along principal directions of strain and a r igid-body ro- 
ta t ion [31, 38]. Therefore, it is possible to construct  various approximate  non-linear shell 
theories by  restricting the magnitudes of the strains and rotations of the shell material  elements 
independently.  

For  the geometrically non-linear theory of shells to be considered here, the strains are assu- 
med to be small everywhere. Tha t  is ~ ~ 1, where ~ is the largest principal strain in the shell 
space. As a measure of smallness of various quantit ies we use the common pa ramete r  0 = 

= max  (h/L, h/d, ~ / ~ ,  I/~), where d is the distance of the point under consideration from the 
shell boundary  ~40~. 

For  an elastic shell a strain energy function ~, per unit  area of d//, exists. In  the case of 
small strains everywhere and isotropic mater ial  behaviour  it can be consistently simplified 
[3t, 4t ,  42]. For  a consistent f i rs t -approximat ion theory of shells the strain energy function is 
given, to within a relative error of 0(0~), by the following quadrat ic  expression 

h H~;4, ( h~ ) 
S = 2- Y~y~ 4- ~ z~;4 ,  , (2.3) 

where 

t_i~,,, E (  2v a,q~aa,, ) (2.4) 
2(1 + v) a~aaa*' + a~'aS;" + t ~ v -  

and E and v are Young's  modulus and Poisson's ratio, respectively. 
With the strain energy function (2.3) we obtain the linear consti tutive equations (CE) 

CE: N~ r ~Z ......... h.H,.~;~%~, M~ r oZ _ h a 
- -  O~.a " ' - -  0 ~  a 12 H ~ m z a ~ "  (2.5) 

where N ~r and M ~r are symmetr ic  stress and momen t  resultants consistent with the chosen 
surface strain measures. 

Equat ions (2.5) can be put  in mat r ix  form 

h a 
N i : hHiiyi, M i : ~ Hq~i, i, j --= 1, 2, 3 , (2.6) 

where 
N ~ = (N n, N~., N12)T, 

~ = (~11' ~22' ~12 ~" ~21)T, 

VH nU 
H q = / H2211 

k/ /~m 

M i = (M n,  Mn2, M12) T,  "[ 

~j =-: (uXl, ~2, ,~  + ..23r, [ (2.7) 
H 1122 H 1112] 

H 2~2 H2212[ �9 (2.8) 
H12~2 H121~ j 
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With the components of H ~ given by (2.4), the matrix H ii can be shown to be non-singu- 
lar, i.e. det (H ij) 4= 0. This assures the existence of a unique inverse of (2.6) yielding the inverse 
constitutive equations (IC) 

1 -~4' 12 
IC: y~  = ~- E ~ , N  , ~ = ~ E ~ M  ~t' , (2.9) 

where 
, + v (  2v ) 

E~Ba,, = 2E a~zaB" + a~,a~z -- ~ a~%, �9 (2.10) 

The relation (2.9) may also be written as 

0~c 0 &  
~'~,~ = ~Waa' ~ - -  ~ ,  (2.1t) 

where 

, ( ) ~c = ~ E ~ u  N~N#~ + h~ M~r (2.12) 

is called the complementary energy function of the shell. Equivalently, Z~ may be constructed 
by means of the Legendre transformation 

& ( N  ~, M ~) - N ~ y ~  + M ~ x 4  -- Z(y:,e, ~ )  �9 (2.t3) 

The existence and uniqueness of this transformation is assured by the fact that  the unique 
inverse of (2.5) exists. When (2.3) and (2.9) are introduced, (2.t3) transforms exactly to (2.12). 

An important  simplification of the non-linear shell relations can be achieved by further 
restricting also the magnitude of the rotations of the shell material elements. The rigid-body 
rotation of the neighbourhood of a material point can be described by a finite rotation vector 
Q, [38~. In [31,321 the following classification of rotations has been proposed: IQ[ ~ O(t) - 

finite rotations, IQI-- 0(t@ - large rotations, Iga[ = O(0) - m o d e r a t e  rotations, [Q[ = 0(02) 
- -  small rotations. For each of these cases the strain-displacement relations (2.2) may be sim- 
plified consistently by successively neglecting those terms of relative smallness whose contri- 
bution to the strain energy function Z lies within the error margin already implicit in assuming 
~ to be of the form (2.3). This leads to consistently simplified shell relations I33~ for each of the 
above cases. 

Within the geometrically non-linear first-approximation theory of thin shells undergoing 
moderate rotations we then have I3t--33, 431 the following complete set of equations which 
consists of the simplified strain-displacement relations (SD) in d//, geometric boundary condit- 
ions (GB) on g~, geometric corner conditions (GC) at each corner point Me ~ g,, equilibrium 
equations (EQ) in Jr/, static boundary conditions (SB) on gf and static corner conditions (SC) 
at each corner point Mj ~ gf: 

1 1 2 1 ~. ' "~" / 
SD: r ~  = 0~e + 5~5~ + v ~ - -  v (0~==~ Z ~ 0B~o~), (2.~4) 

J 
�9 = w* /~* (2.~5) GB: u,, = u,, , u t u* ,  w -= , fl = , 

GC: w(s~i) = w*(s.i) , (2.16) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - , - -  . . . . . .  ] 

+ @ (O~aN~ -- OeaN~)?b -- b~(Maab, + ~aN z") + p= ---=- 0,  } 
1 

(M=eI= + _~_ N=~) I~ + b~[ N=e -- b~ MaC -- ~ + P - O, J 

(2A7) 
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S B :  IN  ~ - -  h i M  ~ - -  o Y ' N ~  ~,~,~ + ~i1I,~ = T~* + **M~,, , I 

d , d , 

M ~ ,  M v v  ~ * 

M~(s~ + O) * SC: M, , ( s~  + 0) - -  M , ~ ( s ~  - -  O) = " * - -  M,, .(s~, - -  O) 

J 
(2.~8) 

(2.19) 

where 0~, ~o,~, ~ and q0 are given b y  (2.1). 

