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Variational Principles in the Geometrically Non-linear Theory
of Shells Undergoing Moderate Rotations *

R. Schmidt, Bochum and W. Pietraszkiewicz, Gdansk

Summary: A general approach to the derivation of variational principles is given for the geometrically non-
linear theory of thin elastic shells undergoing moderate rotations. Starting from the principle of virtual dis-
placements, a set of sixteen basic free functionals without subsidiary conditions is constructed. From these free
functionals a, number of related functionals with or without subsidiary conditions may be generated. As exam-
ples, the functionals of the total potential energy and the total complementary energy are derived.

Ubersicht: Die vorliegende Arbeit enthalt eine systematische Herleitung von Variationsprinzipen fur die
geometrisch nichtlineare Theorie diinner elastischer Schalen, in der die Quadrate der Rotationen von gleicher
Grofenordnung wie die Dehnungen sein kénnen. Ausgehend vom Prinzip der virtuellen Verschiebungen wird
eine Familie von sechzehn freien Funktionalen hergeleitet, die keinen Nebenbedingungen unterliegen. Von die-
sen freien Funktionalen kann eine Vielzahl verwandter Funktionale mit oder ochne Nebenbedingungen abge-
leitet werden. Als Beispiele werden die Prinzipe vom stationiren Wert des Gesamtpotentials und der komple-
mentédren Energie angegeben.

1 Introduction

The rapid development of computerized solution techniques makes it possible to calculate
thin shell structures with a desired degree of accuracy within the linear as well as non-linear
range of deformation. Some of the numerical methods used most frequently (e.g. finite element
and finite difference energy methods) are based on appropriate variational principles.

In the linear theory of thin elastic shells various variational principles have been derived
by Trefftz {1], Reissner [2—4], Naghdi [5—7], Riidiger [8], Chernykh [9], Washizu [10] and
others, which are analogous to the corresponding principles of the linear three-dimensional
theory of elasticity. An extensive treatment of this subject was given recently by Abovsky
et al. [11], who also discussed the extremum properties of some of the functionals they consider-
ed.

In the classical geometrically non-linear theory of shallow shclls [12—14] several variational
functionals have been constructed. The functionals given by Alumie [15], Wang [16], Mushtari
and Galimov [17], Grundmann [18], Huang [19], Gass [20], Stumpf [21], Harnach and Kritzig
f22} and Abovsky et al. [23] are given in terms of various combinations of the displacements,
strain measures, and stress measures or stress functions. In the functionals given by Aynola
[24], Stumpf [21, 25] and Washizu [26] linearized strain measures and rotations as well as
associated stress measures are used as independent variables.

For simplified variants of the non-linear theory of thin elastic shells undergoing moderate
rotations dual extremum principles and complementary variational theorems have been pre-
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sented by Stumpf [27, 28], while the principle of stationary total potential energy was also
used by Stein [29].

For the general non-linear theory of thin shells with unrestricted strains and rotations four
variational principles have been formulated by Galimov [30]. In these principles the independ-
ent variables are referred to the configuration of the deformed shell surface, not usually known
in advance.

In this paper a general approach to the derivation of variational principles for the geomet-
rically non-linear theory of thin elastic shells undergoing moderate rotations is given. This
theory, proposed in [31—33], is based on a consistent first approximation of the shell strain
energy function. All shell quantities are referred to the known reference configuration of the
undeformed shell. The theory contains as special cases the simplified versions of the non-linear
shell equations derived by Mushtari and Galimov [17] (medium bending), Sanders [34] (moder-
ately small rotations), Koiter [35] (small finite deflections), Donnell [12], Marguerre [13] and
Vlasov [14] (shallow shells) as well as the non-linear theory of plates of von Kdrmén [36].

Starting from the principle of virtual displacements and applying the transformation proce-
dures of Courant and Hilbert [37], a set of sixteen basic free functionals (without subsidiary
conditions) is constructed. The functionals are formulated in terms of various combinations of
displacements, strain measures, stress measures and reactive boundary loads as independent
free field variables which are subject to variation. Among them are the Hu-Washizu principle,
the Hellinger-Reissner principle and the principle of generalized total complementary energy.

The free functionals are given in two different but equivalent forms, which exhibit certain
symmetry properties with respect to the geometric and static variables. The functionals denoted
by I, — I are particularly convenient to apply, when the independent fields are additionally
subject to certain geometric constraints. Similarly, the functionals J; - Jg are useful in appli-
cations when the independent fields are additionally subject to static constraints. From each
of the basic functionals a variety of other, related functionals with or without subsidiary con-
ditions may be generated. As an example, the functionals of the total potential energy and the
total complementary energy are derived and a mixed functional, in which the membrane part
is treated differently from the bending part, is constructed. For each of the functionals the
appropriate independent fields subject to variation are clearly indicated and the full set of
subsidiary and stationarity conditions is given.

Most of the functionals derived here are new even for the case of the classical non-linear
theory of shallow shells. Those which have already appeared in the literature for simple ver-
sions of the non-linear shell theory are generalized here for the theory of thin elastic shells
undergoing moderate rotations. Furthermore, the general case of mixed boundary conditions,
with mutually complementary geometric and static quantities prescribed on the same part of
the boundary, is taken into account. The shell boundary may also have corner points, where in
general additional concentrated forces should be applied as a result of elimination of twisting
moments acting on the boundary. Mixed boundary conditions and corner effects are frequently
omitted in the works on variational principles for shell theories, but are important from the
practical point of view, unless some special shell problems are considered.

