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Three Forms of Geometrically Non-Linear Bending Shell Equations®

The shell deformation under Kirchhoff-Love constraints is decomposed into a rigid-body transla-
tion, a pure stretch along principal directions of strain and a rigid-body rotation. Some formulae for
the finite rotations are given. The shell equilibrium equations, geometric boundary conditions and.
energetically compatible with them static boundary conditions are derived in terms of Lagrangean-
quantities and consistently simplified under small elastic strains and bending theory. The basic shell’
equations are expressed in terms of either strains and changes of curvature, or strains and finite rota—
tions, or displacements only.

1. Introduction

The basic set of equations for the first-approximation geometrically non-linear theory:
of thin elastic shells may be presented in terms of various quantities chosen as indepen--
dent variables.

The most appealing way is to formulate solution of a shell problem in terms of the:
displacement vector # of its middle surface. The vector describes completely the de-
formation of the shell space, since within an error of the first-approximation theory it is-
permissible to assume the Kirchhoff-Love constraints on the shell deformation. However,
the change in shell thickness during deformation should be taken into account in the
constitutive equations. The resulting set of such three Lagrangean displacemental equili~
brium equations become extremely complex [1 - 3.

Two other general forms of 4hell equations have recently been proposed. Danielson:
[4], Koiter and Simmonds {5] and the author [2] discussed various forms of shell equa-
tions by using as independent variables differently defined internal stress resultants N°#
and changes of curvatures x,;. Simmonds and Danielson {6, 7] derived a set ofshell:
equations in terms of finite rotation and stress function vectors £ and F as independent
variables. S

These three forms of shell equations differ in the reduction procedures used in the
process of derivation, which depends upon the chosen independent variables. In [2, 3] we:
reduced consistently the relations between the strain measures and displacements and only-

’

" * Paper presented at the “VIII International Congress on Applications of Mathematics in En--
gineering”. Weimar, June 26 - July 2, 1978.
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then the displacemental shell equations were obtained from the virtual work principle.
Tn the reduction procedure used in [4 - 7] it was assumed to be permissible to omit di-
aectly in the shell equations some terms, which were of the same order as the error already
dntroduced into the equations by the approximate constitutive equations. Besides, in [5, 2]
some error estimates derived by John [8] were taken into consideration. It is also interes-
ting to note that in the three forms of shell equations the component relations were ob-
tained from the appropriate vector relations by resolving them in different surface bases:

«in the reference basis [1 - 3], in the deformed basis [4, 5, 2] and in an intermediate basis

{6, 7] which was the result of a rigid-body rotation of the reference basis by the finite ro-
tation vector. Therefore, it seems almost impossible to compare the three forms of shell
«equations for the general case of geometrically non-linear theory of shells.

Recently it was shown in [9] how to decompose analytically the deformation of a
neighbourhood about a point of the shell middle surface into. three separate steps: a ri-
gid-body translation, a pure stretch along principal directions of strain and a rigid-body
rotation of the prmclpal directions. This decomposition and the theory of finite rotations
in shells as developed in [2, 3, 9] allows to discuss here, within one general scheme, three
sets of shell equations: in terms of the shell strain measures y,5 and x4, in terms of the
surface strain tensor y,; and the finite rotation vector £ or in terms of the displacement
-vector u. These three sets of equations are constructed here for a special case of the bending

'theory of shells in which the small strains in the shell space caused by the stretching and

‘bending of its middle surface are assumed to be of comparable order in the whole internal
-shell region.

The reduced bending shell equations in terms of the strain measures presented here
.agree with those obtained by Koiter [10] in differently defined changes of curvatures.
‘The appropriate deformational boundary conditions are derived here by consistently
reducing the deformational quantities given in [11, 2]. We present here also the appropriate
: statical boundary conditions, which are energetically compatible with the deformational
-ones,

The bending shell equations in terms of y,; and £2 follow directly from the equations
1in terms of strain measures by expressing #,; by means of £2. The appropriate kinematical
boundary conditions are obtained here by reducing those given in [11, 2]. We present here

also the appropriate statical boundary conditions, which are energetically compatlble thh
‘the kinematical ones.