In  the above relations p = p~a~ + p n  denotes the external  dis t r ibuted surface load, per unit  
area of rid. The s tar  added to any symbol indicates a prescribed value of this quan t i ty  at the 
boundary  5 of d//. As usual, we define the unit  tangent  t and the unit  normal  v of the bound- 
a ry  g, given by  0 ~ = O~(s) in terms of its length pa ramete r  s, by  t = dr /ds  = ffa~ and v = 
= t • n ~ v~a ~ -= e~J~a ~. In  (2.18) r = b~t~t ~ is the normal curvature  of ~, while r~ - -  - - b j ~ t  ~ 
is its geodesic torsion. By u~ =-~ u~v~, ut == u %  and w we denote the physical components  of 
the displacement vector  u = u,v  + u , t  + w n  at  5, while/5 = --qo~v ~ is a fourth independent  
geometric paramete r  which describes the rotat ion of the boundary  element about  the tangent  
to 5, ~323. The quantit ies T~, T~,, and T ~  defined by  the corresponding expressions on the 
left-hand sides of (2.t8), and M~ = M~at~vr M,.~ - -  M ~ G v a  are physical components  of the 
resul tant  stress and momen t  vectors, per unit  length of 5, which, in turn,  are given by  

T ~ = [ N ~  - -  ~-~ (b~M~.a + b~M ~'~) - -  -r ( b ~ M ~  _ b ~ M  - -  -r o ) ~ N  ~. - -  

~ (m~N~ + ~0a',Ni) + ~ (O~'.N~-- O~N;)I a~ + (M~Plo + ~ N  ~) n , (2.2O) 

T,, = T~va ~ T~,,v + T,~t + T , , , n ,  ! 

I M '~ : s ~ M ~ a  z , M~ ~= MI~v~ : - -Mt~v q- M ~ t .  
(2,2t) 

By  5~ we denote the par t  of ~ on which at  least one of the four geometric variables of (2.15) 
is prescribed. By  5f we denote the par t  of 5 on which at  least one component  of the external 

* * * 4 -  * force T~ = T~,,v + T~t  , T , , n  or of the external  moment  M* = - -Mt*v  + M * t  is 
prescribed. Thus, any  of the four combinations indicated in (2.18) are possible. In general, we 
may  prescribe on ~ either (2.t 5)1 or (2.t8)1, either (2.t 5)2 or (2.18)~ etc., respectively. In  the case 
of mixed (mutual ly complementary)  boundary  conditions [251 the boundary  par ts  g,  and 5f 
coincide. They m a y  become separated if all four GB are assumed given on g,  and all four SB 
are assumed given on ST. In general, ~, m a y  have m corners located at s = s,i, i == 1 . . . .  , m, 
Likewise, 5f m a y  have n corners and points, where M** is discontinuous, located at s ~ sfi, 
j = l , . . . ,  n. In  general, such a point m a y  belong simultaneously to both  5, and gf. Let  
r < m + n be the total  number  of these corners and discontinuity points M~ ~ g located at  
s =-- s~ (k ~- 1 . . . . .  r). Then, at each M~ either (2.t6) or (2.I9) may  be prescribed as corner 
condition. 

The set of shell relations (2.t 4)--(2.19) contains, as special cases, the equations of various 
simplified var iants  of the geometrically non-linear theory  of shells and plates, which have been 
proposed in the li terature.  We have indicated some of these by underlining in (2.t4) those terms 
which do not appear  in the part icular  variant .  As a result, terms underlined in the same way do 
not appear  in EQ and SB as well as in the variat ional  functionals given in the following parts  of 
this paper. 
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If terms marked by a double solid line are omitted, one obtains reduced shell equations 
equivalent to those undergoing "moderate ly  small rotat ions" proposed by  Sanders [34] and 
those undergoing "small finite deflections" given by  Koiter [35]. In [34] terms, here underlined 
by dots, were neglected as weI1, while in [35] a modified tensor of change of curvature &s ~ 

~ + -~- (b~,O~.s d- b~O~) was used. The differences in the definition of the changes of curva- 
ture are negligible to within the relative error of O(0 ~) of the strain energy function (2.3). But  
by  neglecting terms underlined by  a double solid line a larger relative error of O(0) may be 
introduced into (2.3). Within this larger error margin terms marked by a dot and dash line 
may also be omitted. This leads to the shell equations derived in [31, 33], 

If the shell deformation is assumed to be such tha t  the shell materiai elements undergo 
moderate rotations about the tangents of ~r only, while tile rotations about the normal of ~tt 
are assumed small, the terms underlined once or twice by  a solid line, by  dots and by  a dot 
and dash line can be omitted. This is consistent with the error margin of the strain energy 
function (2.3), [31]. Such a simplified variant  of the moderate rotation theory of shells was 
discussed in [t7, 31, 33--35]. Under additional simplifying assumptions [3t, 35], leading to 

1 ~,~ -~ 0~ + ~ w,~w r ~..s -= --w[~r and allowing the interchange of the sequence of covariant 
differentiation., this version reduces to the classical nomlinear theory of shallow shells [t 2--14, 
t 7, 30]. If in addition b~r ~ 0 we obtain yon K~rm~n's i]36] non-linear plate equations. 