2 Basic Shell Relations

Let r(6%) = x*(6%) i, and T(0%) = ¥*(6%) i,, £ = 1, 2, 3, be position vectors of the shell middle
surface in the reference (undeformed) and deformed configurations, respectively. Here 0%,
xz =1, 2, denotes a pair of convected surface coordinates, while #* and ¥* are the spatial
components of r and T with respect to a fixed Cartesian frame i, in three-dimensional Euclidean
space. With the reference shell middle surface «# we associate standard covariant base vectors
a, = r,, a unit normal vector n = +e?a, X ag and covariant components of the surface
metric tensor a,; = a,- a5 and of the surface curvature tensor boys = @, 5+ 0. Here (), =
= 9( )/00% and * are the contravariant components of the skew-symmetric surface permuta-
tion tensor. Contravariant components a*® of the metric tensor, satisfying the relations a?ag, =
= 8%, where 83 is the Kronecker symbol, are used to raise the indices of surface tensors defined
on L. By a vertical bar ( )|, we shall denote covariant differentiation on M with respect to 0%



R. Schmidt and W. Pietraszkiewicz: Variational Principles in the Non-linear Theory of Shells 189

The reference surface «# is mapped uniquely into the middle surface oM of the deformed shell
configuration by a displacement field u = © — r = #”a, -+ wn. The covariant base vectors on

Mared, =T ,=a, + (0, — wz) 8° + @,n, where for subsequent use the linearized strains
and rotations {31 —33, 35, 38]
Gocﬁ == _,‘14_ (/M’oclﬁ +- M’ﬁla) - bzxﬁw ’ Py = W g + biui 4 }
Wy5 = (g — hp) = £, ¢ =5 g,
have been introduced.

The components of the symmetric mid-surface strain tensor and of the tensor of change of
surface curvature are defined by

(2.1)

Yap = ’;“ (aw? - uaﬁ) » Hap = M(baﬁ - brx[?) . (2'2)
Herea,; = a, - agand b,; = 2, ;- D are the covariant components of the metric and curvature
tensors of o, respectively, while Tl = 4 &2, X &, is the unit normal of . For a detailed dis-
cussion of the geometric relations on «# and M we refer the reader to [32, 35, 39].

In this paper we are dealing with thin shells of constant thickness 2 <€R, where R is the
smallest principal radius of curvature of . The shell deformation is assumed to be such that
h?<€ L2, where L is the smallest wavelength of deformation patterns on#, [35, 40]. In general,
the deformation of the neighbourhood of a point M € .4 may be decomposed exactly into a
rigid-body translation, a pure stretch along principal directions of strain and a rigid-body ro-
tation [31, 38]. Therefore, it is possible to construct various approximate non-linear shell
theories by restricting the magnitudes of the strains and rotations of the shell material elements
independently.

For the geometrically non-linear theory of shells to be considered here, the strains are assu-
med to be small everywhere. That is <€ 1, where 5 is the largest principal strain in the shell
space. As a measure of smallness of various quantities we use the common parameter § =
= max (h/L, hid, V’h/ R, 1/17), where d is the distance of the point under consideration from the
shell boundary 740].

For an elastic shell a strain energy function X, per unit area of «#, exists. In the case of
small strains everywhere and isotropic material behaviour it can be consistently simplified
[31, 41, 42]. For a consistent first-approximation theory of shells the strain energy function is
given, to within a relative error of 0(6?), by the following quadratic expression

h Ve
2 == ”é"‘ Haﬁlﬂ (’}’aﬁ}’}.,u M{“ E %aﬁ%},‘u) ’ (2'3)
where

afldp -
H 201 9

2
(ez“"‘aﬁ“ 4+ ao#af* — _vv a"‘ga"‘f‘) {2.4)

and £ and y are Young’s modulus and Poisson’s ratio, respectively.
With the strain energy function (2.3) we obtain the linear constitutive equations (CE)

5 OX , ox B

CE: N :m?ﬁ ]z,H"‘B;‘/yl!” M"‘ﬂ —_— =

= 8;{055 12 Hmﬂz)uxly 3 (25)

where N*¥ and M* are symmetric stress and moment resultants consistent with the chosen
surface strain measures.
Equations (2.5) can be put in matrix form

, . . B
N* = rH"y;, M= > H”x]- , ,7=1,2,%, (2.6)
where
Nt = (Nn’ N2z, le)T . M? = (Mn’ Mz, Ale)T ,
Vi = (V1 Va2 Y22 + ya)T %; == (g, Hag, Hyp -+ #a)" } @7)
guu  puzz gie
HY | el pgesee preeis | (2.8)

Hizl H1222 iz
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With the components of H** given by (2.4), the matrix H can be shown to be non-singu-
lar, i.e. det (H”) == 0. This assures the existence of a unique inverse of (2.6) yielding the inverse
constitutive equations (IC)

1 12
IC: Vapg = 7 Eaﬂl,uNlu s Hap = ) EaﬁAﬂMz‘u s (29)

where

149 . 2y
EaBZy == 2FE Aoy Ry T Aaulpr — 149 aaBﬂZ,u . (210)

The relation (2.9) may also be written as

oZ oz
Vap = 5ras? Hap = agad? (2.11)
where
1 12
%, = 2 B (NN 1 2 o) @.12)

is called the complementary energy function of the shell. Equivalently, 2 may be constructed
by means of the Legendre transformation

Zc(Nﬂtﬁ’ Mzﬂ) = N“Byaﬁ -+ M“B%uﬁ — Z(‘Vaﬂ: Mocﬁ) . (2’13)

The existence and uniqueness of this transformation is assured by the fact that the unique
inverse of (2.5) exists. When (2.3) and (2.9) are introduced, (2.13) transforms exactly to (2.12).

