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- _ZAMMENFASSUNG

Die vorliegende Arbeit behandelt die Ableitung, Klassifizierung
-~Z Rechtfertigung von geometrisch nichtlinearen Theorien fiur dinne,
_.zstische Schalen, die auf der sogenannten "ersten Approximation”
“=r Verformungsenergiedichte beruhen. Ausgehend von der allgemeinen
c=-metrisch nichtlinearen Kirchhoff-Love Schalentheorie, die fur
_<ine Dehnungen und beliebige Rotationen giltig ist [1], wird eine

“=——:1ie von vereinfachten Theorien hergeleitet, in denen die Rota-

c=sondere werden neue Theorien flr solche Schalenprobleme angegeben,

-z. denen die Schalenelemente grofien Rotationen uwn Tangenten zur
_~telfldche unterworfen werden, wdhrend die Rotationen um Normalen
«l2in, mittelgrof oder ebenfalls groB sind. AuBerdem wird gezeigt,
‘22 sich aus der allgemeinen Kirchhoff-Love Schalentheorie mit

-_1Ze geelgneter, konsistenter Vereinfachungen die geometrisch nicht-

_neare Schalentheorie bei Auftreten von Rotationen mittlerer Gréfien-

rdnung ableiten ldBt, die kuUrzlich entwickelt worden ist.

ZUMMARY

This report is concerned with the derivation, classification and
custification of geometrically non-linear theories for thin, elastic
snhells which are based on the so called "first approximation" of
tne strain energy function. Starting from the general geometrically
~2n-linear Kirchhoff-Love type theory of shells undergoing small
szrains and arbitrary rctations [11, a family of simplified thecries
s derived by restricting the magnitude of the rotations to be large,
—“oderate or small. In particular new theories are given for such
shell problems in which the shell material elements undergo large
rotations about tangents to the shell middle surface, whereas the
rotations about normals are small, moderate or even large, too.
Furthermore it is shown that under appropriate consistent simplifi-
cations the general first-approximation shell theory reduces to the

geometricaily non-linear theory of shells undergoing moderate rota-

tions, which has been established in the literature recently.
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CZNSISTENT APPROXIMATIONS IN THE GEOMETRICALLY NON-LINEAR

THEORY OF SHELLS

by

W. Pietraszkiewicz (Gdarsk)

T=2DUCTION

tne work [1] a set of equations for the non-linear theory of thin
..z undergoing small strains and unrestricted rotations was derived.
===l relations were referred to the undeformed shell middle surface.
__Zied tensor of change of curvature and a new independent para-
Jescribing the finite rotation of the shell bouncdary element were
~zZ.ced. In the case of an elastic material and conservative surface
z-ondary loadings the theory allowed for proper variational formula-

I geometrically non-linear shell problems.

= non-linear shell relations derived in [1] are still cuite complex,
= no kind of restrictions have been imposed on rotations of the

.- material elements. For many engineering shell problems it 1is

. necessary to allow rotations of any magnitude. Some shell struc-

~

= would become unserviceable 1if

really finite rctations were permit-

- 22 occure. Therefore, it is certainly worthwhile to discuss possible

_=veral approximation schemes leading to simplified sets of egua-

-z of geometrically non-linear theory of shells were proposed in

_iterature. In the works of Chien [26], Koiter [14], Pietraszkiewicz
12) end Simmonds [40] various restricticns were imposed on middle

“zCe strains and changes of curvatures to derive various sets of

-zoximate shell eguations, among which the most important were mem-

., bending and inextensional bending shell ecuations. Mushtari and
_-mov [11], Galimov [12],Leonard [35], Sanders [13], Koiter [14],
:—ovalov [31], Pietraszkiewicz [2] and Kabanov [29] restricted com-

“znts of the linearized rotation vector and some of displacement

“nis work was prepared under an Agreement on Scientific Cooperation

=en the Institute of Fluid-Flow Machinery of the Polish Academy of
-=nces in Gdafisk and the Institut fuir Mechanik of the Ruhr-Universi-
-~ zochum, FRG.
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. _=rts as compared with strains, relative thickness and/or variability
zZormation state and derived several simplified variants of shell

~.=2.ons under various names. Among the best known are approximate

~=__ relations of medium bending theory given in [11], with moderate-~

18

rotations proposed in [13] and with small finite deflections

P

2ssed in [14]. A varicty of simplified variants of non-linear shell

~~_=2lons derived by Duszek [28,36] followed from restricting displace-
=2z and their surface gradients in terms of several independent small
. -z==sters, while those given by Novotny [37] were obtained from

c==-dimensional eguations through a formal asymptotic procedure.

‘2zt of the simplified variants proposed in the works referred to
- =, were derived by omitting some terms in definitions of strain
:res, inequilibrium equations, in boundary conditions and/or in

—zztibility conditions. The terms were usually omitted because of
=.r relative smallness as compared with other terms in the same

=_zZions, but not because of their small contribution to the strain

zv of a shell. Such procedures, although formally correct, not

zvs lead to satisfactory sets of shell eguations. They do not

re that the (local)simplifications of the equations are consistent
+.2°1n the assumed approximation to the (glcocbal) variational formula-

~F

.2~ of the shell problem. By applying such formal procedures some

-zoosedly important terms are retained in the eguations, although
“-=.r contribution to the elastic shell strain energy may be negligib-
s=all indeed. On the other hand, by discussing possible simplifi-
z2ons only of the equations we may construct such approximate system
= tnell relations, which cannot be derivable from any variational

cc_nciple. In order to avoid this, only strain-displacement relations

«zrz simplified in {12 -14] by omitting terms which were small as

"y

2red with leading terms, but other shell eguations were generated
2= the simplified strain measures using a principle of virtual

I_:io.acements.

The lack of appropriate variational formulation is a serious dis-

=-vantage of all simplified procedures based on omission of supposed-~

small terms from the shell equations. The main reason is that the

)
in

T powerful numerical procedures used nowadays, such as the finite

'ent method or the finite difference energy method, may be applied

{
b

1y 1f the problem allows for a variational formulation. Otherwise,

zime special methods of solution, which are not so cffective, should




.35 report we shall formulate approximate variants of geometri-
~z--linear equations of thin elastic shells undergcing small,

2=, large or finite rotations. The scheme of simplifications, pro-
_~ cur earlier works [3-5], is based on consistent restrictions
==.on angles of material elements during the shell deformaticn.

: znéd rotations may be exactly separated from each other [16]
c-lar decomposition of the shell deformation gradient tensor.

