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Summary

Equations of equilibrium and corresponding four geometric and
static boundary conditions are derived for an entirely Lagran-
gian non-linear theory of thin shells. In case 0f a linearly
elastic material and conservative external forces all shell re-
lations are exactly derivable as stationarity conditions of the
Hu - Washizu free functional. The set ¢0f equations is consisten-
tly reduced in the case of the geometrically non-linear theory
of thin elastic shells undergoing large/small rotations.

1. Introduction

In the numerical analysis of flexible shell structures it is de-
sirable to apply shell relations which are referred entirely to
the undeformed shell geometry. Such entirely Lagrangian theory

©f shells should also be derivable from appropriately construc-

ted variational principles.

some forms of Lagrangian equilibrium equations for thin shells,
but without associated boundary conditions, were given already
in [1,2] . In [3,4] the equilibrium equations and three force
boundary conditions were also referred to base vectors of the
undeformed shell middle surface. However, in the fourth static
boundary condition of [3,4] the resulting boundary couple was
measured per unit length of the undeformed boundary contour but
its axial vector was still tangent to the unknown boundary con-
tour of the deformed shell. This caused difficulties in the con-
struction of corresponding variational functionals even in the
simplest case of dead loads applied to the shell boundary. Only
recently [5] a complete set of entirely Lagrangian shell equati-
ons was derived which allowed for a proper formulation of corres-

ponding Lagrangian variational principles [6,7]. In [5] a new La-
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grangian displacemental parameter n,6 was introduced at the
shell boundary and a modified tensor of change of curvature Xog
was used, which by definition was a third-degreec polynomial in

displacements.

In this report a different but equivalent to [5] version of the
entirely Lagrangian theory of shells is presented in terms of
the usual tensor of change of curvature KB which is a non-
rational function of displacements. The main reason for the de-
velopment of the theory are simple transformation properties of
B under the change of the reference shell configuration. This
feature becomes of primary importance when superposed deforma-
tions and incremental formulations of shell equations are dis-
cussed in the total Lagrangian and in the updated Lagrangian
descriptions [8,9] . In case of a linearly elastic material and
when conservative loads are applied to the shell middle surface
and the shell lateral boundary surface, the entirely Lagrangian
shell equations are shown to be derivable exactly as stationari-

ty conditions of the Hu - Washizu typé free functional.

When strains are assumed to be small everywhere the shell rela-
tions derived here reduce exactly to those given in [5] for the
geometrically non-linear theory. Additionally, rotations of the
shell material elements may be restricted to be small, moderate
or large, according to the classification scheme suggested in
[10-12]. As a result, several consistently simplified versions
of the entirely Lagrangian non-linear theory of shells may be
constructed [13]. Here two consistent versions of equations of
the non-linear theory of shells undergoing large/small rotations
are developed. This shell theory describes accurately the beha-

viour of a majority of elastic flexible shell structures.

The sets of Lagrangian shell equations presented here are suppo-
sed to be solved in displacements as basic independent field va-
riables. Since our shell equations are derivable from variatio-
nal principles, mixed hybrid finite element methods may also be
applied in which the strain and/or the stress fields appearing
in corresponding variational functionals are discretized inde-

pendently of the discretization of the displacement field.
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2. Lagrangian Shell Equations

Within the Kirchhoff - Love type theory of shells the deformation
of the three-dimensional thin shell-like body is described by the
deformation of its middle surface. During the surface deformation
components of the Lagrangian strain tensor and of the tensor of

change of curvature are given by [5,12]

-l - _ L1qa _
_ _ A A A T
Kag = 7 (Boug Pag) = 1y (n7|g mbgn) t o (n g tben,) +b .
Here a . EGB and b ., Eae are components of the surface

metric and curvature tensors in its undeformed M and deformed

M configurations, respectively,
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and u = uaga-+wg is the displacement vector.

The deformation of the shell boundary surface may be described

[5] by two vectors defined at the boundary contour C of M

W =E-r=uytutiun
Y (2.4)
= n - = + -
E, 2 EA n\).-\\}J ntE+(n 1)2
When rotations of the shell boundary elements do not exceed tg
for 10 we have the unique vector representation
- 1 - - —— 7 -
n = ng:g?{nvétx (v x Qt)‘¥V7T7+2Ytt)(l nv) cl v xét}'
du duv
a, = l+g; = c,ytc t+cn , c = T FTeW T KU (2.5)
du
c, = 1l+—+,u -0, W c = gﬂ'*O u, - T,.u
t ds t v t ! ds t 't t v

It follows from (2.5) that along the boundary contour n 1is de-

scribed completely by u and n,6 as independent parameters.

