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Entirely Lagrangian nonlinear theory of thin shells

W. PIETRASZKIEWICZ and M. L. SZWABOWICZ (GDANSK)

EquATions of equilibrium and appropriate four geometric and static boundary conditions are
derived for the general nonlinear theory of thin shells. All shell relations are referred to the
undeformed shell middle surface. A modified tensor of change of curvature is used, which is
a third-degree polynomial with respect to displacements. A new independent parameter describ-
ing the finite rotation of the shell boundary element is introduced, upon which works the
boundary couple. All shell equations are consistently simplified in the case of elastic shells
undergoing small strains but finite rotations and the Hu-Washizu variational principle is con-
structed.

Wyprowadzono rownania rownowagi oraz odpowiednie cztery geometryczne i statyczne warunki
brzegowe ogoéinej nieliniowej teorii powlok cienkich. Wszystkie uzyskane zaleznosci odniesione
zostaly do nieodksztalconej powierzchni srodkowej powloki. W pracy wykorzystano zmodyfiko-
wany tensor zmiany krzywizny, ktory jest wielomianem trzeciego stopnia wzgledem przemiesz-
czefi. Wprowadzono nowy, niezalezny parametr okreslajgcy obrét skonczony elementu brzegowe-
go powloki. Wyprowadzone zaleznos$ci konsekwentnie uproszczono dla przypadku matych spre-

zystych odksztalcen, lecz skoficzonych obrotéw oraz zbudowano zasade wariacyjng Hu- Washizu.

BriBeneHbl ypaBHEHHMs PaBHOBECHA M COOTBETCTBEHHBIE 4YeThbIpe IeOMEeTPHUYECKHE H CTa-
THYECKHE I'paHWYHbIC YCNOBHA OOIIeH HeJWHEHHOW TEOPHHM TOHKHX obosouek. Bee mosy-
YeHHbIE 3aBHCHMOCTH OTHECEHBI K HeAe(HOPMHPOBAHHON CPEIHHHON MOBEPXHOCTH 00O0JIOUKH.
B pabote ucrons3oBad MoauUUMPOBaHHBIA TEH30P H3MEHEHMA KPHBHU3HBI, KOTOPBIH ABJIse-
TCA IIOJIMHOMOM TpeTbell cTemeHM OTHOCHTEJIPHO IepeMellleHHi. BBegeH Takyke HOBBIN He-
3aBUCHMBIHN [12PAMETP, OMUCBHIBAIOIUA KOHEUHbIH MOBOPOT I'PAHMYHOTO 3JIEMEHTa O0OJIOUKH,
Ha KOTOpOM pafoTaeT 3aJaHHBLI IPaHHYHBIA MOMEHT. IToJIydeHHbIE 3aBHCHMOCTH IOCJIENO-

BaTeJIbHO YIPOILEHBI JIA CIy4Yas MajibIX YIpYyTrux Oedopmanmil, HO KOHEUHLIX TIOBODOTOB,
a TAXKe NOCTPOeH BapHalyOHHbIA npuHimn Xy-Bammiy.

1. Introduction

IN THE NONLINEAR static problems of thin elastic shells it is often desirable to have
them formulated entirely in terms of quantities and equations defined in and referred to the
undeformed shell middle surface, the geometry of which is known. In the general theory
of thin shells such equilibrium equations and appropriate geometric and static boundary
conditions, called the Lagrangian shell equations, are usually derived in two steps. First
the corresponding simple relations of the Eulerian shell theory are derived. These relations
are referred to the unknown deformed shell middle surface. Then appropriate transfor-
mation rules are applied to express the Eulerian quantities in terms of corresponding
Lagrangian quantities and shell deformation. The vector relations obtained in this way
may then be decomposed with reference to the deformed [1-13] or undeformed base
vectors of the shell middle surface. Only the latter approach leads to the relations of the
Lagrangian nonlinear theory of shells [11-20].
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The above geometric interpretation of derivation of the Lagrangian shell equations
reveals one weak point concerned with the proper formulation of the fourth boundary
condition for the resultant boundary couple. The latter performs work on an appropriate
parameter describing the finite rotation of the shell boundary element. Note that in the
Eulerian theory this condition requires the assumption, at the deformed boundary, of
a couple whose axial vector is tangent to and measured per unit length of the deformed
boundary contour. An appropriate transformation rule may modify the couple in such
a manner that it can be measured per unit length of the undeformed boundary, but the
axial vector of the transformed couple still remains tangent to the unknown deformed
boundary. This is why the parameter 8, used in [12, 13, 21], which together with three
displacement components entirely describes an arbitrary deformation of the shell boundary
element, was defined with respect to the deformed boundary. However, such form of
the boundary condition as not fully Lagrangian is incompatible with other fully Lagran-
gian shell relations. It makes the proper formulation of the nonlinear shell problems more
complicated when a conservative load is applied to the shell lateral boundary surface.
In particular, it is difficult to construct appropriate variational principles of the general
Lagrangian nonlinear shell theory.