An important simplification of the non-linear shell relations can be achieved by further
restricting also the magnitude of the rotations of the shell material elements. The rigid-body
rotation of the neighbourhood of a material point can be described by a finite rotation vector
€2, [38]. In [31, 32] the following classification of rotations has been proposed: |£2| > O(1) —
finite rotations, 2| = 0(1/5) — large rotations, {€2| = O(#) — moderate rotations, [£2| = 0(6?2)
— small rotations. For each of these cases the strain-displacement relations (2.2) may be sim-
plified consistently by successively neglecting those terms of relative smallness whose contri-
bution to the strain energy function 2’ lies within the error margin already implicit in assuming
2 to be of the form (2.3). This leads to consistently simplified shell relations [33] for each of the
above cases.

Within the geometrically non-linear first-approximation theory of thin shells undergoing
moderate rotations we then have [31—33, 43] the following complete set of equations which
consists of the simplified strain-displacement relations (SD) in #, geometric boundary condit-
ions (GB) on §,, geometric corner conditions (GC) at each corner point M, ¢ €,, equilibrium
equations (EQ) in «#, static boundary conditions (SB) on &, and static corner conditions (SC)
at each corner point M, € €

SD: Vas = Oap -I—_%_(Pi(l?ﬁ—l" 5 @upp® — 7 (02015 + Of0z)

Map = — 7 [Peap - Poix + bi(e//a’ —E)fﬁ) + bé(__e_z_g_ _ﬁ).;i)] ) 244
GB: w,=ut, w,=uf, w=w*, f=7p8*%, (2.15)
GC:  w(s,) = w*(s,), (2.16)

EQ: [N* — L (55M" 4 piM™) — & (b5M¥ — bEM™%) — 5 0¥N} — & (0™ Nf + 0™N3) +

; ]
....................................... O - |
(
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SB:  [N¥ — MY — N vy + 1M, = TE + 1 ME

[N — 2 (BM% - B — & (BMY — BM) — - o ONE — + (0N + oPNg) +

d d
(Maﬂlo; +(_P'a§aiﬂ‘) Vg + s Mtv = T:v -+ as ]V[;l: )

MWI == M:’: s
(2.18)
SC:  M,(s5 + 0) — Myl(s; — 0) = ME(sy; + 0) — Mi(s; — 0) (2.19)

where 8,5, 0,5, @, and ¢ are given by (2.1).

In the above relations p == p"a, -} pn denotes the external distributed surface load, per unit
area of M. The star added to any symbol indicates a prescribed value of this quantity at the
boundary & of /. As usual, we define the unit tangent t and the unit normal » of the bound-
ary &, given by 6* = 0*(s) in terms of its length parameter s, by t = dr/ds = {"a, and v =
=t X n = yga® = ggt*a’. In (2.18) o, = b,4"" is the normal curvature of &, while 7, = —b,0°°
is its geodesic torsion. By u, == u™,, #, = %, and w we denote the physical components of
the displacement vector u == u,p + #u,t 4 wn at ¢, while § = —¢»*is a fourth independent
geometric parameter which describes the rotation of the boundary element about the tangent
to £, [32]. The quantities T,,, T}, and T, defined by the corresponding expressions on the
left-hand sides of (2.18), and M, = M*% v, M,, = My, are physical components of the
resultant stress and moment vectors, per unit length of €, which, in turn, are given by

T/ = [N — & (WM + BIM) —

— 5 (N7 4 N} + 5 (67N, — 07N2)] a, + (M|, + N n,  (2.20)

(2.21)

Tz' == T&p{i = va + Ttvt "]L" Tm/n >
M? — ¢, Ma% M, = My, = — M 1- M,t.

By £, we denote the part of £ on which at least one of the four geometric variables of (2.15)
is prescribed. By €, we denote the part of £ on which at least one component of the external
force T = T¥v + Tit + Tin or of the external moment M¥ = — M¥» - MFt is
prescribed. Thus, any of the four combinations indicated in {2.18) are possible. In general, we
may prescribe on € either (2.15), or (2.18),, either (2.15), or (2.18), etc., respectively. In the case
of mixed (mutually complementary) boundary conditions [25] the boundary parts €, and £,
coincide. They may become separated if all four GB are assumed given on &, and all four SB
are assumed given on £;. In general, £, may have m corners located at s = s,;, 7 = 1, ..., m.
Likewise, €& ; may have » corners and points, where M * is discontinuous, located at s == Sy
j=1,...,n In general, such a point may belong simultaneously to both £, and 6. Let
7 <X m -+ n be the total number of these corners and discontinuity points M, € £ located at
s ==5, (k =1, ...,7). Then, at each M, either {2.16) or (2.19}) may be prescribed as corner
condition.

The set of shell relations (2.14)—{2.19) contains, as special cases, the equations of various
simplified variants of the geometrically non-linear theory of shells and plates, which have been
proposed in the literature. We have indicated some of these by underlining in (2.14) those terms
which do not appear in the particular variant. As a result, terms underlined in the same way do
not appear in EQ and SB as well as in the variational functionals given in the following parts of
this paper.
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If terms marked by a double solid line are omitted, one obtains reduced shell equations
equivalent to those undergoing “‘moderately small rotations’” proposed by Sanders [34] and
those undergoing “‘small finite deflections” given by Koiter [35]. In [34] terms, here underlined
by dots, were neglected as well, while in [35] a modified tensor of change of curvature g,; =
= 2,5 + 5 (b10,5 - b30,) was used. The differences in the definition of the changes of curva-
ture are negligible to within the relative error of O(#%) of the strain energy function (2.3). But
by neglecting terms underlined by a double solid line a larger relative error of O(f) may be
introduced into (2.3). Within this larger error margin terms marked by a dot and dash line
may also be omitted. This leads to the shell equations derived in [31, 33].