-~ the geometrically non-linear theory of shells strains are

=3 to be small everywhere, further possible approximations are

zz.ral if they follow from consistently restricted rotations.

rzstrictions assumed on the rotations are formulated in terms

= common small parameter 6 defined in [19] and redefined in [20]

z-wsical arguments. The rotations are said to be small, moderate,
finite if the rotation angles allowed are of the order of 02,
i, respectively. Order-of-magnitude discussion allows then to
= orders of linearized rotations and linearized strains and,
cre, orders of all terms in the definitions of the surface strain

v . and of the tensor of change cf surface curvature XQB' Only

strain measures appear in the first-approximation theory of

i

=_zstic shells, for which the elastic strain energy function Z
=z (21,221 aquadratic form, with respect to the shell strain

s . 2 . .
= o within a relative error 0(87) as compared with unity.

zch of the simplified variants of shell equations only those
zre omitted in the strain-displacement relations, whose con-
22>~ to the shell strain energy lies within the error margin

o introduced to I within the first approximation theory. Other

r=lztions (equilibrium equations, geometric and static boundary

zrrer conditions) are generated from the simplified strain-

zcement relations by applying the variational principle of virtual
zzements. Therefore, the simplifications assumed in this work are
ent in the sense of an error introduced to the shell strain
function and assure the existence of variational principles

zzn of the approximate variants of shell equations.

shell structures are manufactured to be quite rigid for in-

= deformation being flexible for out-of-surface deformation.




¢ feature of thin-walled structures is taken into account in our
=ssification scheme by restricting not only the value of the rota-
on angle but also the direction of the rotation axis. Therefore,
assume different restricitons on particular components of the

.ite rotation vector  and associate the names '"small, moderate, large

finite rotation" with the particular component of .

In the consistent theory of shells undergoing moderate rotations

tensor of change of curvature becomes a linear function of dis-
=cements. As a result, all transformations are much simpler than

the general case. In particular, the fourth boundary condition
r a moment takes the same form as in the classical linear theory of
=.1s. The consistent set of eguations may be constructed either by
rect transformations as given in [3-5], or by applying to this parti-
_zr case the general scheme of derivation given in [1]. The latter
croach is used here. The shell relations of the moderate rotation
zory contain, as special cases, the eguations of various simplified

riants of the non-linear shell theory, which have been proposed in

== literature [8-15]. The problem was discussed in detail in [6,38],

cre a variety of variational functionals was constructed.

2s the principal new results of the work several variants of the
v out-of-surface rotations are assumed to be always large, while

-surface rotations are supposed to be either small or moderate or

LM
Wy

e. This allows to discuss three particular cases of the shell

U

tions with large/small or large/moderate or simply large rotations.

The variant of theory of shells undergoing large/small rotations
Zresents the simplest case within the large rotation theory. It
nibits certain features of the general theory discussed in (1],
z2ing at the same time to relatively simple shell relations. In the

ccess of derivation it is shown, in particular, that approximate

=«—ressions for the shell strain measures, which are consistent to

thin indicated error in the strain energy function, may lead to

=~z splitting of the boundary terms. In order to restore appropriate

szructure of the static boundary conditions some small terms, already

:lected from strain-displacement relations, should be retained in



_ -~ conditions. The boundary terms themselves are constructed by
-z the exact non-rational sguare-rcot functions given in [1]
zzries and retaining only terms within a desired accuracy. The

.~ _ = error introduced into ¥ does not exceed 0(62) compatible with

c--coracy of the first-approximation theory.

z.Z=s the main variant of the large/small rotation theory two
~=2=ntly simplified variants are proposed. The simplified variants
= czmstructed by allowing greater relative error in the strain energy
B == C 5/55 or O(8), respectively. Within the consistent approxima-
= Z-th strain measures become quadratic polynomials in displace-
= Zquilibrium equations and twe of the static boundary and corner
-Zicns are linear both in displacements and internal stress and
~ = resultants, while the remaining static boundary and corner
-Z.ons contain also some squares of the displacemental variables.
z.=plified variants of large/small rotation shell theory seem to
zrzlicularly suitable and convenient to apply in engineering cal-

~-_crns of various shell structures.

-~z.ly, the Lagrangian shell equations are derived for the

~ .z of theory of shells undergoing large rotations in all direc-

=. The relations obtained are obvicusly more complicated than for

zrge/small rotation theory. Rs a special case appropriate shell

:z2ons for the large/moderate rotation theory are also derived.

-z lrteresting to note that within the accuracy of the first-

~~-ximation theory some parameters at the shell boundary should
==zlimated here with a higher precision, directly from their exact
_~:zions given in [1] for unrestricted strains. This proves once
.~ that 1in geometrically non-linear theory it is not advisable to

.=~ strains with respect to unity at too early stage cf derivation

il

1l equations, since occasionally such procedure may lead to
--rurate results. Again, two simplified variants of the large
==12n theory are constructed allowing for a greater error O(6v0)

_ ) in the strain energy function. The éimplified shell relations

il

applied in engineering calculations, when the lower accuracy

1s regarded as satisfactory.

no counterpart in the literature. In our earlier works [3,4]

shell relations derived here for the large rotation range




Zrproximate strain measures and generated by them appropriate oguili-

— eguations were given, but at that time we failled toc construct
ropriate boundary conditions. In {14,31,32] the tenser of chance of curva—
= was proposed in the form of guadratic polynomials of displacements
Titting some terms which were supposedly small with respect to other
csedly principal terms. Such procedure and boundary conditions

in [31] cannot be regarded as consistent from the variational

- of view and cannot be compared with our consistently derived shell

=zlions.

“cssible simplifications of relations of the geometrically non-linear
cry of shells resulting only from consistently restricted in-surface
=zions are not discussed here. It has been found that even in the
—_ezst case of the finite/small rotations, within relative accuracy

of T only few terms may be omitted from the exact definition of
Zensor of change of curvature. It seems, therefore, that considerably

z_1fied shell relations derived in (29,301 for finite/small rotations

2t be regarded as justified within the first-approximation theory of

O]

e classification of the simplified shell relations presented in this
orT assures, within the assumed error limits, the existence of the gene-

Z:-Washizu variational principle [1,41] for each of the approximate

cons of shell relations. It should be noted that even for the simplest

t

z22n of the theory of shells undergoing large/small rotations the varia-

=11y derived definitions of physical quantities at the boundary still

c=. In this report all the non-rational functions are expanded into serics

[y

only those terms which are important within the prescribed accuracy
Taken into account. Such eguivalent polynomial representations of the
-rztiocnal expressions are convenient for numerical caiculations. Besides,
crocedure clearly indicates which boundary terms are really important
—r= particular approximate version of the shell theory. In some theore-
z. considerations it may be more convenient to preserve the original
-rztional structure of the boundary conditions of the exact theory [1]

—~ some of the small terms which have been omitted here from the defini-

==z of the shell strain measures, bec-ause of their small contribution

—ne elastic strain energy of a shell, should additionally be taken into

int. Then the shell relations would becomgmore complex.




2 RELATIONS FOR THIN SHELLS UNDERGOING SMALL ELASTIC

—

-zzzation used in this paper follows that of [1-5). In order to
- work self-contained let us remind, without derivation, some

= -:ven in [1] and in our earlier papers.

