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1. Introduction

The set of equations for the geometricallyAnon—linear theory of thin
elastic shells is usually expressed in terms of displacements as basic
independent variables of the shell deformation. Various general and re-
duced displacemental forms of bending shell equations are summarized,
for example, by MUSHTARI and GALIMOV [1], KOITER [2], PIETRASZKIEWICZ
[3,4], SCHMIDT [5] and BASAR and KRATZIG [6], where further references
may be found. When displacement field is determined from the shell eqg-
uations, strains, rotations and stresses may be obtained by prescribed
algebraic or differential procedurecs.

The displacemental form of non-linear shell equations is very complex
even in the tensor notation. When strains are small, components of the
strain tensor are gquadratic and components of the tensor of the change
of curvature are cubic polynomials in displacements and their surface
derivatives [4]. Additionally, the tensor of change of curvature, even
in the simplest lincarizecd case, depends upon the second derivatives of
the displacements. 1t means that the strain energy density for the geo-
metrically non-linear theory of shells is the polynomial up to the sixth
order in displacements as well as their first and second surface deri-
vatives. In modern computerized structural analysis, based on finite
elements or finite differences, the need for discretization of the sec-
ond derivatives causes many problems associated with inter-element con-
tinuity as well as discrete formulation of the boundary conditions. As
a'result, higher-order shape functions and difference schemes are requ-
ired, which lead to additional degrees of freedom, complex schemes of
numerical integration, reformulated boundary conditions etc.

The complexities associated with the displacemental shell equations

can make 1t more attractive an alternative approach to shell theory,
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based on the polar decomposition of the shell deformation gradient into
the rigid-body rotation and the pure stretch along the principal direc-
tions of strain. Then the finite rotation field is used as an indepen-
dent or intermediate variable 'of the shell theory. This approach, ori-
ginated by ALUMAE[7] for the general shell geometry and by REISSNER [8]
for axisymmetric deformation of shells of revolution, has been deve-
loped by WEMPNER [9], SIMMONDS and DANIELSON [10,11], PIETRASZKIEWICZ
[3,12-14], SHKUTIN [15], LIBAT and SIMMONDS [16], ATLURI [17], KAYUK
and SAKHATSKTIY[18] and MAKOWSKTI and STUMPF [19]. In this approach the
structure of the non-linear shell equations becomes similar to the
structure of the Cosserat surface theory [20,21,22]. However, in the
latter theory displacements and rotations are, by definition, two inde-
pendent kinematic field variables and the surface strain energy density
is postulated from two-dimensional considerations,without any reference
to the three-dimensional continuum mechanics.

In this paper we propose a new procedure for the derivation of the
non-linear shell equations directly from the three dimensional con-
strained elastic Cosserat cbntinuum. Tt is known [20,23-26]1 that within
the Cosserat continuum each material particle can translate and inde-
pendently rotate. This micro-rotation field does not coincide, in ge-
neral, with the macro-rotation of the particle’s neighbourhood as cal-
culated from the displacement field in the classical continuum mecha-
nics. The stress state is described by two, generally non-symmetric,
stress and couple stress tensors.

In this paper we assume that the couple-stress tensor vanishes every-
where, what leads to the so-called pseudo-Cosserat continuum [24,25].
Additionally, micro-rotations are constrained to coincide everywhere
with the macro-rotations. As a result, the Cosserat elastic continuum
with the two constraints becomes entirely equivalent to the classical
non-polar non-linear elasticity, but written here in different form,
in terms of the Cosserat field variables. In particular, with the help
of Lagrangian multipliers the second constraint is explicitly intro-
duced into the strain energy function of the elastic Cosserat body.