Finally, if all terms underlined by  broken, single solid and double solid lines are omitted, 
the above set of shell relations reduces to the classical linear theory of shells [6, 9]. If further- 
more terms underlined by dots are omit ted (or, equivalently, if 9,r is used as the tensor of 
change of curvature) we obtain the so called "bes t"  linear shell theory [42, 4@ 

For the following derivations it is convenient to use some abbreviated notation. We shall 
denote the set of displacement variables by  u ~ (u, fl, wk), the shell strain measures by  e 

(7~, ~ )  and the shell stress measures by  ~ = (N ~s, M~S). We also introduce Q ~ Tr 
and define the effective internal boundary force and moment  (BF) on gr and the internal con- 
centrated force (CF) at each M~ 6 ~ by the relations 

BF:  

CF: 

d (M~n) M --  M , .  I 

! F~ = Mt~(s k d- O) -- Mt~(sio --  O), k = 1, . . . ,  r < m + n .  

(2.22) 

With these the relations (2.t 4--18) can be writ ten in the following abbreviated form: 

SD: 7,~.j~ -- 7:~s(u) = 0 ,  Y-~s --  u~(u) --= 0 in o,lt, 

GB: u -- u* = 0 ,  fl -- t5" = 0 on g , ,  

GC: w~ -- w* ~ 0 at each 

EQ: O(u, ~) + p = 0 in JR,  

SB: P ( u ,  o)  - -  P *  = 0 ,  M ( o )  - -  M *  = 0 on ~], 

SC: F i ( a  ) - -  F *  = 0 at each 

M~ 6 g,~ , 

Mi  E gf.  

(2.23) 

Using the identities a~!~ = b~an, n!s = -  b~a~ and dn[ds ~ "Cry-  a~t together with 
(2.20--22), it is easy- to verify tha t  EQ and SB in (2.23) are indeed identical with (2.17) and 
(2A8), respectively. 

In (2.23) the dependence of certain quantities upon displacements and shell stress measures 
has been explicitly indicated. This symbolic notat ion will be used, if necessary, also for EQ, 
SB, SC, BF and CF, e.g. EQ (u, cr). Similarly, if the shell strain measures are introduced expli- 
citly by  CE they will be denoted in the same way, i.e. by  writing e.g. EQ[u, a(e)] ~- EQ(u, s). 
If  the strain measures are expressed in terms of displacements with the aid of SD, we shall 
indicate this by  writing e.g. EQ[u, (~(u)] := EQ(u). The same convenient notat ion will be used, 
if necessary, for Q, P, M and F k. Likewise, if in SD tile strain measures are expressed by  means 
of the stress measures with the aid of IC, it will be indicated by  writing SD[u, s(o)] ~ SD(u, (r). 
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3 The Principle of Virtual Displacements 

Following [t 0], we shall derive all subsequent variational principles by starting from the prin- 
ciple of virtual displacements. All static relations (2.t 7 - - t  9) of the non-linear boundary value 
problem follow directly from the s ta tement  

f ;  (N~r162162 4 - M ~ r  -- p-•u)  dA - -  f (P * .  du + M ' a f t )  ds - -  E F * d w  i = 0 ,  (3.t) 
o*r ~ y J 

which is the appropriate fornl of the Lagrangean principle of virtual displacements for all 
shell theories discussed in chapter  2 [32, 33, 43]- I t  holds for all (additional infinitesimal) vir tual  
displacement and strain fields satisfying SD, GB and GC. 

For elastic shells the first two terms in (3.t), representing the internal virtual work, can be 
expressed as a variation of the shell strain energy function (2.3) : b2J(e) --~ N ~ @ ~  + M~Bdn~a. 
If, in addition, we assume tha t  the external  loads p, T*  and M** are of dead-load type, then 
there exist potential  functions ~b(u) = - -p  �9 u, Z(u) = --  (P* �9 u + M*fl) and ~p(u) = - - F  i**'w i, 
the variations of which constitute the external virtual  work of the various loads: dq~(u) = 
- - - p  �9 bu, dZ(u ) - -- (P* �9 Su + M ' d r )  and @(u) = - - F * d w  r In this case the principle of 
vir tual  displacements (3.t) can be transformed into a variational principle of the form dI  = 0, 
where the functional I is given by  

I ( u ,  e) == I f  iS(e)  - -  p . u] dA  - -  f ( P * .  u + M*f l )  ds - - X  F * w  i (3.2) 

and where SD, GB and GC have to be imposed as subsidiary conditions. This principle states 
that  among all geometrically admissible displacements and strain measures (i.e. among all 
those satisfying SD, GB and GC) the actual solution (u0, co) renders the functional I stationary. 

The functional I(u, e) is defined here for all u and s satisfying SD, GB and GC. Other func- 
tionals (and associated variational principles) will be defined in terms of various sets of inde- 
pendent field variables. Among the var ie ty  of functionals which may be constructed from 
I ( u ,  s) the so-called free functionals, defined for certain sets of free field variables which are 
not  subject to subsidiary conditions, are part icularly useful. In what follows, a set of sixteen 
basic free functionals will be derived. From each of them a var ie ty  of other free functionals and 
functionats with subsidiary conditions may  easily be obtained. 