Finally, we discuss here also a displacemental form of bending shell equatlons by ex-
pressing all quantities appearing in the previous two sets of shell equations in terms of

_.displacements. The appropriate geometrical and statical boundary conditions are those
_given in [2]. ‘
In effect, the solution of any geometrically non-linear bending shell problem is divided

into three steps. In the first step the strains and changes of curvatures (and therefore the "
stresses within the shell space) are obtained. In the second step the finite rotation vector

is found from the known strain measures. The displacement field is calculated in the third
step from the finite rotations and strains. However, in many shell problems it is the stress
Aield that is sought for and after the first simple step the.solution of the shell problem may
be postponed. .
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2. Notation and preliminary relations

Let r(8%) =x(9%i, and 7(9%) =X*(9%i,, k=1, 2, 3, be position vectors of a surface in
the reference and deformed configurations, respectively. Here 8%, a=1, 2, is a pair of the
surface convected coordinates and x* and X* are components of r and 7 in a common
Cartesian frame. With the reference surface .# we associate standard surface covariant
base vectors a,=r,,, covariant components of a metric tensor a,5=a,*a; with determinant
a=|a,, a unit vector normal to .#, n=4c"a, x a; and covariant components of the cur-
vature tensor b,;=a, g'n, Where &*? are contravariant components ¢ of a permutation tensor.
Similar geometnc quantities associated with deformed surface M are marked by a dash:
a,, G, N, b,ﬁ, . Other details of the notation used in this paper are given in [2, 10].

The basic vectors of the deformed surface can be expressed in terms of the geometry of
# and a displacement vector u=r—r=ua"+wn by

a,=1,d +lp¢n, n=n,a*+nn, - (2.0)
‘where ‘
lzﬁ:aaﬂ'*‘lgap_waﬂ’
'gaﬁ='}(u¢]ﬂ+uﬁ|a)—baﬂw: ¢a=w,¢+biu17 (2'2)
w¢p=‘l‘(upi¢—ua|p)=8ap @, ¢=‘leaﬂ“p|a,
a 1 [a
n"=\/-a—e“”e,1" 0.1y, n=7\/§e“"e“lilf‘ﬂ. (2.3)

The components of the Lagrangean surface strain tensor 7,5 and of the tensor of change
“of surface curvature k., are defined by ,
Vap =2 (Bag— Gep) = o + 38— wh) (825~ w;9) + 10, 05, 2.9
Kep= —(baﬂ —bg)=—[n(@,+ bp L)+ (1 T bp @) —bagl. 2.5)
‘They satisfy the followmg compatibility conditions

ﬁelu[Kp“u'*‘ Exv(bx}.— Kx},) YVﬂu] =0, (2.6)

K')’: + eaﬁel"[)'an]ﬂl - bau Kﬂl + '}(Kay Kﬂ}. + Exvyxay YV[U.)] = O s
where
yvﬂn=Y\rﬂ|u+y\ru|ﬂ_‘)’ﬂy]v . (2-7)

3. Decomposition of shell deformation

The geometry of deformation of a thin shell and its boundary has been discussed in
detail in [2]. Here we remind some basic results.

Under Kirchhoff-Love constraints deformation of a shell is entirely described by
deformation of its middle surface. Complete information about deformation of neigh-
‘bourhood of any particle at the shell middle surface is contamed in the shell deformation
gradient tensor G which has the form

G=a,0a"+n®n, G '=a,0d+n®n. 3.1

© 6 Prace IMP, z 81
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By applying the polar decomposition theorem the tensor G can be represented by
G=RU=VR, G '=U'R=RTV !, (3.2)

where U and V¥ are the right and left stretch tensors, respectively, and R is a finite rotation
tensor. Decomposition of G in terms of U is compatible with Lagrangean description,
in terms of V it is compatible with Eulerian one.

By the formulae (3.2) the deformation of a neighbourhood about a particle of the
shell middle surface is decomposed analytically into a rigid-body translation, a pure
stretch along principal directions of strain and a rigid-body rotation of the principal
directions. Lagrangean and Eulerian descriptions differ here only by different orders of
these elementary deformations.

It follows from (3.1) and (3.2) that

a@,=Ri,=Va,, n=Rn, a=Ri’=V'a’, (3.3)
where

(3.4)

The first intermediate basis &,, n is obtained by stretching the reference basis a,, »
along the principal directions of U. The second intermediate basis is obtained by a rigid-body
rotation of the reference basis with the help of R.