The fully compatible Lagrangian thin shell equations may also be derived directly from
“the Lagrangian form of the two-dimensional principle of virtual displacements [14].
The direct derivation was actually used in classical works by MARGUERRE [23] and Vvasov
[24], who discussed the nonlinear theory of shallow shells, and in the works by MUSHTARI
and GaLmmov [8], SANDERS [17], KorTer {4] and PieTrAszkiEwicz [11-13, 16] concerned
with various variants of the nonlinear theory of shells undergoing moderate rotations.
The results obtained there allowed to construct various variational principles [25, 26].
Let us note, however, that in kinematic relations of the simple variants of the theory of
shells the nonlinear (quadratic) terms appear only in the definition of the surface strain
tensor, while the tensor of change of curvature is still a linear function of displacements
and their derivatives. As a result, the boundary condition for the couple takes in these
cases a form identical with that of the linear shell theory and becomes indistinguishable
within the Eulerian or Lagrangian theory. To the best of our knowledge, nobody has
succeeded as yet in deriving the fully Lagrangian set of shell equations, together with
a proper fourth boundary condition for the boundary couple, within the variants of the
nonlinear shell theory more general than that with moderate rotations.

Within the shell theory undergoing small strains but finite (unrestricted) rotations the
tensor of change of curvature x,;, defined as a difference between the curvature tensors
of the deformed and undeformed shell middle surfaces, is a polynomial of the fifth degree
with respect to displacements and their surface derivatives [12, 13]. When we introduced
it directly into the Lagrangian principle of virtual displacements [14] and applied Stokes’
theorem, we obtained in the resulting boundary line integral not only four expected
terms with variations of three displacements and of the parameter 8, — there also appear-
ed some additional terms with variations of derivatives of displacements in the outward
normal direction. These additional terms could not have been eliminated through inte-
gration by parts along the undeformed boundary. Therefore, it becomes necessary to




LAGRANGIAN NONLINEAR THEORY OF THIN SHELLS 275

introduce modified definitions for the tensor of change of curvature and for the fourth
parameter describing deformation of the shell boundary element.

In this work a completely consistent set of Lagrangian shell equations is derived for
the nonlinear theory of thin shells under the Kirchhoff~Love constraints. Starting from the
Lagrangian form of the two-dimensional principle of virtual displacements, the internally
compatible equilibrium equations and all four static boundary conditions are given.
In comparison with other related works [12-14, 18] we present here three modifications:

1. In place of the parameter 8, the new parameter #n, is introduced. This parameter
is related to the undeformed shell boundary and, together with three displacements,
describes entirely an arbitrary deformation of the shell boundary element.

2. The tensor of change of curvature x., is modified by means of some geometric
identities so as to obtain in the resulting line integral at the boundary only terms with
variations of three displacements and of the parameter »n,. The variation of n, includes
all terms with derivatives of displacements in the outward normal direction.

3. In place of the modified »,;, a new modified measure of change of curvature
%ap 18 introduced which, by definition, is a third-degree polynomial in displacements and
their surface derivatives.

In the shell relations an external surface load, applied to the shell middle surface, and
the boundary load, applied to the lateral shell boundary surface, are taken into account.
In accordance with the Lagrangian theory directions of these loads are assumed to
remain constant during the shell deformation. It is shown that even for such a simple
boundary load the resultant boundary couple depends in a definite manner on the total
finite rotation of the shell boundary element. The work of the variable couple is replaced
here by a much simpler formula expressed by means of the constant resultant static mo-
ment of the boundary load. This enables us to construct a completely compatible Hu-
Washizu type variational principle for the Lagrangian nonlinear theory of thin elastic
shells undergoing small strains but finite rotations.

In the nonlinear shell theory several quantities and relations are defined or derived in
the form of differences of two groups of terms of the same order. When strains are assumed
to be small, the principal terms of these groups may cancel with each other and the sec-
ondary terms may become of primary importance. In our opinion it is the main source
of inconsistencies or even errors which have appeared in several papers where the small
strain assumption has been introduced at a too early stage of derivation of shell equations.
In order to avoid inconsistencies of this kind, we derive our two-dimensional relations for
thin shells as far as possible for unrestricted surface strains and rotations. The small strain

assumption is introduced only at the end of derivation to simplify the resulting shell
equations.