If the shell deformation is assumed to be such that the shell material elements undergo
moderate rotations about the tangents of # only, while the rotations about the normal of #
are assumed small, the terms underlined once or twice by a solid line, by dots and by a dot
and dash line can be omitted. This is consistent with the error margin of the strain energy
function (2.3}, [31]. Such a simplified variant of the moderate rotation theory of shells was
discussed in [17, 31, 33—35]. Under additional simplifying assumptions [31, 35], leading to
Vug = Oug -+ 5 W W g, Ko = —W|,s and allowing the interchange of the sequence of covariant
differentiation, this version reduces to the classical non-linear theory of shallow shells [12—14,
17, 301. If in addition b,; = 0 we obtain von Kdrmén’s [36] non-linear plate equations.

Finally, if all terms underlined by broken, single solid and double solid lines are omitted,
the above set of shell relations reduces to the classical linear theory of shells (6, 91. If further-
more terms underlined by dots are omitted (or, equivalently, if 0ap 15 used as the tensor of
change of curvature) we obtain the so called “‘best” linear shell theory [42, 44].

For the following derivations it is convenient to use some abbreviated notation. We shall
denote the set of displacement variables by # = (u, §, w,), the shell strain measures by ¢ =
= (7,5 %) and the shell stress measures by o = (N*, M*). We also introduce Q = T#;
and define the effective internal boundary force and moment (BF) on £, and the internal con-
centrated force (CF) at each M, € € by the relations

d
EA {Mtvn) ’ M = B’[w ’
ds (2.22)

CF: Fy = M(s, 4 0) — M,(s, — 0), E=1,..,vr<m-un.

BF: P=T, +

With these the relations (2.14—18) can be written in the following abbreviated form:

SD: Vs — Vusltt) = 0, Mop — Hopltt) == in o,
GB: u—u*=0, B—p*=0 on &,,
GC: w;, — w =0 ateach M;€&,,
. (2.23)
EQ: Q(u,0) +p=10 in Jt,
SB:  Plu,0) —P*=0, M) — M* =20 on &,
SC: Fio) — Ff =0 ateach M;e €.
Using the identities 2,3 = b0, np = — bja, and dnfds = tp — ot together with

(2.20—22), it is easy to verify that EQ and SB in (2.23) are indeed identical with (2.17) and
(2.18), respectively.

In (2.23) the dependence of certain quantities upon displacements and shell stress measures
has been explicitly indicated. This symbolic notation will be used, if necessary, also for EQ,
SB, SC, BF and CF, e.g. EQ (u, ¢). Similarly, if the shell strain measures are introduced expli-
citly by CE they will be denoted in the same way, i.e. by writing e.g. EQ[u, o(e)] = EQ(«, ¢).
1f the strain measures are expressed in terms of displacements with the aid of SD, we shall
indicate this by writing e.g. EQ[#, o(#)] = EQ(#). The same convenient notation will be used,
if necessary, for Q, P, M and F,. Likewise, if in SD the strain measures are expressed by means
of the stress measures with the aid of IC, it will be indicated by writing SD[u, ¢(0)] = SD(u, o).
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3 The Principle of Virtual Displacements

Following [10], we shall derive all subsequent variational principles by starting from the prin-
ciple of virtual displacements. All static relations (2.17-19) of the non-linear boundary value
problem follow directly from the statement

[T ANP8y,5 + M*¥n,5 — p - ou) d4d — [ (P*. du -+ M*B) ds — pX Ffow; =0, (34)
M £ 7
which is the appropriate form of the Lagrangean principle of virtual displacements for all
shell theories discussed in chapter 2 [32, 33, 43]. It holds for all (additional infinitesimal) virtual
displacement and strain fields satisfying SD, GB and GC.

For elastic shells the first two terms in (3.1), representing the internal virtual work, can be
expressed as a variation of the shell strain energy function (2.3): 8Z(e) = N*0y,5 + M*“6n,p.
If, in addition, we assume that the external loads p, T and M} are of dead-load type, then
there exist potential functions @(u) = —p - u, y(u) = —(P*. u + M*B) and p(u) = —FJw,
the variations of which constitute the external virtual work of the various loads: §@(u) =
=—p - 0w, dy(u) =— (P*.6u + M*4f) and dy(u) = —FFdw, In this case the principle of
virtual displacements (3.1) can be transformed into a variational principle of the form 67 = 0,
where the functional I is given by

Iw,e) = [ [X(e) —p-uldd — I (P*-u 4 M*f) ds — X Ffru, (3.2)
¥ 7

and where SD, GB and GC have to be imposed as subsidiary conditions. This principle states
that among all geometrically admissible displacements and strain measures (i.e. among all
those satisfying SD, GB and GC) the actual solution {#,, &,) renders the functional 7 stationary.

The fanctional I{u, ¢} is defined here for all # and ¢ satisfying SD, GB and GC. Other func-
tionals (and associated variational principles) will be defined in terms of various sets of inde-
pendent field variables. Among the variety of functionals which may be constructed from
I(u, &) the so-called free functionals, defined for certain sets of free field variables which are
not subject to subsidiary conditions, are particularly useful. In what follows, a set of sixteen
basic free functionals will be derived. From each of them a variety of other free functionals and
functionals with subsidiary conditions may easily be obtained.