By using (3.3) and (3.4) we obtain

U=a,®a*+n®n, R=a,®d°+n®n. (3.5)

In what follows it is convenient to define some Lagrangean strain tensors co-axial
with U. Besides the strain tensor Y=4(U?—I) with components (2.4) we shall also use here
the modified strain tensor. y defined by

}7=U—1=\/1+2y—1=)7a,a“®aé, (.6)

29, =2745 +72 Vag» i,=:+7da;,
where I=a,®a"+n®n is the metric tensor of a three-dimensional Euclidean space cal-
culated at .#. Note that y,; are quadratic in terms of dlsplacements but many geometrical
relations containing \/ aja are non-rational in terms of y,5. On the other hand, we define
Y25 to depend upon displacements through the complicated non-rational relation (3.6),
but then the geometrical relations containing N, E—/a become polynomials in ¥,5. Within
the small strains y,; and y,; coincide.

The general formula for R in terms of displacements follows from (3.5); to be

R=a"%(a,+u,)®(az+75;, ") +(n, &+ nn)@n. 3.7

The proper orthogonal tensor R describes an axis of rotation in space defined by a
unit vector e and an angle of rotation w about the axis of rotation. The rotational part of
deformation may also be described by means of an equivalent finite rotation vector 2=
=sin we, which is defined uniquely by the tensor R. The general formula for £ in terms of
displacements takes the form .

Q=3e, {[n*— (6 +7) pgl a*+ a6+ 7)) Uy m}. (3.8)
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The action of £ on &, is calculated according to

@= &, + 2 X G+ S 2x(2xE) (3.9)

1
_ 2cos’ o/
and the same formula relates 7 to n and &, to a,.
Differentiation of 2 along surface coordinate lines follows from the rule derived by
Shamina [12] for three-dimensional case to be

s

1 .
9,p=coswkp+%9xkﬂ—m2—Qx(ﬂxkp), (3-10)

where kj is a vector of change of curvature of the coordinate lines. For the vector k; we
obtained the following formula

kﬁ=9,ﬁ+2—w:2—w/29,px9+w,,tgw/29 = @3.11)
= (it b T Bt (= 375Fadnl.  (312)

The integrability condition of (3.10) takes the form
E(Kppe+ 3k, x kg)=0. (3.13)

The component form of (3.13) with (3.12) with respect to the reference basis is equivalent
to the compatibility conditions (2.6). '
Taking into account that

Eal El=(5: + 3;:) Exa al (3'14)
we are able to invert (3.12) and obtain ‘
Kep =38 [(F% + T kg + (O3 + )] @' =3 (b Fap+ b5 V) - (3.15)

This relation, together with (3.11), gives an exact expression for «,, in terms of £ and 7,5.

With the reference boundary curve € defined by 3*=9"(s), where s is the length para-
meter, we associate the unit tangent ¢=dr/ds and the outward unit normal v=¢xa. The
orthonormal triad v, ¢, » does not coincide, in general, with the principal directions of
strain. The rotation of the triad from the reference to the deformed configuration is des-
cribed by a total finite rotation vector £2,, which is the result of superposition of a finite
rotation of the principal directions of strain on a finite rotation due to a pure stretching
along the principél directions. The exact formula for £, in terms of displacements follows
from the superposition rule for finite rotation vectors [2, 3] or directly from the relation

1
2Q,=———(vxa,ttxa)+nxn, (3.16)
‘ \/1+2'y,,
where
_ dr _ -
a=—=a,l*, a,=a,Xn. : (3.17)
ds

Deformation of the shell lateral boundary is described by deformation of the triad
v, ¢, n. The detailed discussion given in [11, 2} shows that in order to establish the deformed

[
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lateral boundary each of the following three groups of geometric quantities, defining three
different types of geometric boundary conditions, may be assumed given at the boundary:
1) displacemental b.c.. # and ﬂv=w at %
1+ 2y,
2) kinematical b.c.: £, and y,=y,tt* at &,
3) deformational b.c.: k, and 7y, at %.
The vector of change of boundary curvature %, is calculated according to

’

=-—kyv+k,t—kyn, (3.18)
where :
—ky=—(0,— Ky)— 0O,
\/1+2y,, S
k= \/—v A by —Kap)tP~1,, 3.19)
. \/1+27n P ' ,

—k, ——m——\/‘(x,—v "y )~ x,,
142y,

and o,, 7, x, are the normal curvature, the geodesic torsion and the geodesic curvature of
%, respectively.