2. Notation and basic relations

The notation used in this work follows that of [4, 11-16].
Let .# be a middle surface of the undeformed shell and let € be its boundary con-

tour. Any point M of .# is uniquely described by assuming at .# two curvilinear coordinates
6, 6% or a position vector
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2.1) r=0M = x, = f*6%i,, k=1,2,3, a=1,2,

where x* are rectangular coordinates of M € . in a Cartesian frame.
Let a, = r , be the natural base vectors at . of the coordinate system 6%, a,; = a, " ag

. . . 1
the components of the surface metric tensor with the determinant a = |agl, n = 78"“3 a, X 2

the unit vector normal to ., ¢ the components of the permutation tensor, b,; = a,5-n
the components of the curvature tensor of ., and by a symbol (), let us denote the covar-
iant surface derivative at .#. Other geometric quantities of the surface . are given in [12,
29].

After deformation of the surface .# to a deformed configuration ., described by
a displacement vector u = w*a,+wn, the convected coordinates generate analogous
quantities on A, which are marked with a bar: T, a, n, a,, Aup &b, Zaﬁ etc. For the base
vectors the following relations are satisfied [12-14]:

Eloz = lf’aai._l'd)an» n= nlal+nn)
lup = Aupt bog —ep, ¢o = W o+bluy,
’ Gaﬁ = 7 (ua|ﬁ+uﬁ|a) _baﬁw’ Wopg = _2" (uﬁ|a —ualﬁ) = gaﬁd),

a 1
n, =m, = e ,d,ll, l/—a—n =m= 5 ey A 1.

2 | =i

‘/

The surface strain tensor y,5 and the tensor of change of curvature x,4 are conventionally
defined by

1 _ 1
(2.3), Yapg = a5 (aaﬁ_aaﬁ) = 2 (lfalzﬁ'*‘(bad’ﬂ—aaﬁ),
2.3), sap = —(bup—bag) = —[1(up+baglh) +na(l% s —bhhe) —bys).

In general, y,; are quadratic polynomials in u,, w and their derivatives, while »,; are

nonrational functions of those variables since they contain an invariant }/a/a, where

2.4 = 1+2y3+ 2035 —v595).

N EY

Within the small strain theory in the expression nbsl%, —b,s of Eq. (2.3), we should use

an approximation y/ ala ~ 1 —9% since the principal terms cancel with each other. Then
%5 May be reduced to polynomials of the fifth degree in u,, w and their derivatives [12,
13].

The boundary contour € of ./ is defined by the equations §* = 6%*(s) or r = r[0*(s)] =
= r(s) where s is a length parameter along €. At each M € ¥ we define the vectors: t =
= dr/ds,a unittangentto %,andv = t xn, an outward unit normal to . For the orthogonal
triad v, t, n we have

dv dt dn

(2.5) — = xt—TM, —— = O n—xv,

e = T,v—0ot
ds ds ds ' e
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where o, is a normal curvature, 7, a geodesic torsion and x, a geodesic curvature of the
surface boundary contour 4.

After the shell deforms in a way compatible with the Kirchhoff-Love constraints,
the curve € deforms into € and an undeformed rectilinear boundary surface 62, ortho-
gonal to . along %, deforms into a surface 02, which is also rectilinear and ortho-
gonal to 4 along . Both surfaces are described by

(2.6) p = r(s)+{n(s), . p = r(s)+ {a(s).

Here ¢ is a distance from 4 and —h/2 <{ < h/2, where h is a small shell thickness.

The surface 92 may be uniquely described by assuming at € the values of u and of
a parameter §,, {12, 13, 21]:

u=u,v+ut+wn,

_ (a-m-a, _ 1 e
(2.7) ﬂv - 1+5i'tr - 1+2y,, a Pad e
_dr _ —_
a, = _a? ’ a4, = a, xXn, latl = lavl = ]/1+2y“‘

Note that the components of uin Eq. (2.7), are given with reference to the basis of the
undeformed boundary, but the parameter g, is the component of n—n with reference to
the vector a, of the deformed boundary. Within the small strain theory f, ~ —¢, =
= —¢* and the parameter describes then the linear rotation of the shell boundary
element [13]. This is why f, may be used with success in the linear theory, in the Eulerian
nonlinear theory and in the Lagrangian nonlinear theory of shells undergoing moderate
rotations. This is so since in the last case as well it is enough to take into consideration
only the linear part of the tensor of change of curvature [12, 13]. However, in the Lagran-
gian theory of shells undergoing finite (or even only large) rotations the nonlinear terms
describing the deformation of the shell boundary element cannot be expressed in terms of
u and f, only (see Egs. (7.3) and (7.4)).

3. Modified relations

Let us differentiate covariantly an identity a,-n = n,/4 +n¢, = 0. Introducing the
result into Eq. (2.3), we obtain an equivalent form for the tensor of change of curvature:
(3.1) xaﬁ = (nz!ﬁ—bzﬂn)lfa+(b$n1+n|ﬂ)¢a+baﬁ.