In order to express the various functionals in terms of different sets of independent field
variables the transformation procedures suggested by Courant and Hilbert [37] will be used.
The Lagrangean multiplier method is applied to eliminate subsidiary conditions and to intro-
duce them into the functional itself. On the other hand, general solutions satisfying subsidiary
conditions and/or stationarity conditions (i.e. Euler-Lagrange equations and natural boundary
conditions) are used to eliminate certain independent field variables from the functionals. In
both cases the transformed variational problem is equivalent to the original one as far as
stationarity properties are concerned.

4 Free Functionals and Related Variational Principles

4.1 Four Independent Fields

First all subsidiary conditions of I(x, &) are introduced into the functional itself by use of the
Lagrangean multiplier method. Then we obtain the free functional

Liu, &, 0,f) = ) J {2(e) = - u — Ny — ()] — Moy — sop(u)]} dA —

— [ (P*.u + M) ds — 3 Fw, —
tr 7

= J TP (u—u¥) £ M(B — p¥]ds — 5 Fifw, — o), (4.1)
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where the right-hand sides of (2.3) and (2.14) together with {2.1) have to be introduced. Here,
irrespective of previous notations, the quantities ¢ = (N*, M*¥) and f = (P, M, F,) are
momentarily considered to be two sets of Lagrange multipliers, by means of which the equations
SD, GB and GC are included into the functional.

The functional I; is defined in terms of four fields of independent variables («, ¢, 0, f)
subject to variation: three displacement components u in o#, four displacement parameters u
and § on €, one normal displacement w, at each corner M, ¢ &, six strain components y,; and
%#,5 in A, six Lagrange multipliers N*¥ and M* in <, four Lagrange multipliers P and M on
¢, and one Lagrange multiplier F, at each corner M, ¢ €.

The associated variational principle §I; = 0 states that among all («, ¢, o, f), not restricted
by any subsidiary- condition, the actual solution {ug, &, 0y, fo) renders the functional I sta-
tionary.

Taking the first variation of I, involves rather lengthly operations which are given in detail
in [43]. The result is

o1 = — [ [ 10w, 0) + 01 b dd + [ (1Pl 0) — P+ bu
M £y

+ [M(o) — M*] 0} ds + [ ([P(u, 0) — P]- 6w + (M(o) — M0} ds +
u

+Z[Fj(o')“F;k]awj“}‘Z[Fi(a)—F¢]5w¢+

7
hs
+ [(hmﬁwm — N by + <E e, M«ﬂ) axaﬂ] a4 —
S
[ [ t0ap = gt 6N 4 Ty — ) 8300} 24 —
A

~ [ ttw — ws) 5P (5 — %) 001 &5 — B (ws — w) OF;. (4.2)
Eu

Tt can be seen from (4.2) that the stationarity conditions of the functional 7; are EQ, SB,
SC, SD, GB, GC together with additional relations, which show the Lagrange multipliers N*#,
M®* to be indeed the shell stress measures in 4, P and M to be effective reactive boundary
force and moment on £, and F, to be the reactive concentrated force at each corner M; ¢ €,
respectively, as has already been anticipated by using the appropriate symbols in (4.1). These
latter relations are CE, BF on £, and CF at all M, ¢ €.

Therefore, the variational principle dI; = 0 is equivalent to the complete set of relations
of the geometrically non-linear theory of shells undergoing moderate rotations. The functional
I, has not so far been published in the literature for any variant of the non-linear shell equations
discussed in chapter 2. It may be related to the functional I7; given in [30], if appropriate sim-
plifications are made and the quantities are referred to the undeformed shell geometry. Within
the context of the non-linear theory of shallow shells a corresponding functional, in terms of
linearized strain measures and rotations and for smooth boundaries, has been given in [24]. In
accordance with the terminology of the three-dimensional theory of elasticity [10] we may
call 81, = 0 the Hu-Washizu principle for the geometrically non-linear theory of shells under-
going moderate rotations.

By applying integration by parts together with Stokes’ theorem to terms included in y,z(«)
and #,5(u) in (4.1), after some involved transformations (see again [43] for details) one ob-
tains from I, an equivalent free functional

Tt 6,0, ) = — (] {N¥pop + Mt — 2(e) + N9Dygu) + [Qlu 0) -+ P - w} dd +
+;f {[P(,0) — P*] - w -+ [(M(o) = M*) ) ds -+ 5 [Fo) = Fflwo, +
+ [ {[P{, 0) — P]-u + [M(o) — M1+ P-u¥ + MB*} ds +
+z [Fi(o) — Fil wy + 3 Faof . (43)
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Here, taking into account (2.1), we have introduced as abbreviation for the non-linear part of
SD the following quantity:
Pualt) = 5 9upp + 5 Gasp® — 5 Brogs + Ofo) (4.4)

The functional J; contains the same set of independent free fields subject to variation as the
functional [;. A detailed calculation [43] shows that indeed 0 J; = 61; and, therefore, the sta-
tionarity conditions of J; are the same as for I;. The functional J, did not appear in the lit-
erature as well for any variant of non-linear shell equations discussed in chapter 2. Using the
terminology which is applied in the linear three-dimensional theory of elasticity to correspond-
ing functionals with a similar structure [45], we may call §J; = 0 a principle of generalized total
complementary energy for the geometrically non-linear theory of shells undergoing moderate
rotations.