4. Equilibrium equations and statical boundary conditions

The non-linear shell equations can be presented either in Eulerian or in Lagrahgéan
descriptions. We prefer here to use the Lagrangean approach, since in this case all quantities
are related to the known geometry of the reference shell middle surface .#. )

Let a shell with simply connected middle surface be in equilibrium under the surface
force p, per unit.area of .#, and under the boundary force F and boundary couple K, per
unit length of the reference boundary . Then for any additional virtual displacement
field du subject to geometrical constraints there are symmetric Lagrangean stress and couple
resultant tensors N=N “”a,@aﬂ and M= M*a,®a, such that the Lagrangean virtual work
principle IVW=EVW takes the form [2]

®

le § (N 8y,5+ M*6x,5)dA = i {p-oudA+ ¢j (F-du+K-68,)ds. | 4.1)
By applying the Stockes’ theorem we obtain
- ij (GN?);-oudA + (g [P, Su+M, (a 6R)]ds+ ; AM, (7 du)=
A
= [ p-oudA+ [[R-Su+K, (@, 0R)]ds+ Y AK(n-ou), 4.2)
where “ ¢ . ‘
N'=Q%,+ 0%, @ 0R=1+2y,0p,,
Q¥=N*-b3M¥,  Of =M+ (= Vi) M,
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PV=GNﬂv§+i(1\7I,v n), R=F+i(1€, n), (4.3)
ds ds
T \/ L My M= MU 2 15,
142y, NV a 142y,
_ 1 - 1 -
S K e K=o Ka.
and at all corners M, of € labelled by s=s;, i=1, 2, ..., N we have
AM, =M, (5;+0)~ M, (5;~0), AK,=K(s,4+0)— K(s,—O0). (4.4)
The principle (4.2) gives us the Lagrangean equilibrium equations
(GN®);3+p=0 in A, 4.5)
the Lagrangean statical boundary conditions ,
P,=R, M,,=K, on € (4.6)

and the conditions AM,,=4K, to be satisfied at each corner M,.
When expressed in components along deformed basis @,, n the relation (4.5) gives
the following three equilibrium equations '

~gK Ta _E——a
Qaplﬁ‘l'aa Vxap Qw—bﬁ Qﬁ+\/;P =0, 4.7

o 7 )
Qﬂiﬁ"l'baanﬁ'f‘\/-a—p:O, '
where
- e . __
p=\/=p=pa+pn (4.8)

is a surface force per unit area of the deformed shell middle surface.

Let F, and B,(O) be a total force and a total couple, with respect to an origin O in
space, of all internal stress and couple resultants acting at the part of the shell boundary.
By using the Lagrangean description these vectors are defined by

M Mo

F,=F)+ [ P,ds, BJ(0)=BXO)+ [(M, a+rxP,)ds, 4.9)
Mo Mo

" where F_ and B?(0) are initial values of F, and BY(O) at M=M,.

The total couple B,(M)= B, with respect to a current point M of deformed boundary
is calculated as follows

B,=B,0)~FxF,. | (4.10)
By differentiating (4.9) and (4.10) we obtain
d _
iszpv’ —B,=M"Z,“‘_0,XF,. (4'11)
ds . ds .
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Let us also differentiate du and J€2, with respect to s and take into account that ds =

=41 +2y.ds, which gives

d e
= 60,=~/1+2y,6k,,
ds

d
— Su=07, 4+ 082, % G.
ds

(4.12)

Here Jk, is the vector of virtual change of the boundary curvature and 8%,=067,,t*=

= 87, Where 8y, =07, 1°t*.
1+27, 77:: Ve =O0Vap

Now it is possible to transform the line integral in (4.2); as

M —
I= [[P,-6u+M,,(a,-56R)]ds=
Mo

M
d . d — ]
= jI:'—(Fv'5")—Fv'—(6u)+Mvv(z:'5nt)
ds / ds i
Mo
M \
A -— Ei.Fv T
= M, a~— X F, - 082, — o
I[( & & ) t 1+27, )’n-
Mo

By introducing (4.11), and (4.12), into (4.13) we also obtain

M

follows

ds+F," Suly, -

_ 3, F,
I=— v[[\/1+2y,,B‘,'5k,+1;2y 5y,,]ds+F,,-5u|ﬁo+Bv-59,|ﬁo.