Note that this form of x,4 contains covariant derivatives of n, and », while the form (2.3),

has contained covariant derivatives of /%, and ¢,. This change of x,, affects considerably

later transformations of the boundary integral in the Lagrangian virtual work (see p. 4).
Let us introduce a new tensor of change of curvature, defining it by

= ‘
(3.2) Xap = — (l/? baﬂ—baﬂ) +bagyi-

8 Arch, Mech. Stos. nr 2/81
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Taking into account the identity

(3.3) ‘I/% (nlfﬂlm‘*‘nm(ﬁa) = ml|ﬁlza+mlﬁ¢a
and introducing it together with Eq. (3.1) into Eq. (3.2), we obtain
(3.4) Yap = (MMg—blm)l;,+ (bagm* +m g) o+ bos(1+77).

The advantage of Eq. (3.4) is that even for unrestricted strains y,z is by definition a third-
degree polynomial in u,, w and their derivatives. Note also that x,; and g,z have identical
linear parts. The definition similar to Eq. (3.2) but with additional terms 1/2(bZy.s+ b3y ;,)
in the right side of Eq. (3.2) was used by Bupiansky [18].

The deformed shell boundary surface 62, defined by Eq. (2.6),, can also be described
uniquely by assuming at € three displacements u,, #,, w and three components of the
vector n = n,v+nt+nn, where n, = n*», and n, = n*¢,. In contrast to the parameter

B, defined in Eq. (2.7),, the components »,, n, and n are taken with reference to base
vectors of the undeformed shell boundary.

The vector 3,, tangent to &, can be expressed in terms of u by the relations

_ u u,
a, = t+~£ =cv+c,t+on, ¢, = s + T, w—xu,,
(3.5)
du, dw
C = 1+7E+x,u,—a_,w, c = K-l—a,u,—r,u,.
Using the set of identities
(3.6) i-a=n:4+n’+n®2=1, a,-n=cn+cn+cn=20

and Eq. (2.7), the components n, and n may be expressed in terms of u and n, according

to
1 p) 2
M= = gy ez [emte/ 142y (T=n)) =],
3.7
1
n= —Tm [c,cn,—c, ]/(1+2}’tt) (1 "‘n:?)_cvz]'

Thus only four independent parameters u,, u,, w and n, describe completely an arbitrary
deformation of the shell boundary element.
Using the definition @i = 1/2 €*#a, x a5 and keeping in mind that

_ du ( du
(38) a, = Yy (V+ d—Sy) +t¢ t+ d—S) ,

we obtain for the parameter n, the following formula:

a [du du
(39) n, = ‘/—a':‘ (K Xv_n) : ES:' .

It is evident that the definition of », includes derivatives of u along ¥ and in the outward
normal direction. The latter derivative is the one that causes major difficulties in transfor-

“«

B ]



LAGRANGIAN NONLINEAR THEORY OF THIN SHELLS 279

ming the line integral of the virtual work at the shell boundary. Therefore, the inclusion
of du/ds, into the definition of n,, treated as the fourth independent parameter of deforma-
tion of the shell boundary element, is an important step in the modifications proposed
in this work. In particular, it allows to formulate properly all static boundary conditions
of the Lagrangian nonlinear theory of shells.

From Egs. (2.7), and (3.5) we obtain the formula

(3'10) ctnv = (1+2ytt)ﬂv+cvnt’

which relates the Lagrangian parameter n, to the parameter g,.

4. Internal virtual work

Let us discuss a thin shell in equilibrium state. For any additional virtual displacement
field du = du,a*+ dwn subject to geometric constraints the internal virtual work IVW,
performed by the internal stress and couple resultant tensors on variations of correspond-
ing strain measures, should be equal to the external virtual work EVW, performed on

variations of appropriate displacemental variables by the external surface and boundary
loads: IVW = EVW.

Under the Kirchhoff-Love constraints the shell deformation is described entirely by

deformation of its middie surface. The Lagrangian internal virtual work can be put in the
form [12]

@.1) IVW = [ [ (N*0y,p+ M*81,0)dA = [ [ 6 Wda,
4 A

where N*f and M*# are components of the symmetric (2nd Piola-Kirchhoff type) internal
stress and couple resultant tensors.