-~ Z=Icrmation of the shell middle surface is described by a dis-

& . -
~-~ wvector u = u a + wn, where a are base vectors of the reference

=2nd n is a unit normal to M. The surface strain tensor ¥y
~ o

g

can be prescnted 1n

cZified tensor of change of curvature Xa

]
_-w.ng symmetric forms
1 A
- 5-(1'01A8-+wﬂw8 - aaB)
= —-[f\(m -b. m) 410 (m - b, m) + - (2.1)
=2 e AR TaB -8 2o ha
s m . +bm) 4@, (m  +bm )] + b (1475
o 48 B A B ,a o A of K
= a + € - O =w + b}u
o= TaB B~ Yas ! o T ,o a2
(2.2)
= l»(u +u Y —-b w = l-(u -u Yy = €
=2 alg T TEa a8” " Yap T2 Wala T VYals’ T Sag?
E K u - N
= (1 +6K)@A + (eUA MUX) . nx
(2.3)
oo 4 e L2 LgRgP o LRey =‘/3n
K 2 K 2 "pk Kp a
E a B o 8
== 0= y0 o 2(y0yT - 45
Y (\d\a ‘EYCXI

= ZzIormation of the shell boundary element is described by three

pec=—conts u==uv¥ + utt + wn and three components of the deformed
~ ~ ~

Q Q
nv+nt+nn.,. Heren = nv and n. = n t ,where
\ad t~ ~ Y o t a

unit vector tangent to the reference boundary contour C

i

for;

is an outward unit vector normal to C.

= Derameters ng and n can be expressed in terms of u and nv by

Cc C T - N :
‘ v trv cDh cvcnv-+LtD o4
= = D y n == B 2 - -
E t e - 1+ 2y -C
- P+ 2Ye m 5 et 7%y
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Let N*F and M®® be the Lagrangian symmetric internal force and couplc

resultant tensors of the shell in an ecguilibrium state. Tor any additio-

nal virtual displacement field 6u = 6uaaa + 8wn, subject to geometric

constraints, the internal virtual work, performed by the stress and

couple resultant tensors on variations of corresponding strain measurcs,

can be transformed as follows [11]:

where

B af aB. _
IVW = [J(N GYGB + M 6Xa3)dA =

a
-a KD o

Pl [ M| -bp @M

c€9BeM T [ M) +bY1
na K o TkTyp o Tk P uKp

g 84 aagb MKp

KO

T =(pu(Na )+ tm +b;n&)MQg+

Kp
- M 2.7
L la )10 R ] (2.7)

v}
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H
<
+
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4
it
0
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eyl
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+
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t
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Let the shell be subjected to the conservative middle surface load
. _ +
= paga + pn and to the conservative resultant boundary force ﬂ vi

& i H=Hvy+Ht +Hn. Then
AtE *+ Nn and the boundary static moment B " & n

-2 external virtual work performed by p, E and E on variations of
-orresponding displacemental parameters, can be presented in analogous

(2.8) form (1]




A ~ ~ ~ Vv \Y t t
M C
b (2.12)
= JJE. @idA+-J(Ef -62’+ M*énv)ds + zilﬁg -5gj
M Cf J

Here starred cuantities have exactly the same structure as those given

in (2.8), only there IBv should be replaced by N and va,R , Rv by Hv’

B tv

H H, respectively.

tl

From IVW = EVW we have the following Lagrangian equilibrium equations

and corresponding static and geometric boundary conditions:

T g +p=20 in M

P = P*¥ and M = M* oan

F. = r¥ at each M. € C (2.13)
~j  ~j J £

u =u*¥andn = n¥* on C

~ v u

u, = u* at each M, € C

~1 ~] 1 u

Within the first-approximation theory of thin isotropic and elastic
shells the strain energy function may be approximated [21,22] by the

guadratic expression

h _afiyu n? 2.2
= = — v .y. ) + O(Eh n
z 2 B (YQBYAU HEY, XabXAu) Ol n 8
(2.14)
abAiu E ai By au BA 2V af Ap
H = ETTI;T (a a + a "a + T:;—a a )

where h is the small thickness, E is the Young's modulus and v is the
Poisson's ratio. The error of I at any point of the shell is expressed

through the small parameter & defined by [19,20,2,4]

[y
N

—
[0s)

6=maX (‘)I_l;, g‘, ¥/§I /T?) (



=re L is the smallest wavelength of deformation patterns at M, d is
-2z distance of the point from the lateral shell boundary, R is the
—~z1llest principal radius of curvature of M and n is the largest strain

.~ the shell space.

From (2.14)1 we obtain the constitutive eguations

C!B _ 8‘2 _ Eh _ (18 QB K 2
N Y = Tt;j’[(l v}y o +va YK]—+O(Ehne )
aB
(2.10)
wp _ 3% _ _EN’ aB | aB 2.2
tT OXyg  12(1-V) [ =wyx™ " +va™ "y 1+0ER e

Deformation near a point of the shell middle surface may be exactly
Zecomposed [3-~5] into a rigid-body translation, a pure stretch along
crincipal directions of strain and a rigid-body rotation of the princi-
-zl directions. The rotations may be calculated through a finite rotation
vsctor Q = e sin w, where the unit vector e describes direction of the
rotation axis while w is the rotation angle abcocut the rotation axis.

“ithin small strains but unrestricted rotations § may be approximated

=y [16]

Ba 1k 1 A -
Y= 1 — ¢ - = S - T (z.1
Q=€ [@a( TS e T e, ’*m)]ig + o1 {(2.17)
The relations (2.1) - (2.13) are exact and are valid for an arbitrary

lcformation of the shell middle surface M . One would expect that within
~he first approximation theory the mid-surface strains should always be neg-
lected with respect to unity and that nooe DN and va + R ) Rv should

t tv

—e identified with m , m, , m and K , K , X , respectively. According
Vv t AVAV) tv v

o (2.15) the maximal value of vy 8 may reach 0(82) , for example, in case
2f a very thin shell made of a composite or a polymer with relatively small
Young’'s modulus. When discussing boundary conditions in the large rotation
shell theory (see p. 5 and 6) it will be shown that within the desired accu-
racy terms 0(62) should be taken into account in the approximate expressions
for n , D, n/D and va . As a result, the mid-surface strains va and Ytt
will explicitly appear in the approximate formulae. However, for the shell
structures made of ste®l, aluminum, concrete etc. n << g2 , as a rule, within

the elastic range of shell deformation and strains may be omitted with respect

to unity even if other terms 0(6%) are taken into account.




CLASSIFICATION OF ROTATIONS

The shell relations given above were obtained by restricting strains
to be small everywhere in the shell. This has led to consistently

simplified relations of gecmetrically non-linear theory of thin shells

L17.