It is worthwhile to note certain interesting aspects of J;. The first three terms in the surface
integral of (4.3) represent the shell complementary energy function in the form of the Legendre
transformation (2.13). In the next term the internal force resultants are multiplied, according
to (4.4), by the non-linear part of (2.14),. These terms are completely analogous to those
appearing in similar functionals of the geometrically non-linear theory of elasticity [10], in
which the Kirchhoff stress tensor is multiplied by the non-linear part of the Green strain tensor.
Moreover, the displacement variables «# appear in (4.3) as multipliers of certain terms, which
represent the static relations (i.e. EQ, SB, SC, BF and CF) of the boundary value problem. This
is analogous to the case of I; in (4.1), where the static variables ¢ and f appear as multipliers of
certain terms, which represent the geometric relations (SD, SB and SC) of the shell problem
under consideration. ’

4.2 Three Independent Fields

In this section we present six free functionals and related variational principles, in which only
three independent fields are subject to variation. The functionals can be derived from I; and
J: by eliminating one of the independent fields ¢, ¢ or f with the help of general solutions satis-
fying IC, CE, or SB and BF, respectively. For details and proofs of the stationarity properties
we refer to [43].

First, eliminate the strain measures ¢ from I; by using the inverse constitutive equations
(2.9). As a result we obtain the free functional

Ly(u, 0, f) :(/{if [—2Z (o) + NPy s(u) + MP5(u) — p-ul dA —gjf (P*.u ++ M*B) ds —
— X Fw —Kf P (u—u¥ + MB — ¥ ds — 3 Filw; — ). (4.5)
7 u 2

The variational statement 01, = 0 is the Hellinger-Reissner principle for the geometri-
cally non-linear theory of shells undergoing moderate rotations.

By applying integration by parts together with Stokes’ theorem to terms included in y,4(u)
and x,,(u), the functional I, may be transformed into an equivalent functional J,, which also
follows directly from J,, when the strain measures ¢ are eliminated

Ja(u, 0, f) = —Lf {2,(0) + N¥@.p(u) + [Q(u, 0) + p]-u} dA +
+Z{ {(P(u, 0) — P*] - u + [M(o) — M*] B} ds + 72 [F'i(0) — F}lw; +
+KJ; {[P(«,0) — P]-u 4 [M(o) — M]3 + P-u* - MB*} ds +
+ E [Fy(o) — I w; + Z Fuk. (4.0)
In both functionals I, and J, the same independent free fields («, o, f) are subject to varia-

tion. The variations 81, = 4 J, are given by (4.2), where now the fourth line vanishes identically
and SD appear in the fifth line in the transformed form &(¢) — ¢(#) = 0.
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Accordingly, the stationarity conditions of I, and [, are EQ, SB, SC, BF on &,, CF at each
M, €&, SD(u, ¢), GB and GC. When the actual solution (u,, 04, f) is known, for which 7, and
J» assume their stationary value, the strain measures ¢ may be found, if necessary, with the
help of (2.9) outside the variational problem.

Next, eliminate the stress measures ¢ from I, and J; by using the constitutive equations
{2.5) to obtain the following free functionals I, and J;, defined for the same set of independent
fields:

Ij(u, e, f) = — J{lf {Z(e) + D - — RH [y, () + (B212) sty ()]} dA —

— [ (P*-u 4 M*§)ds — ¥ Ffw, —
€r i

~g£ [P (u—u¥) 4 M — p*)]ds — ; Ffw; — w]) (4.7)
Jolw, e, f) = — ,f% [ {2(e) + hH Py, By (1) + [Qlu, &) + P - u} dd +

+gff {(Plu, &) — P*) - u + [M(e) — M*] B} ds + § [Fle) — Fflw; +

+K{4{[P(u’6) — Pj-u 4 [M(e) - M} +P-u*+ MB*} ds +

+ X [Fle) — Flw, + X bl . (4.8)

The expressions for the variations d/, = 8, are given again by (4.2), where now the fourth
line vanishes identically and o is expressed everywhere in terms of &. The stationarity conditions
of I, and J, are EQ(u, ¢), SB(«, ¢), SC(e), BF(u, &) on £,, CF(¢) at each M€ £,, SD, GB and
GC. For the actual solution (u, &y, f3), for which I, and J; assume their stationary value, the
stress measures ¢ may be obtained with the help of (2.5).

Finally, the field f may be eliminated from I; and J, by using (2.22). One obtains the follow-
ing free functionals, defined for the same set of independent fields:

L(u, ¢, o) :d{tf {Z(e) — D u — N¥y,5 — y(u)] — MPst,5 — 2,5(u)]} dA —
— [ (P*u - M*8)ds — ¥ Ffw, —
6f 7

—gf [P(u, 0) - (u — u¥) + Mlo) (B — p*)]ds — T Fyo) (w; — wjf) , (4-9)

Jalt £, ) = = [ (Nyg - Mofry — Se)

+ N¥@4(u) + [Q(u, 6) + p] - u} dA +
+8y {(P(u, o) — P*] . u 4 [M(o) — M*] B} ds -+ T [F,lo) — Fflw; +
b 7

A [ [Pu, o) -u* - M(o) f*1ds + 3 F,lo) w? (4.10)
Bu i

The variations 01, = 8, are again given by (4.2), where the line integral over &, in the second
line and the sum over ¢ in the third line vanish identically and 6P(x, o), 6M (o) and OF (o)
should be substituted for 6P, 6M and 6F in the last line, respectively. Then, the stationarity
conditions of I, and J, are EQ, SB, SC, CE, 8D, GB and GC.

Just as the variational principles associated with the functionals (4.1) and (4.3) the variatio-
nal theorems §/, = 0 and 8/, = 0 may also be termed the Hu-Washizu principle [10] and the
principle of generalized total complementary energy [45], respectively, for the geometrically
non-linear theory of shells undergoing moderate rotations.