From Egs. (2.3), and (3.4) we obtain variations of the shell strain measures dy,; and
dyx.p expressed in terms of variations of displacements and their derivatives:

1
Oyep = 5 (I, Ol + lfﬁ 0Ly + b 05+ Pp by,
4.2)
(5X0Lﬂ = lla 6m‘|ﬁ+ d)a 6M!ﬂ + baﬁa""(l_‘x (Sl},p + ¢,¢ 6¢p)

+ (m g —bjm) 0l,, + (m g+ byym?) 3¢,
+ e’ 8;{“ [(b,uﬁd)a ¢x+ b/.v‘} lya lux) 6l/lp + blﬂ ¢a l,ux 5¢p] .
When Egs. (4.2) are introduced into Eq. (4.1), we obtain after some transformations

(4.3) 8 Wy = [M* (L, Sm*+ by Sm)] 5+ T 1,5+ TPShs,

where
T* = I (N** +a*fb,, M*)+ (m*|, —bim) M*#
(4.4) + P M (L [ M*#) |, + 1, 0% M1 = [(Lo M), — Brcbay M1},
T? = ¢o(N*E+a*b,, M)+ (mo+ bimg) M + e 03, [(L M) |y — by M**].

8*
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Using again the identity /,,n* + ¢,n = 0 and Eq. (2.2), we can show that

(4.5) M(l,, dm* + o Om) = ]/ % M3(1,,, 5n*+ ¢, On)

and so Eq. (4.3) can be expressed in terms of variations of u and n

46) ow, = []/—S—M"ﬁ(lh on + ¢y 0n) + T*Fu, + Tﬁéw] ,
I

— (T*#|5 — b TP) Su, — T3+ byp T*P) Ow.
When Eq. (4.6) is introduced into IVW and the Stokes’ theorem is applied to the
differentiated terms in Eq. (4.6), we obtain

@7 VM= - [” [ 12, suda+ ?f [(T) - Su+R,,on,+R,,on,+R, onlds,

where

T? = T*%a,+ T’n,

(4.8) = = =
R,, = ‘Z—Vll).aMaﬁpﬁa R,, = l/% tllAaMaﬂVﬁs R, = ]/g‘anMaﬂVﬁ'

The line boundary integral in Eq. (4.7) has been expressed in terms of six variations:
three components of du and three components of dn with reference to the undeformed

base. It follows from Eq. (3.7) that dn, and én are dependent variables, which may be
determined from the set of equations
~ n.on,+ndén = —n,on,,
4.9) ‘
¢, on,+cdén = —c,én,—n,dc,—n,dc, —ndc

following from the set (3.6). Solving Eqs. (4.9) we obtain

d d
on, = d, du,+d, (5u,+d(5w+f(5n,+g,dis 6uv+g,—gs—6u,+gg; ow,

(4.10)
on = h,d0u,+h,éu, +héw-+kodn,+ da -dé +r—d—(5w
h =n,0u, r OU, w+ n,«+r, dS uy+'t~d—s‘ Uy dS )
where
n n . n
d, = 3(":'1:_7:"7), d, = D (Utn-’ftnv), d = D (z,n,—oyn,),
_nn _ hn _ n’
gV - D > gt - F’ g - D ’

h n
(4.11) h,, = B— Ttn——xtn!), hg = ‘DL‘ (xtnv_o.tn)7 h = '51_ (tht—Ttnv),
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1 1
((i;}t.}) f= B(Cm—cnv), k = 5 (e,n,—c,n,),

D =cn,—c,n = — ]/(1+2y,,) (1 —n})—c}.

If we introduce Eqgs. (4.10) into Eq. (4.7), we obtain the final form for the Lagrangian
internal virtual work of the shell:

(4.12) IVW = — [ [ T#;- dudd+ [ (B du+Mén)ds — D F,- ou,,
M € k

where
P = Tﬁvﬁ'*_Qa M= va+thv+kRva

d d
Q = [dvRtv+thv - E (ngtv+ rvRv)]v+{dthv+ ht Rv—— -(IS" (g!Rtv + rth)] t

(4.13) + [dR,,+ hR,— —;; (gRy+ rRy)] n,

F = (ngtv+rvRv)V+(gthv+rth)t+(gRtv+er)n,
F;, = F(s,+0)—F(s,—0)

and M,, kK =1, 2,3, ..., K, are corner points of the boundary contour &.

Thus the internal virtual work (4.1) of the shell has been expressed entirely in terms
of Lagrangian quantities. The introduction of n, as a fourth idependent parameter of
deformation of the shell boundary element has allowed to express the boundary line
integral as a sum of works of the generalized boundary forces P and M performed on
appropriate variations of u and #,. Additionally, some expected work terms have appeared
in the corner points of € as a result of reducing the number of independent parameters
at the boundary from six to four.

5. External virtual work

Let a shell with a simply connected middle surface be in equilibrium under the middle
surface load p = p*a,+ pn, per unit area of the undeformed middle surface .4, and under
the boundary surface load f, per unit area of the undeformed lateral boundary surface
02, In accordance with the Lagrangian theory, we assume here that the directions of the
loads p and f remain constant during the shell deformation.