Consider now M to be a middle surface of a thin shell in an

equilibrium state, under the Lagrangian surface force p==paa + pn,
~ ~ey ~
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per unit area of M , and under the Lagrangian boundary force
T = TvxvatEvau and the boundary static moment Errnvgf*ﬂt£-+Hg '
both per unit length of € , such that

szs = JjgdA ' jg@s = Jjgch ' (2.6)
C 28 C 0B
where f 1is the Lagrangian surface load, per unit area of the
undeformed shell boundary surface 3B, while ¢ 1is the distance
from M . Then for any additional virtual displacement field
su = 6uaga—f5w2 , which is subject to geometric constraints, the
principle of virtual displacements can be presented in the Lagran-
gian description to be

JJ(NaB6ya8-+Ma66Ka8)dA==[SE'6EdA-+J (T-6u+H-68)ds , (2.7)
M M C

£
where N%® , M®® are components of the symmetric second Piola -

Kirchhoff stress resultant and stress couple tensors.

Taking into account that

aB

1y - _1La o _ 9,98
6(J == 3 =[(1+2y )a 2y ]SYGB ' (2.8)
the left-hand side of (2.7) can be transformed into
_ B B afB= =
IVW = - J{g IB-dg-PJ(g -fu+M ga-ég)vsds . (2.9)
M Cf
TB = TABaA-+TBn '
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B _ [gaB 2 Gy.aB _ o 0B ( Kp KD u
T {N +a[(1 +2Y0)a 2y P [ (M luK)Io M ¢Kbup]n +
Kp Kp Y af A
+ [(M ¢K)|p~+M 1YKbp]n>}¢a-+M (n'a-+banx) +
1 .aB.Au Kp Kp
+ = = . .
Je €I (M 11“()]p M ¢Kbup]lxa (2.10)

Since

sn = éL[(gx

\Y

) (

el
3=l

d = —_— —
3edw) +3 6n ), a = (F xA)-y ,(2.11)

11

we can reduce to four the number of independent variations of dis-
placemental parameters at the shell boundary, transforming the

last term in (2.9) as follows
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B = _ _r. 4 _
jM a, vasds = J( F d565+M6nv)ds =
C C
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= J(EE-GB + Mﬁnv>ds +'§Ej'65j '
Cf
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Now the Lagrangian principle of virtual displacements (2.7) takes
the final form

(2.16)
—L{(I,Blg+B)'GRdA+J[(R_E*)"SE+ (M—M*)Snv]ds+ I (E’j—}i“]”.‘)-éuj =0,
] ~
Cf
where
; ar, ar*
= —_— * =
E=Tvgtas R L+3
1 = -
E* ="§—[(Qx E) yln =
v (2.17)
= (gUHt-+rvH)g-+(gth-+rtH)E-+(gHt-+rH)Q ,
* = — (R .3 = X _ px — % -
M av(n’x'fi) 3 =H, +fH +kH , E2 g(sj+o) E(Sj 0).

From (2.16) follow the equilibrium equations and the correspon-
ding static boundary conditions, together with already known geo-

metric boundary conditions, of the entirely Lagrangian non-linear

theory of thin shells
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B

T 8 +p=0 in M ,

~ (2.18)
P=pP* , M=M* on C_. and I'. =F* at each corner M. €(C,. ,
u=u* , n =n¥ on ¢ and u, =u* at each corner M, € C ,
~ & v v u ~1 &i i u

Note that, in general, the Lagrangian equilibrium equations and
the Lagrangian static boundary conditions are linear in the stress
oB aB
M

measures N ' but are non-rational in the displacemental

parameters, since in the expressions (2.10), (2.13) and (2.17)

there are square roots of polynomials of those parameters.

Within the first-approximation theory of thin isotropic and elas-
tic shells the strain energy function may be approximated by the
quadratic form [14]

h GBAU hZ 202 ‘
= — 4+ — + .
5 5 H (YaﬂYAu 12Ka8Kxu) O(Ehn%e%) , (2.19)
where HO‘B}‘u are components of the modified elasticity tensor.