1
My

(4.13)

4.19

1t follows now from (4.13) and (4.14) that some statical quantities work on variations
of geometrical quantities which establish the deformed lateral boundary. Therefore, to
each of geometrical boundary conditions at & there corresponds an energetically com-
patible statical boundary condition g¢xpressed by the following quantities:

1) uHPv’ ﬂvHMva‘42Y1t
2) Q,oM,,5,—axF aF,
hd v & — @, v> o= 4
‘ t wh— Yt 1+2y,
. — a.-F
3 ko —~14+2y,B,, .
) t ‘/ Yu Yu 1+27,

(4.15)

The constant terms appearing outside the integration in (4.13) and (4.14) are responsible
for discontinuities of boundary values at the corner points of ¢ and should also be taken

into account,
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5. Bending shell equations in terms of strain measures

The various shell relations discussed in § 2 -4 have a purely geometrical character,
which follows from the assumption of Kirchhoff-Love constraints on deformation process
of the shell. The relations stilf contain unrestricted strains and rotations and do not depend
upon the shell material properties.

In what follows we shall discuss the simplified sets of shell equations in the case of a
thin shell composed of an isotropic elastic material under the assumption that strains are
small everywhere in the shell.

Within the small strains we are allowed to use the estimates

SR

=1+0(n), a=a,+0(), a’=a"+0(n),

. - (5.1)
}’aﬂ=)’aﬂ+0(ﬂ ), suﬂ=saﬂ+0(77)’

where 7«1 is the largest strain in the shell space.
The constitutive equations of the isotropic elastic shell have the following form

N =C[(1-v)y** +va**y}]1+ O(Emn$?),

M* =D [(1—v)x* +va®x}]+ O (ER*$?), (52)
where

Eh ER?
='——2 > D = ey
1-v 12(1—v7)

Here 3 is the small parameter defined in [5, 2], 7 is the small shell thickness, E and v are
the Youngs modulus and the Poisson’s ratio, respectively. _

‘When the small strains in the shell space caused by stretching and bending of its middle
surface are of comparable order in the whole shell region, the errors indicated in (5.1)
and (5.2) allow us to reduce also other shell relations. We assume here that it is permissible
to omit in all shell relations such terms which are of the same order as the error terms
introduced to these relations from the approximate constitutive equations (5.2). As a
result, the equilibrium equations (4.7) and the compatibility conditions (2.6) are reduced

{2, 10} to
n92
A

92
Dx:|Z+C(b;—x;)[(1—v)yf+v5£yﬂ+f)=0<Eh2” 5 > >

(5.3)

CL(1—v)¥i|p+vhl1+P.= (

A

32 (5.4

S~

9
VR~ 3218 — (B i — B )+ 3 (o s — ) = o(” )
where A=h/9 is a large parameter [5, 2].
The geometrical boundary conditions are expressed in terms of the strain measures by

using deformational variables k, and 7,. Under small strains for the bending shell theory



88 W. Pietraszkiewicz

2 . 92
ktt=KH+O(%> > kvt=xvt+o(lh“> ’

dy,, d 93 5.5
_y'—t - Y + 2Kv Put + Kt(yvv - ‘Yn) +0 <1}’2_> ° ( )

(3.19) reduce to

k=2

ds

v

The appropriate statical boundary conditions- may be obtained from the consistent

reduction of quantities appearing in (4.14). Under small strains for the bending shell theory
we obtain

P,=P, v+ P, 1+P,ii+0(Ehn9?), (5.6)
P,,=C(7,,+vy)+O(En9?),
P,,=C(1—v)7,,+0(Ehn$?),

p,=p| Xy o —p 2],
= —y X
w0 s s ds |

+D (1 =) [K(Kk,, —Ky)+ 2K, K, ]+ O (ERRS?),  (5.7)
a,=1t+0(n), M, =M,+0(Eh*9%%, M, =M, +0(Eh*n$). (5.8)

Therefore, for the statical boundary conditions (4.15); we have

M M
B,=BY%0)+ ([D(x,,+ vk, )t+rxPJds—rx | P,ds,
’ Mo Mo
' M (5.9)
t-F,=t-Fl+1¢ | P,ds,
Mo

where P, is defined by (5.6) and (5.7).

The relations (5.4) form a set of six equations for six strain measures y,; and x,; to
be solved within 4. All the formulae for components of &, as well as those containing
statical variables at the shell boundary are linear in: the strain measures. This shows that
the structure of the relations for geometrically non-linear bending theory of shells is.re-
markably simple.