Within the Kirchhoff~Love shell theory the boundary load f is usually assumed through
a resultant boundary force N = N,v+ N,t+Nn and a resultant boundary couple k =
= k,a,+ka,, both per unit length of &, defined by

(5.1) [Nas = [[ a4, [xds = [[ax£da.
¢ 27 % o7

Note that the so defined k depends upon the shell deformation through the vector
n. In the Lagrangian theory it is convenient to introduce a static moment H = H,v+ H,t+
+ Hn, per unit length of €, by the relation
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(5.2) [Hds = [ [ftdd, k=idxH.
€ X4

For the constant f the vector H does not depend upon the shell deformation.
The total finite rotation of the boundary element is given by a proper orthogonal
tensor [31] '

(5.3) R, = —;— (3.@v+3,®8)+i@n.

If the process of shell deformation is described by a parameter 7, the angular velocity
vector w of the boundary element is an axial vector of the skew-symmetric tensor (dR,/
JdoRT, [32], that is (dR,/d7t)R] = w x 1, where 1 is a metric tensor of the three-dimensional
Euclidean space. Let us introduce a skew-symmetric tensor of the boundary couple K
which, according to Eq. (5.2),, can be given by

(5.4) K = kx1 = HQR,n—R,n®H.

Then the elementary work performed by k on an infinitesimal rotation angle dw = wdr
is calculated according to

L

(55 AW, =k-do =

K- (dR,R) = (H®nR) - (dR,;R/) = (H®n) - dR,,
where the scalar product in the tensor space is performed according to the rule A-B =
= tr(ATB) = AYBy;.

Since the tensor H®n is constant during the shell deformation, we can integrate Eq.
(5.5) and calculate the total work performed on the rotational part of the boundary de-
formation by the surface boundary load:

Re
(5.6) W, = (H®n)- [ dR, = H- (i—n).
1

Note the simplicity of this formula expressed in terms of the constant H. The analogous
formula expressed in terms of the variable k would be more complex.

Now it is easy to see that in terms of p, N and H the Lagrangian external virtual work
is calculated according to

(5.7) EVW = [ [p-dudd+ [ (N- Su+H,on,+H,on+Hén)ds,
M 4

which is analogous to IVW given in Eq. (4.7). When we introduce Egs. (4.10) into Eq.
(5.7) it takes the final form

J

(5.8) EVW = [ [ p- dudd+ [ (P*- ou+M*on,)ds — D F* - ou,,
o €5

where .
(5.9) P* = N+Q* M*=H,+fH,+kH,
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5.9 d
[(cont.)] Q* = [d,H,—}— h,H— ’n (g,H,—i—r,H)]v—i— [d,H,—i—h,H—c% (g,Ht—i—r,H):I t

+ [dH,+ hH_d_i (gH,+ rH)]n,

F* = (g, H,+r,H)v+ (g H,+r H)t+(gH,+rH)n,
F; = F*(s;+0)—F*(s,—0)
and %, is the part of € on which at least one component of P* or M* is prescribed, while

M;, j=1,2,..J <K, are those corner points of ¥ where at least one component of
F} is prescribed.

6. Lagrangian shell equations

Let us compare Eq. (4.12) and Eq. (5.8) and note the identical structure of both virtual
works. Then from IVW = EVW we obtain the following Lagrangian equilibrium equations
and appropriate static boundary conditions:

Tﬁ,5+p =0 in ./”,
6.1) P=P*and M =M* on %,
F,=F} at each M, e %,.

The appropriate geometric boundary conditions take the form

. u=u*and n, =nF on %,

6.2) u = u at each M, € 4,,

where €, is the part of ¢ on which at least one component of u* or nf is prescribed while
M;,i=1,2,...I<K, are those corner points of ¥ where at least one component of
uf is prescribed. In the general case of mixed (mutually complementary) boundary con-
ditions ¢, and €, coincide. They may become separated only if all four boundary conditions
are geometric or Static, respectively. Likewise for the corner points M; and M;.

When Eqgs. (4.8) and (4.4) are introduced into the conditions (6.1), the equilibrium
equations (6.1);- become linear in N*/, M*# and quadratic in u,, w. The static boundary
conditions (6.1), 5 then become linear in N*#, M but nonrational in u,, w and n, since
in Eqgs. (4.8),, (3.7) and (4.11) there are square roots of polynomials in %,, w and n,.
The structure of our equilibrium equations (6.1), agrees with the one of the equations
derived by Bubpiansky [18] with the use of a more complex tensor of change of curva-
ture. However, in [18] only the operator form of equilibrium equations was presented
and the problem of appropriate boundary conditions for the bending shell theory was not
discussed. In fact, we do not know any paper in which the general form of four fully La-
grangian boundary conditions of the type (6.1), 5 and (6.2) would be given for the K—L
type theory of shells.