In order to describe such constrained thin Cosserat body by a two-
-dimensional shell theory, we introduce the Kirchhoff-love kinematic
constrains and take the strain energy density in the form used in the
classical first-approximation theory of thin isotropic elastic shells
[27]. As a result, in the case gf dead external loads, the functional
of the total potential energy is constructed. It depends upon three
displacements, three rotations and three Lagrangian multipliers (the

scew-symmetric part of the internal surface stress resultant tensor
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and two shearing forces) as independent variables subject to variation.
The functional is linear in the Lagrangian multipliers and is rational
function containing at most fourth-order polynomials in displacements,
rotations and their first derivatives. The latter feature seams to be
very attractive for the numerical applications. It allows to use the
simplest shape functions or difference schemes which assure the high
efficiency of the numerical analysis. The stationarity conditiong of the
functional lead tosix eguilibrium equations, three constraint conditions
and appropriate static boundary and corncr conditions for the nine un-
knowns to be determined in the solution process. All the relations are
given through components with respect to the rotated basis. Some advan-
tages, similarities and differences of such a formulation of the non-
-linear shell theory in comparison with the ones proposed in [7,11,15,

17] are discussed.

2. Some relations of the Cosserat continuum

Here we briefly discuss a deformation of the body B , consisting of
material particles X , Y , ..., in the three-dimensional Luclidean
point space E . Let P=¢(B) and P=R(B) be regions of E occupied
by the body B 1in the reference (undeformed} and in the actual (defo-
rmed) configuration, respectively! The places P and P occupied by
the particle X € B in both configurations are given by the respective

position vectors

. . _ k > .
p=Xk(61Jg,k R p =y (el)gkix(p) =p+tw o (2.1)
where o7t , 1 =1,2,3, are the curvilinear convected coordinates, ik

is the common orthonormal basis attached to an origin O€E , x is

the macro-deformation function and w 1s the displacement vector.

~

In P we introduce the base vectors g: D3 gl-g =57 , the

- - . Nj
metric tensor 1 = gijgl UgJ = gngi mgj with components gij :gi-gi ,
glJ =§l-gJ and the scalar g =|gij| . Analogously defined functions in
P  are marked by a dash: g. ,e) ., 1, g , 8 , g etc. All proper-

~1 ~ ~ ij
ties of the macro-deformation of B can be described entirely in terms

of w (see [28] for details).

Within the Cosserat theory it is assumed that during deformation
each material particle X € B can translate and independently rotate [20,
?3,24,26]1. The translation is described by the vector field w while

the rotation is described by an independent proper orthogonal tensor
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rield R , such that R™'=RT , det R=+1. The tensor field is called
the micro-rotation of X €8 . In order to make it more convenient let
us introduce an aholonomic triad of vectors d; associated with each
X€eB , rigldly rotating with the particle during its deformation.
Assuming, for convenience, that in the reference configuration those
vectors coincide with the base vectors g1 in the deformed configu-

~

ration we obtain

_ 1 -
R=d;u8 > 4y d; =€

~ ~

N
A
—

ad. :Eg. . (2.

The complete information about deformation of the neighbourhood of

the material particle X €B contain now two fields: the deformation

gradient F and the micro-rotation gradient D ,defined by
E:Gl'adp_—é.ﬂg‘] , O<detF <o |
- (2.3)
D =Grad R :~i;j@.% “ g

where () is the covariant derivative with respect to the referen-

. 3J
ce metric gij
In classical continuum mechanics 1t is usual to apply the polar de-
composition F=RU=VR , where U and V are the (symmetric) right
and left stretch tensors and 1 is the (proper orthogonal) rotation
tensor of the macro-deformation x . However, V , U and R do not de-
scribe properly the strains and rotations of the neighbourhood of the

Cosserat material particle X € B

The Lagrangian strain measures appropriate for the Cosserat conti-

nuum are defined by [20,23,24]

_ T i J 1 o 5T _ i J
Y=RE=Uj;gmeg K25 & (R D) K8 g, (2. 4)
where € == 1x1 :€legi agj 8 g and dot means double scalar product

. ij
performed on the second-order tensors according to € - A =€ JkAjkgi
In what follows it will be convenient to usc another strain measures

(in analogy to V in the classical continuum mechanics) defined accor-

ding to
V-RURT =U..d* ag’ |, L =RKR' =K..dTead? . (2.5)
Since ETE ; and K jET are scew-symmetric let us introduce their
> 3
axial vectors [238]
1 T 1 T , i .
k. =- =€-(R"R . l: == =€+(R .R") =Rk. =K, .d". 2.6
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The relative Lagrangian strain measures arc given by

E=U-1:=E,.g" g’ , H=V-1=€¢ .a%ea’

~ o~ N' 1~ ~ ~ o~ A~ 1]~ ~ 3 (2”/)
h. =F..d  =p.~d. =g.+w . -Rp.