By solving the set of equations (5.4) with appropriate boundary conditions we obtain
the strain and stress distribution within the shell space according to the constraints as-
sumed and with accuracy of the first-approximation theory. The position of the shell
in space is established with the accuracy up to a rigid-body motion in space.

6. Bending shell equations in terms of finite rotations and strains

The finite rotation vector and its derivatives are decomposed in the reference basis
a,,n as follows

R=0,a"+Qn, NRz=0,,d+P;n,
D=y —by 2, B=0,+030,. , (6.1)
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For the vectors k; defined in (3.12) we obtain

ky=kya,+ksn, (6.2)-

1
< k“ﬂ= ¢f‘ﬂ+2‘—coszw/2 81"'(91 ¢p“ ¢1p9)+w,ﬂ tgw/Z.Q",

(6.3)-

2 cos w/2

Since the rotations are allowed to be arbitrarily large here the relations cannot be sim-
plified.

Within the first- approxnmatlon theory of shells the tensor of change of curvature is
defined with an error O(3%/h), [2, 13]. Terms of .this order added to (or subtracted from).
K.s do not change the accuracy of the approximate strain energy function [14]. Since
ky=0(n/h) it follows from (3.15) that

A '7'92 ;
Kap=1 (6 Ky 52K+ 0| —- : (6.4)-

This gives the representation of x, entirely in terms of the finite rotations.

If we introduce (6.4) and (6.3) into the set of equations (5. 4) then it becomes expressed
entirely in terms of 7,3 and £.

The geometrical boundary conditions may be expressed in terms of 7, and £ by-
using kinematical variables £, and ¥, at €. Under small strains but arbitrarily large ro--
tations we obtain [9]

g . R0 g
Q,:Q,coszw+/2+ﬂ+%ﬂ+x{2,—-——-t—2——+—— Q++0(r]2)=9+0(7]), (6.5)
4cos*w™ /2
where
R,= —p,n+0(Y, cos’w*2=4(trG+1), (6:6)

Rt= l&‘"“{[(Z +95) p— 0" (S~ )] e, + o, "} .

Therefore within the bending theory for geometrical boundary conditions it is allowed to
assume values of £ and y, at €.

The appropriate statical boundary conditions in terms of € and 7o follow from the-
reduction of quantities appearing in (4.13). Under small strams and bending theory we
should assume at ¥ the following quantities

M
M, t—txF,=M,t—tx(F + [ P,ds),
Mo

o M (6.7)?:
-+ F,=-1(F+ nyds).

Here for P, we should use (5.6) and mtroduce there (6.4) and (6.3) in order to express.
K in terms of €.
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The resulting set of the Lagrangean shell relations is quite complex with respect to £.
Note that according to (3.11) and (6.3) the vectors k; depend upon £ through trigono-
"metric functions. Thus, the resulting shell relations will also contain trigonometric de-
pendency upon £2. '

It seems to be more rewarding to divide the solution into two steps. First we may solve
the shell problem in terms of strain measures as suggested in § 5. This allows to calculate
the vectors kg according to

An "'92
kﬂ=8 (lc,,;.a‘,+’yp‘,|,'n)'+0 T . (6.8)

The vector 2 may be found in the second step by integrating the two vector differential
equations (3.10). Note that the structure of equations (3.10) is the same as that known in
analytical mechanics of rigid-body motion about a fixed point, where the time derivative
of a finite rotation vector is calculated in this way from an angular velocity vector. The
solution methods developed in analytical mechanics may then be helpful in solving the
shell problems in terms of £.

By solving the set of shell equations with respect to £ and 7,4 the position of the shell
is established with accuracy up to a rigid-body translation in space.

i

7. Bending shell equations in terms of displacements

{
Within an error of the first-approximation theory the formula (2.4) for y,, cannot be
simplified. In the formula (2.5) for x,; we are able to simplify » and n, according to -

n=[1+9+4(90)*—49:9%+ 0’1 [1 -7} + 0 ()],
n,= [—(1 - ‘9:) q".+ q’l(sl‘l_wlu)] [1 +0(7I)] ’ (7'1)
Pi=9i+19:95+10 0+ 07,

In effect x,; becomes a fifth-order polynomial in terms of displacements and their de-
rivatives. , :

If we introduce (2.4) and (2.5) with (7.1) into the equilibrium equations (5.4),,, they
‘become expressed entirely in terms of displacements. Two equations (5.4); are quadratic
and the one (5.4), is of the seventh-order polynomial in terms of #,, w and their derivatives,

The displacemental boundary conditions are those given in (4.15), where now §,=
= —¢, [+ O0(@®)]. When applying the statical boundary conditions we should express
P, and M,, in terms of displacements by using the constitutive equations (5.2) and the
strain-displacement relations (2.4) and (2.5 with (7.1).