The shell equations (6.1) and (6.2) and other shell relations obtained here are derived
for unrestricted middle surface strains and rotations. They do not depend upon the material
properties of the shell. Therefore, all the relations describe the so-called restricted Cos-
serat surface model of shell behaviour [9]. They should be supplemented by some two-
dimensional constitutive equations satisfying appropriate invariance requirements which
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would describe the behaviour of a material of which the shell is composed. Even for the
simple case of an isotropic elastic Cosserat surface these constitutive equations are quite
complex polynomials of the surface strain measures whose coefficients should be determin-
ed on the basis of experimental tests.

7. Small elastic strains

The Lagrangian shell equations (6.1) and (6.2) may also be treated as an approxi-
mation to the three-dimensional shell problem. In such a case the results obtained here
under the Kirchhoff-Love constraints are meaningless for large strains since the first-order
effect of change of the shell thickness has been ignored. Nevertheless, all the relations
are still valuable as a basis for the derivation of appropriately simplified equations of the
Lagrangian noalinear theory of thin elastic shells undergoing small strains but finite rota-
tions.

For an elastic shell there exists a strain energy 2, per unit area of .#, which can be
consistently simplified [16, 27, 28] in the case of small strains and isotropic material be-
haviour. Within the consistent first approximation the strain energy function is given,
to within a small relative error, by the quadratic expression

5o oo Ll
= ) H YaﬂYM_*_ 12 Xap Xog)s
(1

Haﬂ).;t —

—EHEI—ﬂ- (a‘ﬂaﬂl‘ + a*#af? + __1.2_1;}__ a“ﬂah‘) ,
where E and » are the Young’s modulus and the Poissorfs ratio, respectively.

The formula (7.1), includes the main contributions to the elastic strain energy of a shell
caused by stretching and bending of the shell middle surface. The effect of change of the
shell thickness is also included into Eq. (7.1), by using there the modified shell elasticity
tensor H*** From Eq. (7.1) we obtain the linear constitutive equations

X Eh
N* = & 7 [(1 =) y™ +vafy],
5'yaﬁ 1—v»
(7:2) ox ER?
of — ~ _ —9) y*8 of A
M G = T2 =) (1 =») x*F +va* x3].

Under small strains 1/ ala ~ 1+ ~ 1 and Xop used here differs from x,5 defined by
Eq. (3.1) only by small terms of the order of »y or y?/R, where » and y are greater eigen-
values of x,5 and y,4, respectively, while R is the smallest radius of curvature of .# at the
point under consideration. Differences of this order in the definition of the change of
curvature do not influence the accuracy of the elastic strain energy (7.1); of a shell within
the first-approximation theory [27].

Under small strains the parameters n,, n, and n become quadratic polynomials of
displacements:

nv v mr = _¢v(1 +0rt)+¢t(0vt+¢)’
n =~ my = (0, —¢)—¢.(1 +6..),

(7.3)
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(73) n=m= 1+0vv+0tt+¢2+0vv0tt_052't

[cont.] 1 1 1
~ 11— 5 (¢3+¢tz)+0vven—7 03;:—203:_7 0it»
where [13]

w w
(]5, = 78__ +o,u, — T, U,, ¢t = a“ — T U, + 0o u,,

14

1 {du, du, du,
(7.4) e R I T B TR
du
evv = dl;v +%vut_avwa Gtt = —‘_1s—t+xtuv—'atwa

6 _ 1 (au xu-}-éu—’—xu)'-%rw
vt_—z—_ds_v vy dS t#t [ A

Here o0,, 7, =7, and %, are the normal curvature, the geodesic torsion and the geodesic
curvature, respectively, of the curve €, orthogonal to ¢ and s, is a length parameter
along €,.

Note that differentiation with respect to s, appears in Egs. (7.4) not only in ¢, but
also'in ¢, 8,, and 0,,. If §, ~ —¢, were taken as the fourth independent parameter of the
shell deformation, after the introduction of Egs. (7.3) into Egs. (4.7) and (5.7) we would
not be able to eliminate terms differentiated with respect to s, from the line integral. This
is why the parameter f, is not adequate for the Lagrangian formulation of the theory of
shells undergoing finite rotations. However, if n, is taken as the fourth independent pa-
rameter, then using 1+ 2y,, ~ 1 the parameters n, and n can be given in alternative approx-
imate forms following from Egs. (3.7) to be
c,ch,—cD c,en,+c¢, D

ne~ — 2T AT DA Y T—cEon2,

(7‘5) h, =~ — 1 '—CE ’ 1 _C?’ s

However, when calculating the approximations for the expressions like n—1, dn/ds or
n/D the parameters n and D should be approximated with a higher accuracy directly
from (3.7) and (4.11),, see [33].