In order to express the various functionals in terms of different sets of independent field 
variables the transformation procedures suggested by  Courant and Hilbert  [37] will be used. 
The Lagrangean multiplier method is applied to eliminate subsidiary conditions and to intro- 
duce them into the functional itself. On the other hand, general solutions satisfying subsidiary 
conditions and/or  s tat ionari ty conditions (i.e. Euler-Lagrange equations and natural  boundary  
conditions) are used to eliminate certain independent field variables from the functionals. In 
both cases the transformed variational problem is equivalent to the original one as far as 
s tat ionari ty properties are concerned. 

4 Free Functionals and Related Variational Principles 

4.1 F o u r  I n d e p e n d e n t  F ie lds  

First all subsidiary conditions of I(u, e) are introduced into the functional itself by  use of the 
Lagrangean multiplier method. Then we obtain the free functional 

,,41 

-- f (P* .  u + .,T/*fl) ds - -  ~ F * w  i - -  
~f j 

--  f [ P .  (u --  u*) + .~[(/~ -- fl*)] ds - -  ~ Fi(u, i - -  wT) , (4.t) 
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where the right-hand sides of (2.3) and (2.t4) together with (2A) have to be introduced. Here, 
irrespective of previous notations, the quantities a = (N ~, M ~) and f = (P, M, Fi) are 
momentari ly considered to be two sets of Lagrange multipliers, by  means of which tile equations 
SD, GB and GC are included into the functional. 

The functional 11 is defined in terms of four fields of independent variables (u, e, a, f )  
subject to variation: three displacement components u in JR, four displacement parameters u 
and/5 on F, one normal displacement w~ at each corner M~ ~ F, six strain components 7~ and 
x~ in JR, six Lagrange multipliers N ~/3 and M ~ in JR, four Lagrange multipliers P and M on 
F~ and one Lagrange multiplier F~ at each corner M~ ~ ~,. 

The associated variational principle $11 ~ 0 states tha t  among all (u, ~, a, f) ,  not restricted 
by any subsidiary, condition, the actual solution (Uo, e0, ~o, f0) renders the functional /1 sta- 
tionary. 

Taking the first variation of 11 involves rather  lengthly operations which are given in detail 
in E43]- The result is 

~ I 1 =  --  f f  [Q(u, a ) +  p? .$udA + f {~P(u, a ) -  P*I �9 du + 

4- ~M(a) -- M*] 3fl} ds 4- j_ {~P(u, a) -- PI ' du + [M(a) -- MI d/5} ds + 

i i 

+ f f [  (hH~r -- N'a)~7"r + (~2 H~BZ~x~,*- M'r dA -- 
.d4 

(4.2) 
d 

I t  can be seen from (4.2) tha t  the stat ionari ty conditions of the functional I 1 are EQ, SB, 
SC, SD, GB, GC together with additional relations, which show the Lagrange multipliers N ~a, 
M r to be indeed the shell stress measures in JR, P and M to be effective reactive boundary 
force and moment on ~, and Fr to be the reactive concentrated force at each corner Me ~ ~,,, 
respectively, as has already been anticipated by  using the appropriate symbols in (4.1). These 
lat ter  relations are CE, BF  on gu and CF at all M~ ~ F~. 

Therefore, the variational principle bI  x = 0 is equivalent to the complete set of relations 
of the geometrically non-linear theory of shells undergoing moderate rotations. The functional 
I~ has not  so far been published in the l i terature for any var iant  of the nonilinear shell equations 
discussed in chapter 2. I t  may  be related to the functional H~ given in ~30~, if appropriate sim- 
plifications are made and the quantities are referred to the undeformed shell geometry.  Within 
the context  of the non-linear theory of shallow shells a corresponding functional, in terms of 
linearized strain measures and rotations and for smooth boundaries, has been given in ~24~. In 
accordance with the terminology of the three-dimensional theory of elasticity ~t0j we may 
call M 1 = 0 the Hu-Washizu principle for the geometrically non4inear theory of shells under- 
going moderate rotations. 

By applying integration by parts together with Stokes' theorem to terms included in 7~,r 
and z~r in (4.t), after some involved transformations (see again ~43~ for details) one ob- 
tains from I 1 an equivalent free functional 

dr 

+ f {~P(u, a) -- P * ] .  u + ~M(a) -- M*] r} ds + ~ ~Fi(a) -- F~] w~ 4- 

+ f {~P(u, a) -- PJ �9 u 4- [M(a) -- M] fl + P .  u* + Mr*} ds 4- 

+ X [F~(a) -- F~3 w~ + X ~ w * .  (4.3) 
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Here, taking into account (2.1), we have introduced as abbreviation for the non-linear part  of 
SD the following quant i ty :  

~ ~ (0~o~i~ + 0~co~)  . (4 .4 )  ~ ( u )  = ~ ~9~  + v a=~ ~ -- ~- 

The functional Jx contains the same set of independent free fields subject to variation as the 
functional I 1. A detailed calculation ~431 shows that  indeed b J1 - -  b I  1 and, therefore, the sta- 
t ionari ty conditions of J1 are the same as for 11. The functional J1 did not appear in the lit- 
erature as well for any variant  of non-linear shell equations discussed in chapter 2. Using the 
terminology which is applied in the linear three-dimensional theory of elasticity to correspond- 
ing functionals with a similar structure E45], we may call d J1 -- 0 a principle of generalized total  
complementary energy for the geometrically non-linear theory of shells undergoing moderate 
rotations. 