The error of I at any point of the shell is expressed through
the small parameter ©6 defined by [15,16]

¢ = max(h/d, h/L, h/L*, Vh/R, Vn) , (2.20)

where d 1is the distance of the point from the lateral shell
boundary, L is the wave length of deformation patterns of M ,
L* is the wave length of the curvature patterns of M , R 1is
the smallest principal radius of curvature of M .and n 1is the
largest principal strain in the shell space. From (2.19) follow

the constitutive equations

NGB = 832 = i _E_:h\)z[(l '\J)Ya8+ va(’-BYE] +O(Ehn92) ’
aB , (2.21)
M%8 = 828 = 12(f§'v23[(1 -v)KaB-+vaa8KE]-+O(Eh2n92)
oB
In the case of external dead loads there exist potential functi-
ons ¢(w) =-p-u and ¥(u,B) =- (L-u+H-8) which allow to tran-
sform (2.16) into the variational principle 6I = 0 for the
functional
I = H“(Yas'Kas) -p-ulda - J[z-g+§-rﬁi]ds (2.22)
Cf

with (2.1), (2.5) and (2.18), as subsidiary conditions. Elimina-

ting at Cf the parameters n, and n with the use of (2.5),
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and introducing other subsidiary conditions into the functional

I with the help of Lagrange multipliers NOLB MmB

’

+ P and M
we obtain the free Hu - Washizu type functional

= - peu -N2P - _ OB B _
Il - JJ{Z(YQB'KOLB) EE N [YQB Y&B(}‘l‘)] M [KU.B KuB(R)]}dA

- [{zowvntmtam) - nijas - (2.23)
Cf
- . % -k - R -
Jtestw-uo +mn -n3)ias - rp- (e -up)
C
u
The associated Ilu - Washizu variational principle 6I, = 0 sta-

tes that among all possible values of independent fields indicar
ted in (2.23), which are not restricted by any subsidiary condi=~
tions, the solution values render the functional I, stationary.
It can be shown by direct calculations that the stationarity con-
ditions of the functional I, are exactly the Lagrangian shell
equations (2.18), the strain-displacement relations (2.1) and

the constitutive equations (2.21) together with relations which
identify the Lagrange multipliers with the functions described
already by the symbols used in (2.23). In analogy to [6,7,17]
many other free or constrained functionals and associated with
them variational principles may be constructed for the entirely
Lagrangian non-linecar theory of thin isotropic elastic shells.
The functionals form a solid basis for a computerized analysis

of flexible shell structures.

The shell relations derived above are two-dimensionally exact for
the shell middle surface. However, the relations are meaningful
for shells only within small strains, since by using the Kirch-
hoff - Love constraints the effect of change of the shell thick-
ness was ignored in the description of shell deformation. Such
simplified approach is consistent within the first-approximation
theory of elastic shells used here, but it would not be permissi-

ble if large strains in the shell space were allowed [18]

Within small strains some shell relations may be simplified by

omitting strains with respect to unity. In particular,

J e l-*Yz ~1 , n = m(l"YZ) ~m , n_ =m '
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A A A K«
T B e I N A (2.24)
- 1 - - f——————— -
v R, R
o l-g[nv%t‘(i“it)+‘/l nyTey vt ad

If (2.24), is used in the left-hand side of (2.7) then [5] it ge-
nerates the following reduced definitions of (2.10)

B = 1*‘\ %8+ 2%y M) 4 (m
a kP (2.25)
aB,. A

m Kp Y K0y p _ p
+ € V€ {l““[(¢KM )|p-+lYKbDMK ] ¢>a[(1w<MK )Ip ¢KbupM5 ]} '

—bkm)MuB +
a

A
|

B

™= (Na8+aa8b M) + (m +b>‘m )M(lﬂ_._ E(JBEAUI [(1 M), -9 b NP 1.
o kP a Ao Tk o e

A up

As a result of the simplified expressions (2.24) and (2.25), for

the geometrically non-linear theory of shells the Lagrangian equi-

librium equations become linear in NuB , M”‘8 and quadratic in
U W while the Lagrangian static boundary conditions are line-
ar in N®® , M*® but still remain non-rational functions of

u, » w and n  since in the approximate formula (2.24)3 for n

there is still the square-root function of the displacemental pa-
rameters. When (2.24) and (2.25) are introduced into the Hu - Wa-
shizu functional (2.23) , then analytically derived stationarity
conditions of I; will not exactly cbincide with the shell boun-
dary parameters (2.13) and (2.17). However, since the error of
(2.24) and (2.25) lies within an error margin of the first-appro-
Ximation theory, the Lagrangian shell equations and the Hu - Was-
hizu free functional may be regarded as corresponding eguivalent
descriptions of the same version of the geometrically non-linear
theory of shells.