Note that n, and n depend here upon u, du/ds and n, and do not depend explicity upon
terms differentiated with respect to s,. When introduced into Egs. (4.7) and (5.7) the
parameters (7.5) allow to perform the transformations (4.9)-(4.11). Since under small
strains D in Eq. (7.5) is still a nonrational square-root function of u, dn/ds and n,, all
parameters (7.5) and (4.11) are also nonrational functions of those variables.

The boundary couples (4.8), may be approximated by
R,, = (1+0,)M,,+(6,,—$)M,,,
(7.6) R, =~ (0,,+®)M,, +(1+0,)M,,,
R, = ¢, M, +¢M,,. )

When Egs. (7.5), (4.11) and (7.6) are introduced into Egs. (4.13) and (5.9), we obtain
a simplified form of the static boundary conditions for the Lagrangian nonlinear theory
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of shells undergoing small strains but finite rotations. The conditions are linear in N®f
M*®f but still nonrational in displacemental parameters.

If we introduce Egs. (7.2), (2.3); and (3.4) into the conditions (6.1), we obtain the
displacemental form of equilibrium equations which become fifth-degree polynomials with
respect to displacements and their surface derivatives.

8. Hu-Washizu variational principle

In the paper [26] a general approach to the derivation of variational principles was
given for the geometrically nonlinear theory of thin elastic shells undergoing moderate
rotations. A set of sixteen basic free functionals was constructed. Here we apply the same
approach and derive the most general Hu-Washizu variational functional for the geomet-
rically nonlinear theory of thin elastic shells undergoing finite rotations.

In the case of an elastic shell the virtual work (4.1) can be expressed as a variation of the
shell strain energy function: N*/8y,s+ M*38y,5 = 02 (yap,xap)- In the case of dead loads
assumed here there exist potential functions @(u) = —p-u and ¥Y(u, n,) = —[N-u+
+H. (n—n)] such that their variations constitute the external virtual work (5.7) or (5.8) with
approximations implied by Egs. (7.5). Therefore, in this case the principle of virtual displace-
ments can be transformed into a variational principle I = 0 for the functional

(3.1 I = ff [Z(Vaps Xup) —P - uldA ~ f[N‘ u+H- (2 —n)]ds,
7 &r

where strain — displacement relations (2.3); and (3.4), geometric boundary and corner
conditions (6.2) and geometric relations (7.5) at the boundary have to be imposed as
subsidiary conditions. The variational principle 4/ = 0 states that among all possible
values of yup, Xap, Win A and u, n,, n,, n on €, which are subject to the subsidiary condi-
tions, the actual solution renders the functional I stationary.

Let us introduce the subsidiary conditions (2.3),, (3.4), (7.5) and (6.2) of I into the
functional itself by use of the Lagrange multiplier method. Then we obtain the free func-
tional

#2) I = [ {Z0ups tes) — P+ 0=NP[yep—up(W] — M [105— 1up(W]} d A
w4
~ [N u+H-@—n) =4, [n,— ., n,)] - A[n — n(u, )]} ds
Cr
= [P (u—u")+M(n,—n})ds— > F,- (u,—uf).
Cu i

The functional I, is defined in terms of the following independent free variables subject
to variation: three displacements u.in .#, six displacemental parameters u, n,, n, and n on €,
three displacements u; at each corner M, € %, six strain components y,5 and y,s in A,
six Lagrange multipliers N*f and M*f in ., two Lagrange multipliers 4, and A on %, four
Lagrange multipliers P and M on ¥, and three Lagrange multipliers F; at each corner
M;e¥,. The associated variational principle 8/, = 0 states that among all possible
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values of the variables, which are not restricted by any subsidiary conditions, the actual
solution renders the functional I, stationary.

Taking the variation of I;, we obtain as its stationarity conditions all basic shell rela-
tions: the equilibrium equations (6.1), , the static boundary and corner conditions (6.1),,,
the strain-displacement relations (2.3); and (3.4), the geometric boundary and corner.
conditions (6.2) together with additional relations which show the Lagrange multipliers
to be indeed those already described by their symbols. These additional relations are
constitutive equations (6.3), definitions of the effective boundary forces and the moment
(4.13), on %,, the definition of the effective corner force (4.13), at all M; € €, and the
definitions A, = H,, A = H for the Lagrange multipliers on €,.

The variational principle 61, = 0 is the Hu-Washizu principle for the Lagrangian
geometrically nonlinear theory of thin elastic shells. Following [26, 34] from /; a number
of other free functionals and associated Lagrangian variational principles may be genera-
ted.
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