The solution of a shell problem in terms of displacements gives us the complgte informa-
tion about the shell behaviour within the accuracy of the first-approximation theory.
Unfortunately, even within the bending theory the resulting set of shell relations in dis-

- placements is still quite complex and nobody, as yet, has tried to solve such displacemental
.equations without any additional simplification.
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For some shell problems the displacement field may be obtained by dividing the solu-
tion process into three steps. In the first step the strains and changes of curvatures are
calcnlated according to § 5. In the second step the finite rotation vector is found from the
known strain measures as suggested in § 6. Taking into account that a,=a,+u, and using
(3.9) we obtain

e a W : 1 /
By=7y,,a +(5}+y§)[ﬂxal+2m~———zm—/29 x(ﬂxal)], (7.2)
or within the first-approximation theory
. 1
u,p=yaﬁa“+ﬂxaﬁ+mﬂx(ﬂxa,). ‘ o (1.3)

These are the first-order differential equations for # to be found in the third step from
known £ and y,.

Received by the Editor, April 1979.
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Trzy postacie rownai geometrycznie nieliniowej zgieciowej teorii powlok
Streszczenie

Deformacj¢ powloki z wigzami Kirchhoffa-Love’a roztozono na sztywne przesunigCie, czyste
rozciagniecie wzdluz gléwnych kierunkéw odksztalcenia oraz. obrot skonczony kierunkéw gléwnych.
Podano ogdlne wzory na obroty skoniczone w powlokach. Roéwnania réwnowagi powloki wyrazono
poprzez wielkosci Lagrange’owskie. Skonstruowano trzy warianty geometrycznych warunkéw brze-
gowych oraz energetycznie spOjne z nimi warianty statycznych warunkéw brzegowych. Podstawowe
réwnania teorii powlok konsekwentnie uproszczono przy zalozeniu malych sprezystych odksztalcen
oraz teorii zgieciowej. Te podstawowe zalezno$ci wyrazono poprzez trzy grupy zmiennych niezaleznych:
odksztalcenia i zmiany krzywizn, odksztalcenia i obroty skoficzone lub przemieszczenia.

TpH BHIL YpaBHeHMii TreoMeTpHYMECKH HeJuHeiiHo# W3ruOnoii Teopun o6oJ0uex
Pesrome

Jndopmanmsa 06onoukn co cBs3aMu Kapxrodda-JIssa pasioxkeHa Ha KECTKOES HEPEMEIICHHE, YACTOE
DacCTAXCHME BOOJL TJABHBIX OcCeil AeopMalid M KOHEYHHI! NOBOPOT 3THX IJaBHLIX oceifl. ITomyueHE:
obmue GOPMyYITHI JUIsE KOHEIHLIX HOBOPOTOB B 000N0OYKe. BhIBe[CHL! YPABHERHS! PABHOBECHSA o6omouxe
BBIpaXeHHbIe Yepe3 Jlarpamxensie emaynasl. CHOPMYIMPOBAaHEI TPH BADMAHTEI TEOMETPHIECKHAX KPAeBhIX
YCIOBHM H 3HEPreTHYECKH COITIACOBAHHBIC C HAMH BapHAHTHI CTATHYECKHX KPAEBBIX YCIIOBHH. OcHOBHEIE
33aBACHMOCTH TCOPHH 000JI0YEK YIIPOIICHB! IPH NPEIIOIOKCHAR MallbiX ynpyrﬁx nedopMalimit B B3rA6HOHK
TEOpHH. OTH OCHOBHHE YpaBHEHMS IIDEACTABIICHBI 4epe3 TPH TPYNObl HE3aBHCHMBIX HNEPEMEHHLIX: e~
dopManmH B M3MEHEHAA KPHBH3HH, HedopMalyy H XOHCYHBIC OOBOPOTHI WM IEpCMEHICHHA.