It should be pointed out that the general definitions of the La-
grangian measures of change of curvature used in this paper and

in [1-5,19] are equivalent to each other from the point of view
of the error introduced into the strain energy within the first-
approximation theory. However, the important qualitative differen-
ces appear in the displacemental forms of the measures. In the
derivations of changes of curvature presented in [1-4,19] the

r i b =
epresentation baB ga!B

of M, while in [5] and in deriving (2.1), here a different (al-

‘n was applied for the curvature tensor

though mathematically equivalent) expression Ea3;='§a‘§|3 was

used. As a result, our line integral in (2.9) consisted of six

terms containing 6u and én. Since f = ﬁ(g,nv) , those terms
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were reduced further to four terms containing only 8u and én
as - 1independent variations along the shell boundary contour.
This allowed to construct the two-dimensionally exact and varia-
tionally derivable four natural static boundary and corner con-
ditions associated with the equilibrium equations (2.18). On the
other hand, when the displacemental forms of changes of curvatu-
res given in [1-4,19] are introduced into IVW and Stokes’ theo-
rem is applied, the resulting line integral consists of six terms
containing du and a%—dg . Those six terms cannot be reduced
further to only four terms containing dJu and one of components
of E%—&g as independeﬁt variations of displacemental variables.
Let us’remind that a%— above means differentiation at € per-
formed in the direction of v orthogonal to C , [10-12]). As a
result, no four variationally derivable static boundary and cor-
ner conditions can be associated with the Lagrangian equilibrium
equations given in [1-4]. This was the reason why no boundary
conditions were given in [1,2] for the general bending theory

of shells while the static boundary conditions suggested in [3,4]
were derived by transforming corresponding Eulerian parameters
into the undeformed reference configuration but not by the direct
variational procedure. However, such transformed static boundary
conditions are not entirely Lagrangian and do not allow to const-
ruct a free variational functional of the Hu -~ Washizu type even
in the simplest case of dead loads applied to the shell lateral

boundary surface.

3. Restricted Rotations

By the polar decomposition theorem of the deformation gradient
tensor [10-12] strains and rotations of the shell material ele-
ments were exactly separated from each other. Therefore, further
consistent simplifications of the geometrically non-linear enti-
rely Lagrangian shell equations may be achieved by imposing some

restrictions upon the rotations.

The basic parameter describing the magnitude of a rotation is

the angle of rotation ww about the rotation axis defined by the
unit vector e . The angle may be used to classify rotations in
terms of the small parameter (2.20) as follows [10-12]: wgO(82)
- small rotations, w = 0(8) - moderate rotations, w = 0O(VB) -

large rotations, w 2 0O(1) - finite rotations. Introducing the



115

finite rotation vector § = sinwe we may approximate it within

small strains

1 oky 1,2
20 T3 (0 Tuy ) gt en (3.1)

For any restriction imposed on o from (3.1) follow estimates

g = €°% [y (14
~ a

]

Aa

for b, ¢ 0 and from (2.1); we obtain an estimate for OaB
Estimates of those linearized parameters allow to simplify con-
sistently the shell strain measures (2.1) within the error of the
strain energy function (2.19). When introduced into (2.7) the
simplified strain measures generate corresponding entirely Lagra-
ngian non-linear shell equations for each simplified version of

the theory of shells.

. . 3 = 2 = — }_
Within small rotations A BGB +0(n8<) , K 2(¢u|8 +¢B'ﬁ) +
+ 0(no0/x) , where A = h/8 , and the theory reduces to the bending

Linear theory of shells which is discussed in many monographs.

Within moderate rotations the shell strain measures (2.7) may be
simplified [10,12] to the form

= 1 1 2 . 1ig2 A 2
Yap = Yap T 20tg 32000 T2 0atng T Epung) TOOT) L
__1 A _ A _ )
Kyg = 2[¢alﬂ'+¢8[a'+ba(eks wyg) gl —w, V1 +0(ne/2).