By the polar decomposition theorem strains and rotations of the
shell material elements have been exactly separated from each other
in [3,4]. Therefore, further consistent simplifications of the geome-
trically nen-linear shell relations may be achieved by imposing addi-

tional restrictions on the rotations of the shell material elements.

The basic parameter describing the magnitude of a finite rotation
is the rotation angle w. According to the exact theory of finite rota-
tions in shells [5] the angle w appears in many shell relations as an
argument of trigonometric functions sinw, cos w, 2c0s w/2 etc. Expan-
ding the trigonometric functions into Taylor series in the vicinity of

w = O we obtain, for example

] = - = —_ - No= 1 . 2 e
sinw = 30 + o e , COS W 1 + . (3.1)
It is seen, that substantial simplificaticn of shell relations may be
achieved if the restrictions put on rotations permit to approximate
the series (3.1) by their leading terms. Approximation of (3.1) by
their two first terms lead also to some simplification of geometri-

cally non-linear shell relations.

For a thin isotropic elastic shell undergoing small strains there
exists a small parameter 6 defined by (2.15). This parameter 1is used

here to introduce the following classification of rotations:

w £ 0(82) - small rotations
w = 0(8) - moderate rotations
w = O(/g) - large rotations

w = 0(1)

finite rotations

Since terms of the order of 62, referred to as O(@Z),are small

they may be neglected as compared with unity. In the case of small




.-~ yotations two first terms of the series should be retained.

-= that for \w! < m/2 we have O(]g]) = O(sinw) = O(w). Thexrefore,
-zification proposed above restricts only the magnitude of the
rotation vector but not its direction. It is known, however, that
--=11 structures are manufactured to be quite rigid for in-surface
— -rion even if they are allowed to be flexible for out-oif-surface
--ion. The rotational parts of the both deformations may also
--:mated by respective components {l = gr-ﬂ’and Qu = 8 'Eu of the

rotation vector. The names "small, moderate, large or finite rota-

may then be associated with the particular component of {i.

- what follows we shall discuss possible simplifications of shell

.. measures (2.1}, and other shell relations generated by them,

_~ina from consistently restricted rotations. The measures vy and
o

B

-re defined directly in terms of linearized quantities § g Y and
o ’
- ). For any restrictions imposed on finite rotations estimates

. end @ follow from (2.17). The estimate for SQB may then be

solving (2.1)1 with respect to eaB and taking into account

are always small. In each case of restricted rotations we ob-

~stimates for linearized quantities according to the following

Festrictions onrotations || Estimate of the quantity
(A) S’\ i
o ’ Po ? GuB
small small g< 52 n
vlerate small 8 82 82
S ]
- ' f - ‘
Toderate moderate i 5 5 g2 l
. - ] ‘
large small ; el g2 L8
1]
large moderate 1 /g 6 6 ‘
-— ] B
-arge large Vo' Vo' 6
——
fiﬂitc small 1 0? 1
e |
finite Trmoderate 1 0 1 l
Tinite large 1 /0! i
_—
finite ini
L finite ! ] ! Table |

e R TR R e ey e e
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From the approximate form of the shell strain energy function
(2.14) it follows, that within the first-approximation theory B are
1o
already calculated with an error 0(n6?) while X'B with an error O( -—-)
X

Even i1f we would use better approximations for vy g or the accuracy
a

afs
of ¥ could not be raised within the first-approximaticn theory dis-
cussed here. Such accuracy of ¥ might be raised only if the seconda-
approximation [22] to the elastic strain energy were used. Then,
however, 1t would be necessary to introduce into the theory some addi-

tional strain and stress measures and the whole shell theory would bo-

come much more complex [5,23].

In the following parts of the paper estimates for linearized guan-

tities given in the table ! will be used to simplify Ya and XaB within

3
the error already introduced by using here the first—appioximation
theory of shells. We shall also discuss possible simplifications of
strain measures and resulting shell equations to within larger error
O (Eh n26/53 or even O (Eh nze) of the strain energy function (2.14). 1In

the estimation procedure covariant derivatives of various terms will

be estimated dividing their maximal value by a parameter A defined by

% ). (3.2)

In a variety of shell problems each of the parameters appearing
in definitions of ©6 or A may assume different values, which in
extreme cases may differ by one or even two orders from each other.
Since in our classification scheme we are using only one common measure
6 of various small quantities, the estimation procedure should take
into account also such cases when a particular parameter plays a domi-
nant role in the definition of €. In order to assure this we assume
here that YQB = 0(n) = 0(62), thB = 0(n) = 0(62), b = 0O

af

), what allows to relate various terms of those orders to the

58

¥

) = O<T):

D
| s

= 0(7
common parameter 0.

Within small rotations estimates of all terms in the strain-dis-
placement relations (2.1) allow to reduce definitions of the strain
measures to the form known in the linear bending theory of shells. Sinco
the linear shell theory is discussed in many monographs we shall not

discuss the case here.




TZEORY OF SHELLS UNDERGOING MODERATE ROTATIONS

‘2thin the moderate rotation theory estimates of the linearized quan-

_-_=z given in tab. 1 and the identity = 0 - 0 + b ¢ - bABwa

ha i aB| A Ao Wit A
o reduce the shell strain measures to the form

1 1 2 1 A\ 2
=8 + = — - = e 87)
Rt af 2 LDoaw8+2 aa8® 2 (eawkﬁnkvﬁwka)+ oS
(4.1)
= - —[p + @ +b>‘(6 ~w..) +b (8 -w )]+O(Dg)
: 2 a8 8|a AR UB A A )
“zre in terms = (070, + b'o. ) = O(Qjo - 0(™%) ana might be
. XoB 2 Puas g xa’ T YR TP 19

o= ’”38|g - 6uda + [ [(T7v

=2 as well in (4.1)2 within the same accuracy of the strain energy

—2cn [5]. Note that these terms are linear in displacements and their
“zzives. In the linear shell theory the linearized tensor of change

srvat = -(b , - is defin i full
ature KQB (baB baB) is defined conventionally by the fu

zssion (4.1)2, while for the simplified expression a modified de-

-:on [211 of the tensor of change of curvature is used: Quﬁ = KQR +
. A . . . -

1618 + bBeAa)' Since our tensor XQB was so defined in [1] as to

tr

“he same linear parts with « we follow the convention and keep

aB’

=21 linear terms indicated in (4.1)2.

