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Abb. 3, Numerisch (cooco00) und analytisch (— ) berech-
1 . nete zeitliche Anderung der RiBspitze fiir einen nichtebenen
[/ 5 V2 Schubspannungszustand (» = 0.25)

fiir den nichtebenen Schubspannungszustand. Der halbunendliche Rif} wird in diesem Fall zur Zeit ¢ = 0 lings der
RiBflanken durch 7, belastet. Zur Zeit ¢ = t, beginnt der Rif} sich auszubreiten. Die Abbildung zeigt einen Vergleich
mit den analytischen Ergebnissen von KosTrov [1]. Der Vergleich ist nur fiir Zeiten ¢ kleiner 6f, méglich, da bei den
numerischen Ergebnissen, die an endlichen Proben bestimmt wurden, dann Randeffekte beriicksichtigt werden
miissen. Bei diesem Problem wurde das GrirriTHsche Bruchkriterium (4) unter Annahme eines konstanten Wertes

AL )Tl .
G = LM T (5)
verwendet.
Bestimmt man G(t) aus der Nahfeldlosung des nichtebenen Schubspannungszustands in Abhéngigkeit vom
Spannungsintensititsfaktor Ky (t), so kann das GrrFFrTHsche Bruchkriterium (4) in ein Bruchkriterium der Form

(3) iiberfiihrt werden. Der zugehorige kritische Wert K75¢ ist dann von der Rifigeschwindigkeit » abhingig:
4 — 2
KIIIC =T chto l//l — U—Z . (6)
l/2n Cy '

Fiir die numerische Berechnung kann dann das Bruchkriterium in der Form (3) unter Beriicksichtigung von (6)
verwendet werden.
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W. PIETRASZKIEWICZ

Determination of Displacements from Given Strains
in the Non-Linear Continuum Mechanies

According to Cauchy’s theorem [1] the deformation near a continuum particle my be produced by successive super-
position of a rigid-body translation u, a pure stretch U and a rigid-body rotation R. When the displacement field
u is given, the fields U, R and the Lagrangian strain field E = (U? — 1) can easily be calculated. ln this report
we shall discuss the inverse problem: the determination of u from given E.
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Let p = 2%(0% 4, and p=y*(0") &, =p +u, 1,k = 1,2, 3, be position vectors of a continuum particle in
the reference and deformed configurations, respectively. Here . is the common orthonormal basis, attached to an
origin O of three-dimensional Euclidean space, while 6* are the curvilinear convected coordinates. Let g; = op/36* =
=p,and g, = P, be the natural base vectors while g;;, = g, - g, and g;; = g, - g, the covariant components of the
metric tensors jwith determinants g = |gyl and g = |g;l, of the respective configurations. Components of the sym-
metric Lagrangian strain tensor are defined by ‘

By = 5@y — gu4) = 55 + e + g™ %ijmtj)n) (1
where ( );; means the covariant derivative in the reference metric. ’
Let all geometric quantities of the reference configuration be known. Assume also to have given six functions
B = Ey(6%). In the reference configuration choose a point P = P(6#") and a reference point P, at which 6* = 0,
for convenience. Then at P we have E = E;g° X g'. In what followsuis determined form E in three successive
steps.
In the first step, U is calculated from E by pure algebra. Since U is positive definite, symmetric and co-axial

with E, it takes the diagonal form U = 3/ ]/1 4+ 2, h, Q h, where E, and h, are three eigenvalues and eigen-

T
vectors of E satisfying the set of equations Eh, = £ h, (no sum over r).
In the second step, the field R is determined from E and U. Note that during the deformation process RU =
= ¢, Q ¢’ in convected coordinates. Differentiating the relation with respect to the coordinates, we obtain after
ransformations that R should satisfy the following system of the linear first-order differential equations

R,=RK,, K =UA -U)U', A =G5—-6)g.R¢g". (2), (3)

Here G% and G%; are the Christoffel symbols of the second kind associated with the reference and deformed metrics,
respectively. The symbols GE are calculated in terms of E;; and the reference metric according to [2]
— _ . _ 1 .
G = G -+ g Bnys -+ By — By), g% = 5 %S”ksl'"n(gm + 2Em) (Gin + 2Bka) ,
_ 4)
1 (
%= 58”"8”""(9“ + 2Eq) (gim -+ 2Bim) (gen + 2Ein)

where /¥ are the components of the skew-symmetric Riccl permutation tensor. Also note that K; are skew-sym-
metric, KjT = —K;, which follows from the identity (R"R); = 0 and (2).