A5 TR TRy TRy TR TR TRE;

The micro-rotation R can be performed with an equivalent finite
rotation vector 0 =2tgw/2¢g , where ¢ 1is the unit vector of the rot-
ation axis and w 1is the angle of rotation about ¢ assoclated with R.
Then [28]

1 (2.8)

The relations (2.7)p, (2.8), and (2.6) allow to express the strain

measures E. and Ki. in terms of w and 8. Solving (2.7), and
and 6 . and applying the integrability conditions

iJ
(2.8)p for w .

~5d ~sd .
Wosi7W g5 =0, 3,ji-_2,ij =0 we obtain the vector form of compa-
tibility conditions of the Cosserat continuum [26]

sij ) .

sij _ 1
€ (h +lvxdv)‘9_‘ "’l;J ‘é‘

. €
~13] ~] ~1 ’

7L . (2.9)

Suppose that in the deformed configuration P there is an oriented
differential area dA with a unit outward normal n at p . Let the

image at p 1n P corresponding to idﬁ is ndA . Then [29]

~

fdk = JnF~ lan , J=det ¥ =Vl . (2.10)
Let £ nad m be the stress and couple-stress vectors acting on
the oriented differential area ndA in P . Then the "true" Cauchy-

-type stress and couple-stress tensors 1 and J are given by

tdh =1idh , mdh=pidh , r=tUgieg. . pEuwUE eg.(2.11)

(].
Using (2.10) and R we can define alternative stress and couple-stress

tensors referred to the undeformed configuration

tdA = T ndA = RT ndA = T _RndA ,
R e B (2.12)
mdA = MondA = RMyndA = MoRndA >
1 =T T =T =TT
I =9k ’ L > Ip=dzll 'R > (2.13)

=T _ T =T " =T,T
Mg = JuE , My =dJR ut s My=Jull TR '

=
1

In analogy to the classical continuum, T and MH are the first
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Piola-Kirchhoff type, IJ and MT are the Jaumann type and IB

and MB are the Blot type stress and couple-stress tensors, respec-
tively.

In terms of those stress and strain measures various but eqgui-
valent sets of baslec balance laws for the Cosseral continuum may be
given [23,240]1. 1n particular, the stress working rate is given in the

following equivalcent forms

0= fWave it wutik ) av =
p P ! ! v v (2.14)
= Ip(5-£+MJ-5) av = IP(IB'ﬂ+MB'£) av

where the superposed dot denotes the material time derivative, the super-
posed triangle is the co-rotational time derivative and 74 ana MY

are components of the Jaumann stress measures glven by

Voo )
H=i+fg-af , g=RRT=-g7

P54 j i i i = . kj

T =gt = atTedd a(gt g (2.15)

The respective scalar products in (2.14) contain the work-conjugate
pairs of stress and strain measures [30]. The pairs Ie > H and MB,L
are particularly interesting here, since they are defined by components
in the rotated triad gi

Tt follows from (2.14) that for an elastic Cosserat body the strain
energy density depends explicitly only upon Eij and Kij 5

W :W(Eij’Kij) . However, in what follows we are interested in analy-

i.e.

sing thc Cosserat elastic body with two additional constraints. The
first constraint states that the couple-stress tensor identically vani-
shes during an arbitrary motion, i.e. u :MR =MJ :MB = 0. In such pseudo-
-Cosserat elastic body the strain energy density does not depend expli-
citly upon K.. , i.e. W :W(Eij) . The second constraint requires the

micro-rotatio;J R to coincide with the macro-rotation R during an
arbitrary motion. As a result u =BTE =g‘=gT :QT and, similarly,
z,=gT, §‘=ET, or EijkEij =0 . This constraint can be introduced into
the strain energy density with the help of Lagrangian multipliers A s
redefining it as follows
E=W(E..)+eXdKg oy (2.16)
1] 1 K

The strain energy density (2.16) definks the constrained Cosserat
elastic body which is equivalent to the classical non-polar non-1linear

elastic body, only written here in terms of the Cosserat strain
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measure E . From (2.16) follow the constitutive equations of the con-

strained Cosserat body

ij _ 3E _ oW ijk
T T 9E.. T JE.. e Ak 3
1J 1]
(2.17)
ij . 8E _ 3k _ _ijk _
MY = =0 , ===z=c E.. = 0
aKij axk ij

which incorporate expliecitly the two constraintsg.