I t  is worthwhile to note certain interesting aspects of J1. The first three terms in the surface 
integral of (4.3) represent the shell complementary energy function in the form of the Legendre 
transformation (2.13)- In the next  term the internal force resultants are multiplied, according 
to (4.4), by the non-linear part  of (2.14h. These terms are completely analogous to those 
appearing in similar functionals of the geometrically non-linear theory of elasticity [t0~, in 
which the Kirchhoff stress tensor is multiplied by  the non-linear part  of the Green strain tensor. 
Moreover, the displacement variables u appear in (4.3) as multipliers of certain terms, which 
represent the static relations (i.e. EQ, SB, SC, BF  and CF) of the boundary value problem. This 
is analogous to the case of I 1 in (4.t), where the static variables a a n d f  appear as multipliers of 
certain terms, which represent the geometric relations (SD, SB and SC) of the shell problem 
under consideration. 

4.2 Three  I n d e p e n d e n t  F ie lds  

In this section we present six free functionals and related variational principles, in which only 
three independent fields are subject to variation. The functionals can be derived from I 1 and 
J1 by eliminating one of the independent fields e, a o r f  with the help of general solutions satis- 
fying IC, CE, or St3 and BF, respectively. For  details and proofs of the s ta t ionari ty  properties 
we refer to E43~. 

First, eliminate the strain measures e from I 1 by using the inverse constitutive equations 
(2.9). As a result we obtain the free functional 

I2(u, a , f )  = f f  [ - -Zc (a  ) + N~7~(u, ) + M~B~a(u) -- p .  u] dA -- f (P * .  u + M*f l )  ds - -  
Jt ~j 

- -  ~', F * w  i - -  f [ P .  (u -- u*) + m ( f l  - -  fl*)] ds - -  X Fi (wi  - -  w l )  . (4.5) 
] gu i 

The variational s tatement  612 = 0 is the Hellinger-Reissner principle for the geometri- 
cally non-linear theory of shells undergoing moderate rotations. 

By applying integration by parts together with Stokes' theorem to terms included in 7 ~ ( u )  
and x~l~(u ) , t l le  functional 12 may be transformed into an equivalent functional J=, which also 
follows directly from J1, when the strain measures e are eliminated 

.[2(u, a , f )  - -  - -  f f  {Zc(a)  -[- N~~ ) + [Q(u,  a) -~- p ] .  u} dA + 
J t  

+ ; { EP(u, a) - P*~ �9 u + EM(~) - M*~ p} ds + E EFj(~) - -  F;:'~ ~ + 

+ f { [ P ( u , a ) - -  P ] . u  + [ M ( a ) - - M ] / ~ +  P . u *  + M f l * } d s +  
g'u 

+ ~ [F~(a) - -  Fi] w i + X F e w * .  (4.6) 
i ~; 

In both functionals 12 and J~ the same independent free fields (u, a , f )  are subject to varia- 
tion. The variations dI  2 = b J2 are given by (4.2), where now the fourth line vanishes identically 
and SD appear in the fifth line in the transformed form e(a) -- e(u) ~ O. 
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Accordingly, the stationarity conditions of L, and J~ are EQ, SB, SC, 13F on ~u, CF at each 
M~ r ~o, SD(u, a), GB and GC. When the actual solution (uo, %, to) is known, for which I~ and 
J~ assume their stationary value, the strain measures e may be found, if necessary, with the 
help of (2.9) outside the variational problem. 

Next, eliminate the stress measures a from /1 and J~ by using the constitutive equations 
(2.5) to obtain the following free functionals I~ and Ja, defined for the same set of independent 
fields : 

Ia(u, G f )  -~ - -  f f  {~(~) @ P" u -- h ~  ~ [T~TM(u) @ (h2112) ~/3~#~a(u)]} dA - -  
JI 

~y J 

-- f IP" (u -- u*) + M(f i  - -  fl:")] ds - -  Y~ F~(w i - -  w*) , (4.7) 

Ja(u,  e , f )  = - f f  {2(e) q- hH~/~;'uy~r -{- ~Q(u, e) -~- p] .  u} dA -1- 

+ f {~P(u,  ~) - -  P*I" u + ~M(e) - -  M*3/~} ds + 2 ~Fi(e) - -  F;~? ~ + 
~t j 

+ f {[P(u,e) -- P j . u  + [M(e) - - M ] / 3 + P . u * + M f l * }  d s +  

+ X E F # )  - ~,] ~,, + X M ~ * .  (4.8) 

The expressions for the variations 6I~ = dJa are given again by (4.2), where now the fourth 
line vanishes identically and a is expressed everywhere in terms of e. The statioi~arity conditions 
of I a and Ja are EQ(u, e), SB(u, e), SC(e), BF(u, e) on ~ ,  CF(e) at each Mi ~ g~, SD, GB arid 
GC. For the actual solution (u 0, e o, to), for which I a and J~ assume their stationary value, the 
stress measures a may be obtained with the help of (2.5). 