“ren (4.1)2 is compared with (2.1)2 it is easy to note that within
rzte rotations the parameters mu and m appear in (4.1)2 in approximate
-~=rate forms: ﬁa = = and m = 1. As a result, all transformations

o

—2n3 to consistent shell relations become much simpler than in the

2zl case. In particular, if (4.1) is introduced into IVW then it

crms into the form

B B ;
. +M A it} .
) - 6y ‘vvémv_+ytv& t]ds (4

[
~—

J B8
C

= for components of T8 we have

8 _ NXB__bAMaB__l_ 1 (anNB_+wBaN>) . XQNB _OBuNA
o 2 a 2 o o

(6 )

1
2 o ol

(4.C



Since in this case

6mv = 6ﬁv = —6@V , 6 = 6n = O
{(4.4)
¢, = ¢, = -8&p, = 1. 6u - o 6u, - 4 Sw
t t t t v t t ds

it is possible to perform direct transformation [4,5] ¢f the last term

in (4.2) and obtain an eguivalent form of (4.2) compatible with (2.6)3:

[

IVW = —[(TB\ - dudA + [ (P . du +MSh )ds + F. - du (4.5)
J)N B ~ ~ ~ V) ~K ~k
i C k

where now
tv d
2 - TtMth - GtMtvE * ds ke ds (Mtvv)
(4.06)

M=M o, F=M n F [Mtv(sk-fo) —Mt\)(sk—o)]g(s}\)

The line integral in (4.2) is a counterpart of the line integral

(2.6)2 of the general theory. Therefore, in order to transform it into

(s

(4.5) we may also apply general approach discussed in [1]. The approxi-

0w

mate strain measures (4.1) generate (4.3) and components of T v,  in the

9 N
line integral. The smallest terms containing moment resultants in TAG
8 Eh? né . .B 1 .

are O(X_M) = 0(777 jr), while in T  they are O(X_M)' where M is the

largest eigenvalue of MOB. Therefore, only terms of the same or lower
crder should be retained in 2' M and F of (2.8). When all parameters
(2.9) + (2.11) are estimated it follows that the leading terms in

most of the parameters given in (2.8) are of a higher order, except in

the following quantities

a =1, + 0(93) a = - ; 0’9;” = -1 + 0(6)
9 T Tt Ao G T 7O TR e 9 F

{(4.7)
va = Mvv + O(OM) 'Rtv = Mtv-%O(SM)

If now (4.7) is introduced into (2.8) we obtain, within assumed

accuracy of the moderate rotation shell theory, the relations coin-

ciding with (4.6).

It is interesting to note, in particular, that R = 0O(6M) and does

not appear at the shell boundary within the approximations (4.1) of



= moderate rotation thecry. As a result, within the same approximation
.7 two components of the external static boundary moment H = Hvx—»HtE
-=—- pbe assumed at (. Since the whole structure of EVW should be the same
.= I IVW described by (4.2) + (4.6), definitions of starred guantities

_low from (4.6), where Hv and H, should be introduced in place of Mv

t
, respectively. Then the Lagrangian eguilibrium equations and

¥

= 5l

tv
~—-ropriate static and geometric boundary and corner cconditions follow
_~—=dlately from specialization of (2.13). These shell relations were
- _rz2dy discussed in detail in [4-6,38]. We remind their extended compo-

=7 form here just in order to make the paper complete:

A 1
IN B bAMQB _ __wABNa 1 ( XQNB . wBGNA)
o 2 o 2 ol o3
1 Ao B Ba, A A of aB A .
3TN, -8 Na)”B b (N7 M| )+ p =0 in M
0B afy AB A0 da B .
(@N"" + 1] )|+ by b M wN) +p =0
A8 A aB Ao B . )
{ DaM W Na)v)‘ay + T Mtv = Nv tﬂt |
i
A LaB 1 oag 8 Ba ) !
[N'B - b>M T- —m> Na . i'(LJ>GN + W N>) +
o 2 a 2 o o
1 Aq. B Ba. A
= - ) - = - \
+ 3 (8 N 8 N ]t?'VB oM =Ny o H. on C¢
o af a _ Q.
(waN + M la)VB * ds Mtv N+ d Ht
M = H
YV v ]
- Sj +0) - Mtv(sj-o) = Ht(sj +0) - Ht(sj -0) at each Mj € Cf
2 = u* = u* = w¥ =
uf oo ouo=ul o, ow=wr o, @ wt on Cu

v =) = w¥(s)) at each My € Cu (4.8)




In many engineering shell structures only rotations Qa are allowed
to be moderate while rotation 8 is supposed to be always small. Within
such moderate/small rotation theory the relations (4.1) and (4.8) may
be considerably simplified by omitting there terms underlined by a solid

line.

The set of shell relations (4.1) and (4.86) contains, as specieal
cases, the eguations of various simplified variants of the geometri-
cally non-linear theory of shells which have been proposed in the litera-
ture [8-15]. Detailed review of those special cases was given in [6],
where also many variational principles were constructed (see also [38]).
An extensive discussion of shell stability problems within the simplified

moderate rotation theory (without two last terms in (4.1)1) has been

presented by Stumpf [39].




THEORY OF SHELLS UNDERGOING LARGE/SMALL ROTATIONS

Within the theory of shells undergoing large rotations it is
rzzsonable to assume that only Q are always large, while {I are
=__owed to be large, moderate or small. This leads to three different
-wvzces of approximation within the large rotation shell theory. Our
==rlier papers [3,4,17] contain derivation of simplified forms of
zzrain measures and of equilibrium eguations for the large rotation
=~z11l theory, without discussion of appropriate boundary conditions.

I~ what follows several complete sets of Lagrangian shell equations

(1]

presented.

The variant of geometrically non-linear theory of shells undergoing
lzrge/small rotations represents the simplest case within the large
rztation theory. It exhibits certain important features of the general
tneory [11, such as the non-linear expression for XGB’ necessity to
=xpress 6nt and &n in terms of 63 and Gnv. At the same time it leads
=2 shell relations which are still not too complex and, therefore,
zzzlicable in numerical calculations of shell structures. Keeping this
in mind, the derivation of equations of the variant is presented in
—-re detail, independently of the results which may be given for more

zivanced variants of the non-linear shell theory.

Using estimates of the linearized guantities given in table ! for

e shell strain measures we obtain approximate formulae

Yap = P * T 00 3 08 = 3 (Buyg * Ogey ) + O’

Xog = % {(62 + eI - +6§)@x+“puem]|8+ (62%62)[— (1 +Oi)‘ox+
+ w’“emua} -={ (w“mu ) IB + (\o“uug) {a] i(wka(p)‘lﬁ +wk8w>\!a) + .
+ = {<p [1 +e; é(’ei)z—%QZe?‘;]!B} @8[1 +e;+%<ei)2 —%—eie;‘]'a} -
- 3%, o+ g )~ T+ éwa)w TR US R

Note that within indicated error m appears in (5.1)2 in an appro-
‘lmate form while mx are split into three separate parts,
“ritten in two first lines of (5.1)2. Wwhen (5.1) is introduced into

VW, after some transformation we obtain




A
)