The functional 7, may be related to the functional I7, of [30]. Within the context of the non-
linear theory of shallow shells special cases of I, are given in [20, 23] and, in terms of linearized
strains and rotations, in [24]. It also contains a functional presented in [22] for a Donnell-
Marguerre type membrane theory of shells as a special case.
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4.3 Two Independent Fields

In this section we present six free functionals, in which only two independent fields are subject
to variation. The functionals are derived in the now familiar way, by eliminating either any
two of the three fields ¢, ¢, f from I, and J, or one of them from the corresponding three-field
functional given in section 4.2. For details and proofs of the stationarity conditions we refer
again to [43].

First, eliminate ¢ from I; and J; by using the strain-displacement relations (2.14). This
gives the following free functionals:

Ig(u, f) xﬁf [Z(u) — p-u]ldd —gff (P*-u 4 M*8)ds — ?Zﬁ;‘w, -

—g{‘ (P (u—u¥* M@~ p*]ds — Z Fiw; — wf) , (4.12)
s, f) = — I {Z(w) + RHPy o(u) Dyi(u0) + [Q(ue) + p] - v} dA +

+gJ; {(P(u) — P*] - u 4 [M(u) — M*] 8} ds + 72 [Fyu) — F}lw,; +

+ AIP@) — 1w o (M) — M)+ P u* + MB*) ds -+

+ E [(Fy(mw) — F;]w; + ;Fiwf‘ - (4.13)

The stationarity conditions associated with I; and J; follow again from further reduction of
(4.2) to be EQ(u), SB(u), SC(u), BF(u) on &, CF(u) at each M, ¢ §,, GB and GC. From the
actual solution (#,, f), for which the functionals I; and J; assume their stationary value, the
shell strain and stress measures ¢ and ¢ may be obtained, if necessary, by using (2.14) and
(2.5).

Next, eliminate ¢ from I, and f, with the aid of the constitutive equations (2.5). This
leads to

Io(u, &) = — jg [{Z0e) + p - u — BH ™y gy, (1) -+ (B¥12) sup0,, ()]} dA —

—5;5 (P*.u 4 M*B) — 72 Flw; —

— L [Plw ) - (w—u¥) & Me) (8 — f*)] ds — I Fife) (w; — wf), (4.14)
Jolw, &) = — [T {2e) + hHy By (w) -+ [Q(u, ) + p] - u} d4 +

+Kff {[P(u, &) — P*] - u 4 [M(e) — M*] g} ds -+ ; [Fy(e) — Ff]w; +

+ TP e) - w* o+ Me) f¥1 ds + X Fi(e) w . (4.15)

The stationarity conditions of I and Jg are EQ(x, ¢}, SB(x, &), SC(¢), SD, GB and GC. Irom
the actual solution (u,, &,) which renders the functionals I; and ] stationary, the shell stress
measures ¢ and the reactive boundary loads f may be calculated by using (2.5) and (2.22).

Finally, the field f will be eliminated from I, and J, with the help of (2.22) to give

I3(u, 0) = [] [—Z{0) + NFys(u) + Mrop(u) — p - uldd —
A
~ [ (P*.u+ M*8)ds — ¥ Ffuw, —
£y i
—gf [P(u, 0) - (0 —u*) + M(o) (B — *)] ds — X Fy(o) (w; — w}), (4.10)
Jaltt, 0) = — [ {Z,(0) + ND,(u) + [Qfut, 6) + p] - u} dd +

A

+g,f {(P(u, 0) — P*]-u + [M{o) — M*] B} ds + 5 [Flo) — F}lw, +
’ i

+gf [Plu, o) - u* + M(o) f*] ds + X Filo) w} . (4.17)
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Just as the variational principle associated with the functional (4.5), the variational state-
ment 61, = 0 may also be called the Hellinger-Reissner principle for the geometrically non-
linear theory of shells undergoing moderate rotations. The stationarity conditions of I, and J,
are EQ, SB, SC, SD{#, ¢}, GB and GC. When {1, ;) is known, for which I, and J, assume their
stationary value, the strain measures £ and the reactive boundary loads f may be calculated
from {2.9) and {2.22}.

The functional I, corresponds to the functional —Z7; of {30). For the non-linear theory of
shallow shells with smooth boundaries a similar functional was given in [24] in terms of lineariz-
ed strains and rotations. '

4.4 Independent Displacement Field

In certain numerical applications it is convenient to use a free functional where only one
independent field is subject to variation. For the non-linear shell theory discussed here it is
possible to construct two such functionals in terms of displacements as independent fields.
They follow from any pair of the six two-field functionals discussed in section 4.3 by eliminat-
ion of one of the independent fields. In this way we obtain

Igw) = [[ [ Zw) —p-uldd — [ (P*-u+ M*B)ds — ¥ Flw, —
y:i £y i

—gf [Plu) - (u— u¥) + M) (§ — p¥)ds — T Fyfw) (w; — »}), (4.18)

4

Jslu) = —J{tf {Z(u) + RH Py g(u) Py(u) + [Qlu) + p] - u} dd +

+gf {[P(u) — P*] - w - [M(s) — M¥] By ds + X [Flu) — Fflw; +
f l

+ gj [Plu) - v* + M(u) *] ds + 3 Fylu) wf* . (4.19)

The first variation 81 = 4], takes the form

0lg = — [1[Q(w) + p]-dudd + [ {{Plu) — P*]- 0u + [M(u) — M*] 86} ds +
M &f
+ X [Fi{w) — Fflow; — [ [(u — u*) - 6P(u) + (B — B%) oM{u)] ds —
i Bu
— X (w0, — w}) 8F () . (4.20)

From (4.20) it is seen that the stationarity conditions of Iy and Jg are EQ(«), SB(u), SC{#),
GB and GC. For known functions #,, for which Iy and [, assume their stationary value, any
other variable &, ¢ or f may be calculated from (2.14), (2.5) and (2.22) .