Finally, the f i e l d f m a y  be eliminated from/1 and J~ by using (2.22). One obtains the follow- 
ing free functionals, defined for the same set of independent fields : 

/ a ( U ,  ~, or) = f f  

-- f (P* .  u -k M * ~ )  ds - -  ~ F * w j  - -  

- f [P(~,  ~ ) .  (u - u*) + M(,~) (~ - -  ~*)~ & - X F~(~) (w~ --  ~ ) ,  (4.9) 

+ N~qh=#(u) + [O(u,  a) + p] �9 u} d A  q- 

q- f {IV(u, a) -- P*J �9 u @ [M(a)  - -  M'*] fi) ds q- X [Fi(a) - -  F*]  ~'i -~' 
O i 

+ f I-P(u, , )  �9 u* + 21/l(a) fi*] ds q- 2 F,(cr) w~" . 
gu i 

(4.t0) 

The variations 6 I  4 ~- 6J~ are again given by (4.2), where the line integral over g, in the second 
line and the sum over i in the third line vanish identically and 6P(u, a), 6M(a)  and 6Fj(a)  
should be substituted for dP, dM and dFj in the last line, respectively. Then, the stationarity 
conditions of I 4 and J4 are EQ, SB, SC, CE, SD, Ot3 and OC. 

Just  as the variational principles associated with the functionals (4.1) and (4.3) the variatio- 
nal theorems dI~ -- 0 and 6J4 = 0 may also be termed the Hu-Washizu principle [10] and the 
principle of generalized total complementary energy [45], respectively, for the geometrically 
non-linear theory of shells undergoing moderate rotations. 

The functional I4 may be related to the funct ionalH 2 of E30]. Within the context of the non- 
linear theory of shallow shells special cases of/4 are given in [20, 231 and, in terms of linearized 
strains and rotations, in [241. I t  also contains a functional presented in [221 for a Donnell- 
3Iarguerre type membrane theory of shells as a special case. 
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4.3 Two Independent Fields 

In this section we present six free functionals, in which only two independent fields are subject 
to variation. The functionals are derived in the now familiar way, by eliminating either any 
two of the three fields s, o, f from 11 and J1 or one of them from the corresponding three-field 
functional given in section 4.2. For details and proofs of the stat ionarity conditions we refer 
again to E43~. 

First, eliminate ~ from 13 and J3 by using the strain-displacement relations (2.14). This 
gives the following free functionals: 

zs(~,f) = fy [~(~) - p .  u] d A  - -  f (P*.  u + M*8) ds -- E F*~j  -- 

- -  f [ P .  (u  - -  u * )  + ~u - -  fl*)~ ds - -  X Fr  - -  w * )  , ( 4 . t 2 )  

Js (u , f )  . . . . .  f f {Z(u) + hH~'~'7~8(u ) fl)zt,(u) - /  [O(u) -~- PI" u} dA - /  

-[- f { EP(u) --  P * ] .  u + EM(u) --  3r 8} ds + E [gi(u) - -  F*3 w i + 
~y J 

+ f {[P(u) -- P ] .  u + [M(u) -- 2//] fl + P .  u* + y]6r8 *} ds + 

+ X [Fi(u) - -  Fi] wi + S, F{w* .  (4.13) 
i i 

The stat ionari ty conditions associated with 15 and J5 follow again from further reduction of 
(4.2) to be EQ(u), SB(u), SC(u), BF(u) on F,,, CF(u) at each 2%I~ c ~ ,  GB and GC. From the 
actual solution (Uo, fo), for which the functionals 15 and ]5  assume their s tat ionary value, the 
shell strain and stress measures e and ~r may be obtained, if necessary, by  using (2.t4) and 
(2.5). 

Next, eliminate cr from 14 and J4 with the aid of the constitutive equations (2.5). This 
leads to 

I6(u, e) = - -  f f {2(e) + p -  u --  h.H~'~Ey~,~y~.~,(u ) + (h~[t2) ~z~./~(u)~} dA - -  

- f (v* .  u + M*8) -- X F*wj -- 

- -  f [P(u, ~). (u -- u*) + M(s) (fl -- fl*)] ds - -  X F~(s) (w~ - -  w* ) ,  (4.14) 

J , (u ,  s) : - f f  {2(e) + hH~"r~fiO~t,(u ) + [O(u, e) + P3" u} dA + 
,gg 

+ f {[P(u, ~) -- P*J �9 u + ~M(e) -- M* 1 fl} ds + X [F1(s) - -  F*~ w i + 

+ f [P(u, e).  u* + M(e) 8"~ ds + X Fi(e) w * .  (4.f5) 

The statiortarity conditions o f /6  and,j6 are EQ(u, e), SB(u, e), SC(e), SD, GB and GC. From 
the actual solution (u0, co) which renders the functionals 16 and JG stationary, the shell stress 
measures a and the reactive boundary  l o a d s f  may be calculated by  using (2.5) and (2.22), 

Finally, the f ie ldf  will be eliminated from 12 and J~ with the help of (2.22) to give 

- f ( e * .  u + M * ~ )  as  - X F?~,~ - -  
~.," ] 

- -  f [ P ( u ,  or) . (u  - -  u * )  + M ( a )  (8  - -  fl":")~ ds - -  Y~ F~(a)  (w~ - -  w * )  , (4 .~6)  

A ( u ,  ,r) = - f f  (&(or) + N~, ,~(u)  + iQ(u, ~r) + P3 �9 u} d A  + 

+ f {[P(u, a) --  P*J �9 u + [M(a) - -  M*~ 8} ds + E [Fi(a) - -  F*-j w] + 
~Y i 

+ f ;P(u ~). u* + M(~r) 8':q ds + E F~(,~) w~'. (4.~7) 
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j u s t  as the variational principle associated with the functional (4.5), the variational state- 
ment d t  7 = 0 may also be called the Hellinger-Reissner principle for the geometrically non- 
linear theory of shells undergoing moderate rotations. The s tat ionari ty conditions of I~ and J~ 
are EQ, SB, SC, SD(u, e), GB and GC. When (u o, a0) is known, for which t~ andJ~  assume their 
s ta t ionary value, the strain measures e and the reactive boundary  loads f may  be calculated 
from (2.9) and (2.22). 