~ ) — )
“ 6mk-+m-a6wl - S(Pw ) + whém]vsds

Ho

1 = JMQB[(GX+9
a
C

where
T AL T YLt
o 2 o1
o1 A~ A aB B _~B B oA
R PRI DRI A O il B B L Sy
A Boy 1 & B KD B A Kp
wMT - g lete V| + @ (en )IDJ
(5.3)
AR a KP. Kp AB AR Kp
- M
+ a [(pa(BKM )| (DK[OM ] (a6 = 677) (o )(o
B _ aB ~ aB B S < a KOy
TV = g N+ ( "o BOIMT + [5@(1 +6)) ea][(éK + 6 M ]ip
B B _ B kP
\wao-+m_K}p prp M
_ K u ~ Kk 1 A2 1 A u ,
my = (1 + SK)mA + @ euk ) m= 1+ SK-+2(8A) ZVUGA (5.4)

The line integral (5.2)2 is transformed further to obtain

1, = J(Ewaﬁrv LR I R I S SN S A N +X ém)ds  (5.5)
C
where the folleowing abbreviations
E\)\)=M\N+8\NM\)\)+6vtMtv , 'Etv =M+ O M +E M
KQv :.—wMtv ! Kév =t wmvv ! (5.6)
iy = =@, » B =-0  , m =@ , W= -0V

have been introduced. Since



. --z= that only some most important terms of the products vaémv and
=_ have appeared in {5.5). Other terms of the products have not

-=r=d in (5.5), since their contributions to the elastic strain

=7+ 1s negligibly small indeed within the assumptions of the first-

~-oximation theory of shells undergoing large/small rotations. This

- =< separate parts.

“re form of IM given in (5.5) is not convenient for a proper formu-
-—_-~ of static boundery and corner conditions. However, within the

== zpproximation we are allowed to retain in (5.5) some small terms

=2 to splitting of each of the boundary terms vaémv and Kt\)dmt into

_Z- have been omitted from (5.1) and (5.3) and write (5.5) in an alter-

«-_ve form, which is eguivalent to (5.5) within the error of the first

~-roximation theory:

Ty = J(vadmv-fKtvdmt-vaém)ds = J(vaénv-+RtV6nt-+Rv6n)ds (5.8)
C C
Cecz ar Adentdt RG'B 3 m)‘.L = é B
=7z an identity M <‘Aa6m ~¢a6m) _“a M (lkaén -+qh6n) has been used.

¥

= Iinal form (2.6). The appropriate transformations could be performed

1

~~=Ztly, expressing the approximate quantities nt and n in terms of

znd u , similarly as it was performed with the exact guantities nt

Tonls formaly shorter representaticn of IM can now be transformed into

"2 n in [1]. Such procedure would lead again to the non-rational expre-

-_zns for the parameters (2.9) where the small terms, retained in nt

= = result, such direct transformaticons would give us more complex formulae

= Q9 , E and M than it is necessary within the approximation of the
/small rotation theory.

In what follows we prefer to use an alternative approach, which has a

== suggested in p.4. The approach is based on the consistent reduction

exact formulae (2.8) to within the error already introduced into the appro-

in

© to present the boundary integral in the form (2.5), would also appear.

lready

of

_—zte expressions (5.3) by using the simplifying assumptions of the large/

I

=zz1]1 rotation theory. The approximate strain measures (5.1) generate con-

~-Zzently reduced expression TBv

£

in (5.2)1 , where from (5.3) we note



AB 62 8 675 ‘ _
the accuracy T = ...+ O(er) and T = ... + O(_—§_44) . Therefore,

within the large/small rotation theory appropriate components of the guan-
tities @+ F and M should be calculated with the same accuracy. The
estimation procedure allows to simplify the formulae (2.8) by taking into
account only the terms which are important within the decired degree of
accuracy. Besides, the procedure leads to the eguivalent polynomial repre-

sentations for @ , F and M , which are more convenient in applicaticns.
~~

Let us expand (2.9) into series and omit all terms within the indicat

error to obtain

= — — p— 2
ny @, (q)\)ett q)tevt) + 0(64v0)

- _ - 2 /e
nt @t'+ (wvevt wtevv) + 0(6<v8) (5.9)
n=1+6 +6._ +A+0(83) D=-(1-%2¢2+8B +o06Y

Vv tt ! 2 v

n\) /—
- = - = (pd 2
D @, (wvett @tevt + @Y+ 0(69V9)
I‘lt 5
JE—— = _ — - = (A< 5 1
D P (¥ vt wtevv 5 wth) + 0(e“vE) (5.10)
noo_ o L) 3
5 - [1+(6v+9tt+2gp)+c]+o(e)

= —2" -
A eV\)ett 8vt va Ytt
B=-@ (98 —cpe)—leZ—lgprY (5.11)
v vttt t vt 2 “vt 8 v tt )
C=n-B+202(8 +6 _ ++2)
A VIRENEY tt 2 v

The parameters n , D and n/D have been estimated here with a higher
precision. This is performed in order to estimate the internal boundary

force components Q , F and M with a desired accuracy.

When (5.9) and (5.10) are introduced into (2.8) and (2.9), after carefu

estimation of all terms we obtain




- 102 + o2 2 _g2 2 .
{1+ 26\) +36tt+§®v+wt+ [ew 6\)t+36tt+56\)\)ett+c
1,2 2 1.2 2 /a1
=0 =P - M O{68<vBM
* 2 \/‘(6\)\)+26tt) + wt(ze\) +ett+2 V) w\)wte\’t]} tv * ( )
M=M + (8 +@OM + [ -02 + @ (206 - 30,8 +1—<,03)+
vV vV VooV vt v v tt t vt 2 TV

M+ [-6 (8 +26 ++20¢2) - @26 m_ + 0(82/aM)

+ Y + v
A¥AV) tt” vy AL VAV) tt 2 7V t vt™ tv
In deriving (5.13) more accurate estimates for R and R have
7 3,4 AV v
Z=zn used
_ 2./5
R = + + + + - +
AVAV] (1 evv va Ytt)M\)\) (evt LD)Mt\) O (6°veu)
R = + @ + + + + + 0(02/8
ev = Ot Moy T B F Yy Y, T O M)

In exactly the same way EVW may be transformed in order to obtain compa-

“.Zle definitions for Qt ’ QE , Q¥%, F¥ Fz , F¥ and M* . In performing
v



the transformations one should remember that the structure ¢f the starred

quantities should be exactly the same as the one for the unstarred quantiti
B8
3 i \Y N
only now N, Hv ’ Ht and H should appear in place of T g va r R
and Rv , respectively. Taking this intoc account, for the starred guantitic

the following compatible definitions have been obtained

dF’\")
N ys
dFt
* - _ -
Qt (ot + Ktwv)ﬂt P (5.14)
ar*
X = - - =
@ (19 Otwt)Ht ds
' 1
* — = @?) -
Fv [wv * Lp\)(e\)\) * 26tt * 2 wv) wtevt]Ht * wvwEH
1
* _ _ 2l 2
13 [@t OB +Q (28 4B+ SO )]Ht + ©°H
F¥ = - {1 + (26 + 26 + 1-w2) + [ (8 + 6 ) (6 + 8 + l-gpz) +
Vv tt 2 7V vV tt VvV tt 2 v
1 (5.15)
T - - - 2 1
+ A+ c]}dt [(Ot LD\)S\)t + q)t(zew + ett + 3 va)h—’
1
* = + - + - s + = 2 _ +
M Hv { (evt ¢b¢k> [evtKva i 6tt 2 wv) @

1.3 _ 1.3
+ 3 wv)]}Ht + [wv 08 - 206 50 ) 18

* LDt((‘p\)ett - @8 t v

t vt

The consistent set of Lagrangian shell equations for the large/small
rotation theory takes now the general form (2.1Z), only in this particular
case the components of 38 are given by (5.3), the components of @ and
¥ are given by (5.12) and (5.13). The appropriate compatible definitions
for the external boundary forces follow from (5.14) and (5.15).