3. Deformation of a thin shell under K-L constraints

Let in the region PE€E , occupied by the constrained Cosserat body
B in the refercnce configuration, the normal coordinate system
{9“,932;} (¢ =1,2) 1is introduced, where -h/2€7<h/2 1s the distan-
ce from the middle surface M of P and h 1is the thickness of P ,
assumed to be small.

The geometry of M is described by the position vector r =r(6%).

~

At cach point M€ M | we have the natural surface base vectors 3, ° L

g“ &g =6§ » the components aup ~ 8o 8 and a%f =ga-38 of the su.;'i
face metric tensor g=:aa8gae:gs =a“sga 8 dg with the scalar a =|ausl,
the unit vector §3£E::%E“Bga x a5 orthogonal to M and the covariant
components  Dgg :—Q’Q-QB of the curvature tensor E :baséa agﬁ . The

boundary contour € of M 1is described by 6% =0%(s) , where s is
the length parameter along C. Along C we define the unit tangent

vector g =d£/’ds =taga and the outward unit normal vector v =txn

~

Analogously defined functions at Me M , which is the image of the

M€EM 1in the deformed configuration, are marked by an additional dash:
- - —a - -apB - - - = - .
r 58, 5 & o aaB s a » &, a , 1, baB » b etc. The deformatlon

of M into M and € into C is described in detail in [3,4,12]
where further details may be found.

Let on the middle surface M of P the following fields are intro-
duced

L R = AL TR R = St AL T R
BeuP)ag > 87BN a 5 SR o > nTHE) 5

Material fibres of the body B, initially normal to M4 , after defor-
mation may become neither straight nor normal to ﬁ. In particular,
a3 *E‘, in general. However, when discussing deformation of thin elas-
tic shells undergoing small strains it is possible in all kinematic

relations to approximate it by assuming, that material fibres which
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are normal to M , after deformation remain straight and normal to M
and do not change their lengths. Under such Kirchhoff-Love type kine-
matic constraint &5 =10 . The change of the shell thickness during de-
formation will, however, be taken into account in the constitutive
equations, see (4.2) below.

The geometry of P in the normal system of coodinates is described
by the geometry of the surface M . Under the K-L kinematic constra-
ints the same applies to P and a, respectively,

p:£+c'1:1’ R 5:;{1’-}-;’6‘ R

g=1l-tbh g=1-¢th , (3.2)
- pa 1 —lai - == -1 _ =-1-1

g:°8%8 » & “E & > Ei7E& o B TE 8

Under the K-L kinematic constraints the kinematic parameters

of the pseudo-Cosserat shell are given by

¥=u+o(i-n) , R=2
=1 - -1
F=g6g = (G-chllg > (3.3)
-1 -1 -1
- lareos L sl e
_ EE J
.Q._nlJrl: L _NJSE >
i _ (3.4)
g = Nipk 8 “Lg o N3 T Ny =04
1 B _ B
K=K;gh 8L “Kgsel s
- a
- +b =1 + :
Kg "R,3 B ~a <g X K3 13,8 , (3.5)
- _1le. Ty 1 21
Ae 7738 (8 2 ) T8 58 52 )

If, additionally, the micro-rotations @ are constrained to colnci-

~

de with the macro-rotations R then

- a _ -1 -1 6
Ng S N4l =4 o= t8 *(rg =38 xxg) ) (3.6)
_ a _ . - _1 21 =
X~ Fagl *igxﬂ't(g,ﬁ ge,gxﬁ)xﬂ
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integrability conditions u -u =0 -
& J ~,Bu L,GB ~ ? Q,Ba B,QB

the vector form of compatibility conditions of the non-linecar shell

=0 we obtain

theory
of L oxp ) = o B 1 ] o
€ (RalB tL xr)=0 , € (iaIB'Fiiu x1,) =0 (5.0)

given in component form in [7] and in vector form in [15,161.