The functional 17 corresponds to the functional --H~ of ~307. For  the non-linear theory of 
shallow shells with smooth boundaries a similar functional was given in ~24] in terms of lineariz- 
ed strains and rotations. 

4.4 Independent Di@lacemen~ Field 

In certain numerical applications it is convenient to use a free functional where only one 
independent field is subject to variation. For the non-linear shell theory discussed here it is 
possible to construct two such functionals in terms of displacements as independent fields. 
They  follow from any pair of the six two-field functionals discussed in section 4.3 by  eliminat- 
ion of one of the independent fields. In  this way we obtain 

h (~)  = f I [ X ( ' ) - - P ' u ] d A - - I ( P * ' u + M V ) d ~ - -  X ~ T w j - -  

- -  f [P(u)  - (u - -  u*)  + M(u)  (~ - - / 3* ) ]  ds - -  X F~(u) (w~ - -  w~) , (4.t8)  

Js(u) : - f f  {Z(u) + hH~~lmV~,(u ) qb~(u) + EO(u) + p]" u} dA + 

+ f {~P(u) -- P * ] .  u + EM(u) -- M*] fi} ds + X ~F~(u) -- F*] wj + 

+ f [P(u) �9 u* + M(u) fi*; ds + X F,(u) w* .  (4.19) 

The first variat ion ~I  8 = bJ8 takes the form 

~ I  s = - -  f f  [Q(u) + P~I" 8u dA + f { [P(u)  - -  P * ] .  flu + [JI(u) - -  J l * ]  8,3} ds + 

+ E Eli(u) --  f*~ 8w i --  f E(u --  u * ) -  8P(u) + (/~ --/3*) ~M(u)~ as --  

- X ( ~ -  z~?) ~F~(u). (4.20) 
i 

From (4.20) it is seen that  the stat ionari ty conditions of Is and Js  are EQ(u), SB(u), SC(u), 
GB and GC. For  known functions u0, for which I s and J8 assume their s ta t ionary value, any 
other variable e, a o r f  may  be calculated from (2.14), (2.5) and (2.22) . 

5 O t h e r  V a r i a t i o n a l  P r i n c i p l e s  

In chapter  4 a family of sixteen basic free functionats has been constructed in terms of various 
groups of independent free fields. Special cases of these functionals can be derived easily, if 
only certain individual components of these fields are eliminated from I t - -  17 or J i  -" J v  

From each free functional it is possible to generate a var ie ty  of related functionals with 
subsidiary conditions, for which equivalent variational statements may be given. The number 
of such different functionals results from the number of possible different combinations of 
stat ionari ty conditions of the free functional which may be t reated as subsidiary conditions 
for a modified variat ional plJnciple. The stat ionari ty conditions to be t reated in this way may 
be divided into groups according to either their  physical meaning (geometric, static and 
constitutive relations) or the domain of the shell where they apply (interior equations, bound- 
ary and corner conditions). However, each particular component of the stat ionari ty conditions 
may  also be treated separately. Note, tha t  the functionals I 1 + ts are particularly suitable for 
transformations, when the geometric relations of the shell boundary  value problem are t reated 
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as subsidiary conditions. On the other hand, when the static relations are t reated as subsidiary 
conditions, it is more convenient to use the functionals J1 - Js- Here three examples of this 
procedure are given. 

First the stat ionari ty conditions GB and GC of the functional Is(n ) will be t reated as sub- 
sidiary conditions. Then the variational principle bI  8 = 0 transforms into the equivalent 
principle c3H - 0, where the functional H is given by 

H ( u )  = f /  I S ( u )  - -  p .  ul dA -- f (V*.  u -~ M*fl) ds -- X -F*w i (5.J) 
~ ~s J 

with GB and GC as subsidiary conditions. As s tat ionari ty conditions of H(u) we have EQ(u), 
SB(u) and SC(,t). 

The functional H(u) is the total  potential  energy of the geometrically non-linear theory of 
shells undergoing moderate rotations. The variational principle 8/7 = 0 states, that  among all 
geometrically admissible displacements the actual solution u o renders the total potential  
energy stationary. 

For the shell theory under consideration the funct ional /7  corresponds to that  given in El 71, 
and it contains as special cases the functionals discussed in [28, 27, 29, 2J, 25, 20, 26, 16] for 
simpler versions of the geometrically non-linear theory of shells. 