For some shell structures undergoing large/small rotations we may

re interested to apply simpler relations, allowing for some small loss
-7 accuracy of the solution. Such simplified relations may be obtained
- 2

-f we allow for a slightly greater error O(Ehnp

6/6 ) in the strain
=nergy function (2.13)].Within this slightly greater error the strain

—zasures reduce to

Note that within this slightly worse approximation both strain
—zasures become quadratic polynomials in displacements and their surface
Zerivatives. Again, ﬁ; is split here into two separate parts written
.n the first line of (5.16)2. When (5.16) are introduced into IVW we

otain (5.2)1, only now

af, -~ A R & A
T = - 3 ’ m= 1+ S 5.
I ,M (éma SQGQA + qhgﬁ)vsos by (5.17)
C
Bl LB s By 1 L ehB o e -
2 a o 2 a o
-1y Aa, B + BQNA) 1 (bXMas + bBMak) _ aAS@ . NKQ
o 2 a K|p
(5.18)
1 A B B Ap
S M+ e ))p
B af Ky . BP B Ko _ A oBb B K B..Kp
T = @ N+ (1 + §.)M ]lp + eKlpM b @M bK&DpM + b OM

............................

The definitions (5.18) become now much simpler as compared with

>.3) for the unsimplified large/small rotation theory.

Again we note, that each of the exact product terms vadnv and

:,_6nt is described in (5.17) by two most important terms. Other terms



do not appear at all and the boundary integral (5.17) may bo

written as

~ "~~~ o~y ~o %
IM = J(K\Némv + Kt\)dmt + xvém)ds (5.19)
C

where the simplified definitions (5.4)1, (5.6)1 and (5.17)2 are used.

Now the expressions (5.18) are given with the following accuracy:

AB 6v8. B 62 o o
T = ... + O(—j—M) and T = ... + O(TTM)' Within the accuracy it is
ssible now to identify the parameters K 3 m I~ =
po € now identify P S va P K o Kv and mv , mt , T
with approximate values of the respective parameters R , Rtv , R and
\V]

nv , nt , n of the exact theory. Upon the elimination of &Et and &%

the appropriate definitions for the boundary quantities follow directly

from (5.11) - (5.13), in which some small terms should be omitted:
dFv dFt
g = (TtMtv T a )X'_ (Otftv * :i;-)g *
ar
+ [t o o.p M, 3 1o
£=wMtVr\i+wM t - (5.20)

5 12 2
[(1—%28vv-+36tt-+2 wv‘+wt)Mtv.+(evt-+wth)Mvv]2

2
= M
M & M (evv i L'O\)) v

AVAY) v

Appropriate definitions for starred guantities follow from (5.14)

and (5.20) to be

4r¥* sz
¥ = -~ ht - + +
% (TtHv 3 Y (OtHv ds )E
dp*
— H - ——
+ [(Tt@v Otwt) v ds ]2

T I A v B

(5.21)
* - -
F wthv + thtt

12
- - H
(1 +20 +28, + 3 QIH +@ In

* - -
M = Hv (evt + wth)Ht + O 8

A "



The Lagrangian shell equations for the simplified variant of shell

-neory with large/small rotations may now be given in the general vector
form (2.13), where (5.18), (5.20) and (5.21) should be used. Let us

-resent them in an extended component form:

squilibrium equations in M

P el e L ety L (o n0B Byt C L oF L LBy -
a o 2 o o 2
L 8 B oA g Kp A Bo B Ap.
- —(bM +b™M - M - M + M -
> L) e e, (® ® HDHB
(5.22;
A af K, Boy B kol oo, g, ko .
bB{LDGN +[(1+6 )M ] 48 | M bu(,oKL L o M ,+DKO@ Ml +p =0
af K, B8P g ko .k _aB B Kp B ke
N + 1+6 + M -b - M + : +
to, (¢ M _||D 9.<|p L0 M b, b @M }‘8
3 _
+ b OB e N8 o Bl pryeB 2B MP o MBDI ) + p =0
AB a ) Q K.Q P
tatic boundary conditions on Cf
AB A aB Ao, R X ofB B Kp A BO d
N - - - - M Yv,v_ o+ M - = , =
( o Na baM wK!OM @ ‘D VA E Tt tv ds‘@vytv)
d
=N, TR, ds (@th)
[NAB +1_(6ANQB +68Nak) +}—(8ANGB SBNQX) _%_( AGNB u)BCINA)
2 a 2 2
1 A ol B ai AR Ko 1 X 8o R hp
- - . - = 1 t -
5 (bM " +b M) -a K|OM 5 (@M oM y| o] Ve
- - S oM ) =N, - o B - e H ) 21
v Tas PeMey) T N T o8, T Es e (5.233

..........................

tt




static corner conditions at each Mj € Cf:

E(Sj +0) - F(s, - 0) = 5*(sj. + 0) - F¥{(s. - O) (5.29)

e~ )
J

geometric boundary conditions on Cu:

u(s.) = u*(s,) (5.20)
~'71 ~ 7i
The structure of shell relations (5.16) and (5.22) - (5.2() is

relatively simple as far as the theory of shells undergoing large
rotations is concerned. Both strain measures are quadratic polynomials
in ua, w.Equilibrium eqguations are linear both in NGB, MOLB and Ua' W.
Also two of the static boundary conditions (5.23) are linear both 1in

o .
N 8, MOLB and ua, w at C, while the remaining two (5.23)3 4 and one of
1
(5.24) are linear in NGB, MOL8 but contain some gquadratic terms in UV

as well. Also n, in (5.2%) is a guadratic polynomial in displacements.

In some engineering applications we may be interested in using even
simpler relations which are applicable within the theory of shells
undergoing large/small rotations. This goal may be achieved conly at the
expence of a larger loss in accuracy of the strain energy function. Let
us then allow the error O(Ehnze) in (2.14)1. Within this larger error
the strain measures may be taken in an extremely simple form following
from (5.16) by omitting there terms marked by dots. As a result of the

simplification terms marked by dots do not appear also in (5.18), (5.22}

and (5.23).