5 OQOther Variational Principles

In chapter 4 a family of sixteen basic free functionals has been constructed in terms of various
groups of independent free fields. Special cases of these functionals can be derived easily, if
only certain individual components of these fields are eliminated from Iy -+ I or J; + [5
From each free functional it is possible to generate a variety of related functionals with
subsidiary conditions, for which equivalent variational statements may be given, The number
of such different functionals results from the number of possible different combinations of
stationarity conditions of the free functional which may be treated as subsidiary conditions
for a modified variational principle. The stationarity conditions to be treated in this way may
be divided into groups according to either their physical meaning (geometric, static and
constitutive relations) or the domain of the shell where they apply (interior equations, bound-
ary and corner conditions). However, each particular component of the stationarity conditions
may also be treated separately. Note, that the functionals I = I are particularly suitable for
transformations, when the geometric relations of the shell boundary value problem are treated
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as subsidiary conditions. On the other hand, when the static relations are treated as subsidiary
conditions, it is more convenient to use the functionals J; — Jg. Here three examples of this
procedure are given.

First the stationarity conditions GB and GC of the functional [4(x) will be treated as sub-
sidiary conditions. Then the variational principle /g = 0 transforms into the equivalent
principle 611 = 0, where the functional I/ is given by

H(u) = /flzf [Z(u) — p-u]dd ——gf (P*.u + M*B) ds — by F;"wf. (5.1)
2 5 j

with GB and GC as subsidiary conditions. As stationarity conditions of /7(#) we have EQ(«),
SB(u) and SC(#).

The functional I7(x) is the total potential energy of the geometrically non-linear theory of
shells undergoing moderate rotations. The variational principle 8/7 = 0 states, that among all
geometrically admissible displacements the actual solution #, renders the total potential
energy stationary.

For the shell theory under consideration the functional /7 corresponds to that given in [17],
and it contains as special cases the functionals discussed in [28, 27, 29, 21, 25, 20, 26, 16] for
simpler versions of the geometrically non-linear theory of shells.

Another example is provided by the functional J,, when its stationarity conditions EQ,
SB and SC are treated as subsidiary conditions. Then 4], = 0 transforms into an equivalent
variational principle §] = 0, where

J(u, 0) = — ftf (Z(0) + N9D,5(u)] dA + [ [P(u, 0) - u* + M(o) f*] ds + X Fi(o) wi, (5.2)
A Eu 1

with EQ, SB and SC as subsidiary conditions. The stationarity conditions of J are SD{u, g),
GB and GC.

The functional ] is the mixed total complementary energy for the non-linear theory of shells
undergoing moderate rotations. With appropriate simplifications it reduces to the correspond-
ing functionals discussed in [28, 27, 21, 25, 16] for simpler variants of the geometrically non-
linear theory of shells.

It is worthwhile to note that the subsidiary conditions of the functional I given in (3.2) are
the stationarity conditions of the functional J and vice versa. The variational principle 6] = 0
states, that among all statically admissible displacements and stress measures (i.e. among all
those satisfying EQ, SB and SC) the actual solution (u,, 0,) renders the functional J stationary.

As a last example, only the bending part of the geometric stationarity conditions (i.e.
(2.14)5, (2.15)3,4 and (2.16)) of the functional I, will be treated as subsidiary conditions while
simultaneously the components y,, and M will be eliminated from I, with the aid of (2.9); and
(2.5)s- Then 67, == 0 may be transformed into an equivalent variational principle 61, = 0
where the functional 7, is given by

, A ,
[m(M, a8 Z\/Wﬂ) = ff [—;—k Eaﬂ).yN“ﬂZ\Mﬂ + a Haﬁkﬂxaﬁxl,u —p-u- N“B’yaﬁ(u)] dd —
M
— I(P -u -+ M*p) ds — 72 F;“wi —
&

- J‘ iin(”! s Naﬂ) (uv - M:l:) JT Pt(u: %xﬁ: Naﬂ) (ut - U?)j ds . (53)
Eu

Here (2.14),, (2.15)5 4 and (2. 6) are the subsidiary conditions. The stationarity conditions of

I, are EQ(u, N*%), SB(u, N*%), SC(u), % Eo 5, N — ys(u) = 0 in M and u, — u} = 0, u,— u}f =0
on &,.

The functional I, contains as special cases those given in [20] within the context of the
non-linear theory of shallow shells. Note that for this simplest non-linear shell theory one has
%oy = —w@|,s and N = g4ePoF|, 1 P where P* is a particular solution of P g+ P*=0
and I is Airy’s stress function. When these relations are used to eliminate %, and N** from
(5.3), the functional 7, may be transformed easily into an equivalent functional I,(u, F)
which then corresponde to those given in [18—20, 23].

’
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Proceeding in a similar way many other related functionals may be derived from the basic
free functionals presented in chapter 4. Some of these modifications may be particularly con-
venient in applications to specific shell problems.

6 Concluding Remarks

For all geometrically non-linear shell and plate theories which have been discussed in chapter 2,
the variational theorems associated with the functionals given in chapters 3—5 and those
which can be generated from them are, in general, stationary principles without extremum
properties. Thus, the solution which renders these functionals stationary may not always be
unique. For certain simplified non-linear shell and plate theories conditions have been derived
in {28, 27, 21, 25] for the stationary principle of the total potential energy to be a minimum
principle and for the existence of an associated dual maximum principle of the total comple-
mentary energy. Further research concerning this question in the context of the geometrically
non-linear theory of shells undergoing moderate rotations should yield corresponding results.
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