Another example is provided by the functional J v  when its s tat ionari ty conditions EQ, 
SB and SC are t reated as subsidiary conditions. Then 8J7 = 0 transforms into an equivalent 
variational principle 8J  ~ o, where 

J ( u ,  a) = - -  f f  rZc(a ) q- N~qb~(u)] dA -F f [P(u, a ) .  u* -1- M(a) t~*] ds -F ~ Fi(a) w* ,  (5.2) 
dt  ~u i 

with EQ, SB and SC as subsidiary conditions. The stat ionari ty conditions of J are SD(u, a), 
GB and GC. 

The functional J is the mixed total  complementary energy for the non-linear theory of shells 
undergoing moderate rotations. With appropriate simplifications it reduces to the correspond- 
ing functionals discussed in [28, 27, 21, 25, 16] for simpler variants of the geometrically non- 
linear theory of shells. 

I t  is worthwhile to note that  the subsidiary conditions of the functional I given in (3.2) are 
the s tat ionari ty conditions of the functional J and vice versa. The variational principle dJ  = 0 
states, that  among all statically admissible displacements and stress measures (i.e. among all 
those satisfying EQ, SB and SC) the actual solution (%, a0) renders the functional J stationary. 

As a last example, only the bending part  of the geometric s tat ionari ty conditions (i.e. 
(2.14)e, (2.15)a,r and (2.16)) of the functional 1 a will be t reated as subsidiary conditions while 
simultaneously the components V4 and M ~r will be eliminated from I a with the aid of (2.9)1 and 
( 2 . 5 ) 2 .  Then d i  e =: 0 may be transformed into an equivalent variational principle di  m = 0 
where the functional I,~ is given by 

;f[, ,. ] I,~(~, x~, N ~ )  = - - ~  E~P~~N~N~'I" + 24 H~x~P xz~ -- p " u + N~7~f~(~ ) dA - -  

f (P*. + M V )  - X - -  

j [P~(~, z.~, N ~) (% --  ~C) + P~(~, x4 ,  N'P) ( , ,  - -  ~,~2)] cts . (5.3) 
g~ 

Here (2.14)2, (2.t 5)~,4 and (2, 6) are the subsidiary conditions. The stat ionari ty conditions of 

I, ,  are EQ(u, N~B), Sg(u, N~), SC(u), Z F. 7W.~ h ~ ' ~ * "  -- V4(u) = 0 in J///and u~ -- .@" ----- 0, u t -  u* = 0 
o n  ~ , .  

The functional I~ contains as special cases those given in [20] within the context  of the 
non-linear theory of shallow shells. Note that  for this simplest non-linear shell theory one has 
x~ -- --w[~ and N ~ =: e~ef~FI,~ T -P~r where P ~  is a particular solution of P~]~ + p~ = 0 
and /7  is Airy's stress function. When these relations are used to eliminate ~a  and N ~ from 
(5.3), the functional I, ,  may  be transformed easily into an equivalent functional I~(u, F), 
which then correspond~ to those given in [ t8--20,  23]. 
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P r o c e e d i n g  in  a s i m i l a r  w a y  m a n y  o t h e r  r e l a t e d  f u n c t i o n a l s  m a y  be  d e r i v e d  f r o m  t h e  ba s i c  

f ree  f u n c t i o n a l s  p r e s e n t e d  in  c h a p t e r  4. S o m e  of t h e s e  m o d i f i c a t i o n s  m a y  be  p a r t i c u l a r l y  con-  

v e n i e n t  in  a p p l i c a t i o n s  to  spec i f i c  shel l  p r o b l e m s .  

6 Concluding Remarks 

F o r  al l  g e o m e t r i c a l l y  n o n - l i n e a r  she l l  a n d  p l a t e  t h e o r i e s  w h i c h  h a v e  b e e n  d i s cus sed  in  c h a p t e r  2, 

t h e  v a r i a t i o n a l  t h e o r e m s  a s s o c i a t e d  w i t h  t h e  f u n c t i o n a l s  g i v e n  in  c h a p t e r s  3 - - 5  a n d  t h o s e  

w h i c h  can  be  g e n e r a t e d  f r o m  t h e m  are,  in  gene ra l ,  s t a t i o n a r y  p r i nc ip l e s  w i t h o u t  e x t r e m u m  

p r o p e r t i e s .  T h u s ,  t h e  s o l u t i o n  w h i c h  r e n d e r s  t h e s e  f u n c t i o n a l s  s t a t i o n a r y  m a y  n o t  a l w a y s  be  

u n i q u e .  F o r  c e r t a i n  s i m p l i f i e d  n o n - l i n e a r  shel l  a n d  p l a t e  t h e o r i e s  c o n d i t i o n s  h a v e  b e e n  d e r i v e d  

in  [28, 27, 21, 25] fo r  t h e  s t a t i o n a r y  p r i n c i p l e  of t h e  t o t a l  p o t e n t i a l  e n e r g y  to  be  a m i n i m u m  

p r i n c i p l e  a n d  fo r  t h e  e x i s t e n c e  of an  a s s o c i a t e d  d u a l  m a x i m u m  p r i n c i p l e  of t h e  t o t a l  c o m p l e -  

m e n t a r y  ene rgy .  F u r t h e r  r e s e a r c h  c o n c e r n i n g  th i s  q u e s t i o n  in t h e  c o n t e x t  of t h e  g e o m e t r i c a l l y  

n o n - l i n e a r  t h e o r y  of shel l s  u n d e r g o i n g  m o d e r a t e  r o t a t i o n s  s h o u l d  y i e l d  c o r r e s p o n d i n g  resu l t s .  
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