This extremely simple variant of the non-linear theory of shells
may be applied to those engineering shell problems, in which the relative
accuracy O(8) in the strain energy function is regarded as satisfactory.
Within the large rotation range any numerical calculations are very com-
plex anyway and numerical procedures used may themselves introduce sub-
stantial round-off errors. For these reascns the simplest variant of the
non-linear shell eguations should prove to be popular in engineering

calculations of nonlinear shell problems within the large rotation range.



THEORY OF SHELLS UNDERGOING LARGE ROTATIONEZ

Under simplifying assumptions of large/large rotation theory estimates
-7 the linearized guantities given in tab. ! do not permit toc simplify
-~z strain tensor (2.1)1. The tensor of change of curvature (2.1) . may

2
- approximated by

- 1_ >‘ . 4 . Vo4 E— -
s =7 e T tagmaia ) T T g o)
1 A - A _, 1 by <1 o xp
5 [Py (Byg7 wyg) *hg(8;  mwy Vw5 (bluy g +bow, JE 45w e )
1 A A Y 1 A né
- = (b + Db + - - 6.
> ( o8 de)(ml ) wuk) + 3 baew ©, + X A) (6.1)

Note that terms in the first line of (6.1) are exact. Since those

—=rms are respensible for the proper form of moment boundary conditions,

-2 transformaticn of IVw with (2.1)1 and {6.1) leads to (2.6)2, where
_4i8 A a ‘ e 1 hou ar, .k 1 K
| NB+(D>\} R C L LN
e ol oy 2 a a K2 iqe]
r a B AF AB4, Koo La,_ AB A8, e
- {1l +€eYa - £ 4w g T + o La ~w  Jw M -
a K P K ap
AL B KD 1 B B X KD X8 a L Kp -
- 17 M -— (b -b D M +a 17 M .
| LR )IH 5 (b L0 6x Gy (LT M) (6.2)
1
i af b af o B KD
= N T4+ [m o -b ({p, tQ w MTT+ (1 +6 1™ M Poo-
) “u [ ,Q oW T u>)] : d)( K )'o
| " Q ~
R UL L Vo U S T VL SVl
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The quantities (6.2) are generated from (6.1) by the principle of

irtual displacements and have definite accuracy. Let

TAB T(XB) + T[AB]

(6.3)

(AB) A8 BA T[ABJ A6 B

(T + T ),

o=

1
2



A 22
I+ follows from (6.2) that T( B)are calculated to within O(jﬁ*M), and
(28] 8 aye
T and T

to within O M) . The guantities Q, F ari M snrould

)
oe calculated within the same accuracy.

Some parameters appearing in (2.9) may be approximated, tc within

:ndicated errors, by the following expansions:

n = - + @ - Y H + v, 6 + o(ezyﬁb
V) v t v ottt t vt

= = —_ —_ 5 2/—:
nt qJt wvkD * wvevt wtbvv *OL65E) ., )

VU
n =146 48 +¢@ +n+0(06h
A'AV} tt
D = -[1-% (@ + o) +oo @ +6_ ) + Bl + 0 (67VE)
2 v Vot vt
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In (6.4) and (€.5) parameters n, D and n/D have been estimated with

= higher precision from their exact expressions derived for finite mid-
surface strains [1]. The higher accuracy of those parameters is necessary

in order to estimate F with a desired accuracy following from the accuracy

- L TBv Now it 1is possible to estimate all terms appearingjju(2.8)2 and

g

-utain the following approximate definitions for the boundary functions
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Znmzroducing (2.10) into (6.7) - (6.9) it is easy to obtain those defini-

== expressed in terms of M\)\) and Mt\) and the displacement parameters
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Zgain, in obtaining the formulae (6.11)_ and (6.12) more accurate estimates

3
B R and R have been used
AVAV] tv
_ 2 . n
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(6.13)
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Since the structure of starred cuantities P*, Q*, F¥ and M* is exactly
= same as of P, 2: F and M, respectively, definitions for the starred
“_zntities follow directly from (2.8)1, (6.7), (€.8) and (6.9), where N,

= . H_, H should be but in place of TBV

, , respectively.
t Rov Beyr By esp i v

B’ tv
The consistent Lagrangian shell relations for the large rotation
“-=ory can now be presented in the general vector form (2.12), where
.2), (6.10) - (6.12)and appropriate expressions for starred guantities
z-zuld be introduced. The component fcrms of the Lagrangian shell rela-
T_.zns are easy to write as well. These component relations are quite

-=molex and we do not present them explicitly here.

Again, the shell relations just derived may be simplified further
= the expence of some loss in accuracy of the strain energy function.

_=7Z us then assume a slightly greater error O(Ehn26.@5 in (2.13)1. wWithin

s error the strain tensor (2.1), cannot be simplified, while (6.1)

1
-2 reduced to
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Here m appears in an approximated form, while W, are splitted inteo two

A
zz=rarate parts indicated in the first line of (&.14). When (2.1)1 and
~.14) are introduced into IVW, after transformations it takes the

form (5.2)], where now
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Eachin 0(27~M), what is lower by a factor v8 as compared with analogous

_zntities (6.2) of the unsimplified large rotation theory. Again, within

= same errxor (6.16) can be given in an alternative equivalent form
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v tv ot v
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tppropriate definitions for Q F and M follow immediately from
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= Lagrangian shell equations

(2.13) with

(6.17)

and

(6.19)-(6.21)

—= much simpler than those of the unsimplified large rotation theory.

zzy be applied to shell problems with all rotations allowed to be

-~ the expence of a greater error O(Ehnze)

T _Tting terms marked by a dotted line.

in the strain energy func-

L.14)1 we may approximate (6.14) by
1 1 -A - X 1 A An
_ _x = M
ST g g tmg ) T gy gntl ) ey (8, o Bl )
(6.22)
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- -criate definitions for boundary quantitics follow lrom (6.19)-(6.21)
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THEORY OF SHELLS UNDERGQING LARGE/MODERATE ROTATIONS

This is an intermediate variant of the theory of shells under-

ng large rotations. All shell relations can easily be constructed

zppropriate simplifications of the large rotation theory discussed

“he section 6. In particular, when £ is supposed to be moderate all

ztions given in (6.1), (6.2), (6.6) - (6.12)are simplificd by omitting

o

cZrzin energy (2.14)

i

.re the relative accuracy 0(62) of the strain energy function (2.14)

“ne elastic shell.

In exactly the same way two other simplified variants of the thecry

2 terms underlined by a solid line. The resulting shell relations

snells undergoing large/moderate rotations may be constructed. We

:1d just omit some terms in appropriate relations of sec.

€,

which

small-within the relative accuracy 0(8v8) or 0(8) of the shell

reader can easily construct them himself,

if necessary.

1" We do not elaborate those variants here,

since

1
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