Note that the stralin measures L and Ko g defined in (3.6), 3are
rational (quadratic, at most) functions of displacements, rotations and
ag ¥ "ga and “ug ¥ ¥aa
and taking into

their first surface derivatives. Tn general | n

B
Iinearizing ng and “g with respect to u and @
account that in the linear shell theory [3,12] g::g(g)z=€6u¢ags-+¢£
we obtain

1 A
naB-E(ua|8-+uB|a) ban , KaB'——¢a|B<+bB€Xa¢ s
(5.8)
_ B _ 1 _aB
¢a—w,d+bau8 . ¢*§€ UBI(X ,

where () , means the covariant differentiation in the reference met-

)

. Co 1
ric a8,g - The linearized components of MR and “(aB) 72(KQB

are the measures used in the "bestl" linear shell theory [31].

+ K

RBa

4. Variationally derivable non-linear shell equations

The two-dimensional strain energy density, per unit area of the unde-
formed middle surface M

in terms of (2.16) by

, for the constrained Cosserat shell is given

= EBE{E dr =1+ : (4.1)

Within the consistent first-approximation geometrically non-linear
theory of thin isotropic elastic shells the first term in (4.1) can be

approximated by the guadratic expression [27,13]

1 ;aBAu h?
v == H + —
o 2 (”aBnXu 12 KGBKXU) ’ (h.2)
HaBAu _ E (aaAaBU-FaauaBA + 2v aaﬁaku)
2(1+v) 1=v

The second term in (4.1) appears as the result of constrained micro-
-rotations of the pseudo-Cosserat body and follows from direct inte=-
gration of (2.16), with (3.6), and the accuracy of (4.2), taken into
account,

h/2 ;-
- 1Jk J - 9B, = B
Eoon [h/2€ Ejjlk dg = € " -nN + 0:ngQ > (4.%),

& 107
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h/2 h/2

M IVPRILE: . Qb - {h/gesuxa dg . (4.3),

If we introduce the symmetric surface internal stress resultant and
stress cpouple tensors

3T oz 2
N8B - 2o o peBiu mef o 2ro . hfjaBiu (4.4)
anag 12 Au

3
An BKQB

then the strain energy (4.1) with (4.3) generates the fol%owing con-
stitutive equations for the internal stress resultant and stress couple

vectors defined with reference to the rotated basis

X -
R L Pt S
38 (4.5)
k- 2B - w0 WP s gk o= e mtBph
~ rE'S ~Q ~ ~ ~ oA ~
Note that the vector MB in (4.5)2 is given only through symmetric
components M“B This means that within the accuracy of the first-
-approximation non-linear shell theory only symmetric part K (aB) of

the tensor of change of curvature enters explicitly into the shell equ-
ations. The scew-symmetric part “lag] of this tensor does not con-
tribute to the elastic strain energy density and, therefore, may be
ignored in all shell relations.

The formulae (4.4) reveal the physical meaning of the Lagrangian
multipliers N and QB to be just the scew-symmetric part of the in-
ternal surface stress resultant tensor and the shearing forces, respe-

ctively. Moreover, the tensor fields ﬁ::ﬁs ar and K :566!2 are

B ~ 8
seen to be the two-dimensional counterparts of the Biot-type stress

measures of the Cosserat continuum (2.13).
Let the shell be loaded by an external surface load p , per unit

area of M, and by external boundary load £ , per unit area of" the

reference boundary surface C x(—g R %) . For simplicity of further

results let us assume p and f to be conservative and dead-load type.

~

Then the total potential energy of the shell is given by the functio-
nal [4]

T = [Z(B,Q,N,QB)— p-uldA - [ 1 E'B'*ﬂ'(i"ﬁ) lds ,

M ~ C

h/2 h/2 (4.6)
0= ey ac , H=/[ "fof8ac .
¥ Zpsette “h/2~Va

The variational principle &I =0 states that among all possible
values of independent fields u , 8§, N and QB , which are subject to

the geometric boundary conditions, the actual solution renders the
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functional stationary.