The complete set of Lagrangian equations of the theory of shells
undergoing moderate rotations was given in [12] . The theory con-
tains as special cases the equations of various simpler versions
of the Lagrangian theory of shells which were proposed in the 1li-
terature. A detailed review of those versions was given in [17]
where also many free and constrained functionals and associated
with them variational principles were constructed. Stability equa=~
tions for flexible shells based on (3.2) were derived in [8,20].

within large rotations can not be simplified while for the

¥
aB
tensor of change of curvature we obtain [13]
1,0 A 1 _
“ap = 2 aMa g FLiaM o) olem gt bgm )
A _ 1.2 A kK, 1 kp _
mXB)-PbB(eka wka)]'F2(bawk8-+b8mka)(ek.+§m pr)
1

-Llp? A W 1 A
5(byég +bgd ) (¢, +¢%w ) t5b 0%, + O(ne/x) . (3.3)

1A
—E{ba(els_

The complete set of entirely Lagrangian shell equations based on
(2.1), and (3.3) was derived in [13] . Two special cases of (3.3)
were also discussed in [13] in which rotations associated with

in-surface deformation were allowed to be small or moderate. Even
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for such large/small or large/moderate rotation shell theories
the resulting Lagrangian shell equations were still very complex
and hardly readable. However, in all three cases it was possible
to get rid of the non-rational expressions at the shell boundary
approximating consistently the square-root functions by polyno-
mials of the displacemental parameters.

4. Simplified Theories of Shells Undergoing Large/Small Rotations

In the two simplified theories discussed here within the large/
small rotation range of shell deformation a greater error

0 (Ehn26v8) or O(Ehn?p) is allowed in the strain energy func-
tion. (2.19) . The scheme of derivation and equilibrium equations
for such simplified versions of shell theory were given already
in [10,12]) , but at that time we failed to construct variational-
ly derivable Lagrangian static boundary and corner conditions.
Only when entirely Lagrangian theory of shells was developed [5]
it became possible to reduce it consistently also within the
large/small rotation range of deformation [13,21,22] and to for-
mulate properly the corresponding static boundary and corner
conditions. In what follows the relations given in [13,21,22]
are modified further and presented in what is believed to be

their canonical form.

When rotations about tangents to M are allowed to be large whi-
le rotations about normals to M are supposed to be always small
then from (3.1) it follows that ¢ =0(82) , ¢a==O(V§) and from

(2.1), we obtain 6a8==0(e)

‘Within the error O(Ehn26V8) of the strain energy function the
shell strain measures (2.1) of the large/small rotation theory

take the consistently reduced form [13]

3 1 Lodeg _Lig) )
Yag = Cap T2%% t2%.% (8,05 F 8guy,) +0(nove) ,
-1 - (g} A -
Keg = 2[(ma|8-+m8|u) <9a¢A|B'FeB¢A|a)'+(¢am,8'+¢8m,a)
A A A A A
T (B0t R0y ) T [y #bge ) oy + b gene, T+ 0VE/A),
- K H - K
My == (1+6 )¢, +9¢ 8., + M=14+0 . (4.1)
It follows from (4.1); that within the same approximation 608 =
=-—%¢G¢B-+O(62) , see [10,22] , which introduced into (4.1); al-

low to reduce the parameters into the simpler forms
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m,=-¢, +0(e*ve) m=1-~¢"¢\,+o(02> .

dw _
tdg

(4.2)

n ﬁ'f¢v3"¢tg-f(l--¢?"%¢%)g P tyu +ou

t t 't

This allows to present KB by a simpler equivalent expression

__1 AL A A 1 K
Kap = 5{[(6a'+ea)¢xla'+(68 +eB)¢A|a]-+2[¢ﬁ(¢ ¢,.)

K
e (80 1+
A X A hy (4.3)
+(b 0 bB Aa)+(ba¢8+b6¢a)¢x--baﬂ¢ *x}'FO(“Vg/A)'
Using some identities and the estimate for GuB given above

(4.2) the expression (4.3) can be shown to be eguivalent, within
the assumed error, to the one proposed in [12] £.(5.3.7). Howe-
ver, for the reasons explained at the end of §2, the displace-
mental form used in [12] did not allow to construct four varia-
tionally derivable static boundary conditions. In [13,22] equi-
valent to (4.3) measures of the change of curvature were propo-
sed as quadratic polynomials in displacements. However, four
static boundary conditions were constructed in [13] approxima-
ting consistently the square-root functions of the exact theory
[5] by polynomials of the displacemental parameters, while in
the transformation of IVW performed in [22] an approximate ex-
pression oz :-—%¢K¢K-+O(ez) had to be additionally applied in
the corresponding line integral. On the other hand, our expres-
sion (4.3) is a third-degree polynomial in displacements but it
allows to perform exactly all further transformations presented

in the following part of this paper.