The proper orthogonal tensor R is uniquely described only by three independent scalar functions, such as,
for example, Euler angles. Thus, (2) are equivalent to nine independent scalar differential equations. Integrability
conditions R ;; — R j = 0 of (2) take the form [8]

K,;,—K,, -+ KK, —KK,=0. (5)

k

With the use of Cartesian coordinates it was shown in [3] that when (5) are satisfied, the Riemann-Christoffel
tensor of the deformed configuration vanishes as well. The conditions (5), which are the alternative form of compatibi-
lity conditions for finite strains, are equivalent to six independent scalar differential equations and assure the
existence of three scalar functions describing R which is the solution of (2).

Along a curve connecting P, and P, defined by 6 = 6%t) with ¢ = 0 at P,, from (2) we obtain

dR
— = RK. 6
dt . (6)
The general solution of (6) can be constructed in analogy to the corresponding matrix differential equation
{5] in the form B = R R,, where R is an arbitrary constant proper orthogonal tensor and R, is the matrizant of (6)
defined by the tensor series

R, =1 4 ftK(r) dr + ft {;K(rl) dTl] K(7) dv + ... (7)
0 0 0

For some specific forms of K = K(t) effective analytic and numerical methods were developed [5]. Also note
that (6) has exactly the same structure as the equation describing the motion of a rigid body about a fixed point.
Therefore, the methods of solutions developed in analytic mechanics may be of assistance in solving (6) for pro-
blems related to the continuum deformation. In particular, 20 cases are known [6] for which the exact general or
particular solution of (6) can be constructed in a closed form.

According to (3), only the tensors K; along the coordinate lines are calculated. Let us choose a specific inte-
gration path Py P’ P"P connecting P, with P. The path consists of three subsequent parts of the coordinate lines:
along PP’ thereis 62 = 0 and §* = 0, along P’ P" there is 6' = const and 63 = 0, while along P’P thereis 6 = const
and 6% = const . Solving (2) along the specific integration path we obtain

R =R,RR,R, (8)
where R, = R,(6*, 0, 0), R, = R,(0", 62, 0), R, = R,(0") are matrizants of the corresponding differential equations

along the subsequent parts of the integration path. For some specific forms of the fields K, the matrizants R, can
be constructed analytically or even in the closed form [5, 6].
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In the third step, the position vector p is determined from already known U and R. With already known

g; = RUg;, we obtain the differential equations
Pi=9:- B (9)
Integrability conditions p;; — p,; = 0 of (9) lead to the conditions (GE — G%) gx = 0, which geometrically mean

[4] that the torsion tensor S5 = G% — GJ; of the deformed configuration should vanish. Since G% are calculated as

in (4);, the conditions are identically satisfied for any symmetric £;;.
At the subsequent parts of the integration path PP’ P P, the solution of (9) can be given through quadratures
in the form "

o 02 o
ﬁ - ﬁo +0f gl(é-, 0: 0) df —I_(lf §2(61J 775 0) d77 +6/‘§3(01’ 62, C) dC . (10)
Cowmbining (10) and (8) together with u, = p, — p, we obtain the final relation
61 o2
U = W + Ro[f RI(E: 0> 0) U(E; 0: 0) gl(E; 0, 0) df + Blof Rz(el, 71; 0) U(el’ 777 O) 92(61, 7]: 0) d’l] +
0

. (11)
4 RR, [ Ry, 0% 0) UL, 0%, 0) gy(6%, 6%, 0) dc].
0

The displacement field u is determined from the strain field E by the relation (11) to within a rigid-body
translation #, and a rigid-body rotation R,. In case of infinitesimal deformation the relation (11) can be reduced
[9] to the formula of CEsaro [7].
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Hu-Washizu Variational Funetional for the Lagrangian Geometrically
Nonlinear Theory of Thin Elastie Shells

The classical version of the Lagrangian geometrically nonlinear theory of thin elastic shells [1—3] allowed glo-
bal variational formulation, in terms of various free functionals, within moderate rotations only [4]. In order to
allow global variational formulation of the Lagrangian nonlinear theory of shells undergoing unrestricted (finite)
rotations, some modified variables should be introduced [5].

Let the deformation of the shell middle surface be described by the usual surface strain tensory,z and the
modified tensor of change of curvature y,; defined by

_ a
Vs =+ (Bap — Gup) ,  Jup = — (1/3 bap — b“ﬁ) + bep v ()

Here a,5, b, and a,3, b,s are components of metric and curvature tensors of the shell middle surface in the reference
(undeformed) and in the deformed configurations «# and 4, respectively, with determinants a = |a,4] and @ =
= |@lap|. By definition (1), y,4 are quadratic polynomials and y,s are third-order polynomials in the displacements

u = u*a, + wn where @, are base vectors of /4 and n =—— a, X @, is the unit normal to /.
a

The deformation of the shell boundary element can be described entirely by the displacement vector u =
= u,® + u;f + wn of the undeformed boundary curve £ and by the components along & of the unit normal to 4, the