Let us find the stationarity conditions of I. Taking into account

that $r =dwxr sn=%8wxn , 658 :GE,B andr 6i8 :6%,8 - £B><ag then
in the rotated basis 1 -] 1
6w = (1 + --8-8) (88 + =0 x80) ,
8 - & . )= K = . = = K
nag (Sa :%B) .Eu 6nKB‘]; 7 (SK(]B 6[£a ']\:B XQ)] ~Q GKKB‘V -
o — . e
= + a. x ’ = n
ANy pk B,pg T 2p ™08 Sk ek 81,5 * B
The variation of (4.6);, performed with the help of (4.5),(4.7)
and Stokes? theorem, leads to
L= = [f TP g vprsus (g + 3 «N) -0y -
M B
- %Pz - - B
€L, ng8N-n-n.6Q° 1dA + (4.8)
8 = 8
LU v =D sut IR (KPvg -H)]-6g } ds
C

The variations 6u and 66 at the boundary contour C are rot
independent, since the micro-rotations have been assumed to coincide
with the macro-rotations. This constraint condition has been explicitly
taken into account in the internal part of the shell. It has not been
taken into account at the shell lateral boundary yet. Let H :va-+Ht£

+ Hn . Note also that for small strains Ec!ét :éata =t +du/ds ,

= txn~g x0 . Then (4.8); can be transformed further into
[ [(P-P*)-8u+ (M-M*)t-6w]l ds + Z(F.-F* »éu. (4.9)
C
where
o= aB - * — - - GB X —
E=NM vatsg , F Htg , M=M"v vB s M* = Hv s
8 q 3 (4.10)
= — * - . RF* = - -
EeNlvg+qgE » B*= T+ggk*, Ej=E(s;+0) -E(s,-0)

Now from &I =0 , together with (4.8),(4.9) and (4.10), we obtain
the following stationarity conditions of I , which consist of equili-

brium equations, constraint conditions as well as static boundary and
corner conditions

B B = B
= + =
.N,|3+B ORI 'M'IB %BXN, 9 }
in M
€a8£a'ﬂe =0 Brng =0 (1)
P =P / M=M on C and F. = F¥ at each corner M, €C_.

All field variables in (4.11) are given by components in the rotated
basis r; and are understood to be expressed in terms of uy , 8 N

~
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and QB as independent variables.

H., Discussion

The non-linear shell theory based on the funetional (4.6) or on its
incremental form (4.8) has some interesting properties. The functional
depends explicitly only upon displacements u . rotations 6 and Lagra-

. . 3 . .. .
nglan multipliers N Q[ as nine basic Independent variables to be

B
s Q
ction containing at most fourth-order polynomials in u

discretized. The functional i1s linear in N and is rational fun-
, 8 and their

first surface derivatives. The latter property is of great importance

for the computerized numerical analysis of the flexible shell structu-
res. It allows to apply the simplest shape functions in the finite-~
-element analysis or the simplest difference schemes in the finite-
-difference analysis, which assure the high efficiency of numerical al-
gorithms applied and better convergence to the accurate results for
highly non-1linear problems of flexible shells.

The eguilibrium equations (u.11>1 were derived already in the pione-
ering work of ALUMAE [7], who suggested to solve them 1n the intrinsic
form, together with the compatibility conditions (3.7). For shallow
shells the set of equations was solved in [7] in terms of two scalar
stress and displacement functions. SIMMONDS and DANIELSON [10,11] expre-
ssed the basic set of shell equations in terms of finite rotations and
the internal stress resultants (or the strcss function vector ) as basic
independent variables and constructed an appropriate variational func-
tional [10]. Sevecral variational principles, involving the finite rota-
tion tensor and the stress function vector were also discussed by ATLURI
[17]. In the approach used in [10,11,17] displacement field is under-
stood to be calculated, it necessary, by additional quadratures. SHKUTIN
[15] proposed to solve the equilibrium equations (4.11);, in terms of
displacements and rotations, but rotations were still expressed through
displacements by additional differential relations. The primary differ-
ence between the present approach and that of [15] (apart from unusual
notation applied in [15]) is that in our approach the constraint condi-
tions put on the rotations in the internal shell space have been intro-
duced explicitly into the variational principle. As a result three addi-
tional physically meaningful independent parameters N , QB have expli-
citly appeared in the shell cquations.
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