When (4.1); and (4.3) are introduced into the principle of vir-
tual displacements, after appropriate transformations it can be
reduced exactly to the form (2.16), Only now
B _ aB B_ A aB
T = ¢ N +[(<s +8)M |a+(¢M )]a¢ ¢]a¢>\m
A aB B, 0 By, aX

}\(1]

(b +b M )¢A'Fb ¢ M ’
(4.4)

va = (1 +evv)Mvv'+evtMtv ! Rtv = OtvM\)v+(1 +ett)Mt\J'

- = = 2
Rv ¢0Mvv-*¢tMtv » M va_+¢vRv (l'+evv'+¢v)Mvv4-(evt-k¢v¢t)Mtv'

v — — 2
E oo F Rtv-+¢th (evt-+¢v¢t)Mvv<+(l +6tt+¢t)Mt\)'

= * * = . E J—
F* F*xn , F Ht-+¢tH ’ M Hv-+¢vH

FProm (2.16) with (4.4) follow corresponding Lagrangian shell eg-
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uations (2.18), in which (4.2), and (4.4) should be used.

In some engineering applications we may be interested in the use
of even simpler but consistently reduced shell relations which
follow when a larger error O(Ehn?6) in the strain energy func-
tion is assumed to be permissible. Within this larger error the
strain measures of such simplest large/small rotation theory of
shells take the extremely simple ' form
1 1.
= = + = +
YuB eu8+2¢a¢6 26016)\8 0(no) ! (4.5)

1 A A A A A A .
-= + + . + .

2[(6OL 0, T ¢a)¢k|8 +(58 +66'*¢ ¢B)¢A|a] O(n/x)

KO.B
Again, within the assumed accuracy the strain measures (4.5)
are equivalent to those proposed in [12,13,21,22] where various
different displacemental expressions for K.g Were suggested.
However, only the expression (4.5), given here allows to perform
exactly all further transformations. When introduced into (2.7)
the measures (4.5) lead exactly to (2.16) with the following

corresponding definitions of the static field parameters

TAB - NAB+_§_(8)\NGB +98Na)\) ‘%(fb)\, MaB+¢BiaNa}\) ,
* o * (4.6)
TP = NP+ SO oL TR O e R LR LEN

while corresponding static boundary parameters remain identical
with those given in (4.4);_.¢ and (4.2),

From (2.16) we obtain the following component form of the enti-
rely Lagrangian equations for both simplified versions of the
theory of shells undergoing large/small rotations:

the equilibrium equations in M

AR A B A B8 AB
- + = +b. T""+p=0 ; 4.
T a bBT p 0o, T IB 18 p (4.7)
the static boundary conditions on Cf
2B _
TV v+t (R R)) =T, +r (H +¢ H)
1B - - -
TAPtyvg = op (R +O.R ) =T, o, (H + 9. H) o)
B 4 - 4 )
T Vg +ds(Rtv4+¢th) B T'+ds(Ht4+¢tH) !
va-+¢vRv = Hv~+¢vH ;
the static corner conditions at each corner MjE Cf
F(s.+0) ~F(s.-0) = F¥(s. +0) -F*(s. -0 ; 4.9)
( 3 ) ( : ) (SJ ) ( 3 ) (
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the geometric boundary conditions on Cu

— n* = 1% = ok — 4% . 4,
u ur o, oug uy oW wX o, U (4.10)

the geometric corner condition at each corner MiE ¢

Wy = w; . (4.11)

Introducing appropriate definitions (4.4)1,g or (4.6) into (4.7)
and (4.8) extended representations of the equilibrium equations
and the static boundary conditions in terms of NaB,MOlB and u ,

w,¢v may easily be derived. .

The structure of the Lagrangian shell relations given above is
relatively simple. The strain tensors (4.1); or (4.5), are guad-
ratic in displacements while the tensors of change of curvature
(4.3) or (4.5), are cubic in displacements , where cubic terms
are expressed only thrOugh ¢d . The equilibrium equations (4.7)
are linear in N%®,M%® and quadratic in u_,w only through
squares of o, The static boundary (4.8) and corner (4.9) con-

aB

ditions are linear in NaB,M and quadratic in displacemental

parameters again through N and All four geometric boun-

¢
t
dary conditions (4.10) and the geometric corner conditions (4.11)
are linear in displacements, what is very important when a nume-
rical solution of a non-linear shell problem is constructed using

finite elements in order to discretize the displacement field.

The Hu - Washizu free functional corresponding to the shell rela-
tions presented above takes the form

T = U{“Yas'w o Ny g v @1 L - (w1 fan -
M

- Hgg +He [’ii(u,cpv) —RJ}ds - (4.12)
- I[g- (w-u*) - M(s - ¢¥)lds —v}iFi(wi—wI) '

‘where (2.19), (4.1); and (4.3) or (4.5), (4.2),, (4.4)3_¢ and

left-hand sides of .(4.8) should be used. As stationarity condi-
tions of 1I; we obtain exactly all relations of the respective
simplified versions of the entirely Lagrangian theory of shells
undergoing large/small rotations. From I; , following [17,6,7],

a number of other free or constrained functionals and associated
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variational principles may be constructed. Appropriate stability
equations for the large/small rotation theory of shells may be
derived by specialization of those given in [9,23,24].

Let us remind some simplified versions of the non-linear theory
of thin shells for which non-linear expressions for changes of
curvatures were suggested. Koiter [19] £.(12.2) proposed a quad-
ratic expression for Pog = —xas-?%(biyAB +b;YAa) in the case
of "moderate deflections", Bagar [25] derived a quadratic exp-
ression for K g in the case of "poderately large rotations",
from Galimov [4] f.(3.38) follows a quadratic expression for

KB 'in the case of "strong bending". When compared with corres-
ponding expression (5.3.7) of [12] for Kop with greater error,
which is equivalent to our (4.3) in the sense of error, the lack
of terms %¢A¢A(¢als'f¢8|ﬂ) was noted in the measure [19] and
in transformed version of the measure [25] obtained using an
identity (3.34) of [19] , while terms ¢A(eka18_+eAB[a_'eka|8)
were missed in the resulting measure of [4] . According to our
estimates, those terms are 0(8V6/)x) and should be taken into
account even within the simplest large/small rotation shell
theory, see (5.3.9), of [12] . Apart from that, for the reasons
explained at the end of §2, the expressions suggested in [4,19,
25] for the changes of curvatures do not allow to construct
variationally derivable four Lagrangian static boundary condi-
tions. Shapovalov [26] f.(1.9) proposed an extremely simple

quadratic theory of shells in which vy contain two first

afB
. . X _ _l. 2
terms of (4.1), «x;, 1is linear while K ¢ala 2baa¢8 ’
a # B . The quadratic terms in Ko result from the second
line of (4.3) and are O0(62/)) . Since other terms 0(62) were

omitted in Yag and even more important terms 0(8V6/)) were
omitted in Kog * the version of [26] can not be regarded as
consistent within the large-rotation theory of shells. In a re-
fined version [27] a theory of shells undergoing finite/small
rotationé was given. At the shell boundary contour a "vector
of elastic rotation" was introduced which had no geometric mea-
ning of a finite rotation vector [10-12]. It was assumed that
only one of the three components of the vector was independent
but explicit transformation formulae for other two components
were not given. The work performed by the Eulerian boundary

couple on the "vector of elastic rotation" was assumed as a sca-
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lar product of the vectors what may not be correct in the gene+
ral case., As a result, the boundary conditions constructed in
[27] can not be regarded as entircly Lagrangian and their phy-
sical and geometrical meaning as well as the range of applica-
bility is open to discussion. Finally, let us remind that alre-
ady in [28,29] it was suggested to take into account all quad-
ratic terms in Keg However, the non-linear theory of shells
generated by such formal quadratic strain measures can not be
regarded as consistent from the point of view of an error intro-
duced into the shell strain energy function. Besides, such mea-
sures would not allow to construct variationally derivable four
Lagrangian static boundary conditions.
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