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ing theorems of the theory of differential forms it is shown that many of the sets of
static boundary conditions which have been proposed in the literature do not possess
work-conjugate geometric counterparts, The general form of four geometric boun-
dary conditions and their work-conjugate static boundary conditions is constructed

and three particular cases are analyzed. The boundary conditions given here are
valid for unrestricted displacements, rotations, strains and/or changes of curvatures

Introduction

Within the nonlinear Kirchhoff-Love theory of shells,
Galimov (1950) reduced the external forces applied to the
lateral boundary surface of the deformed shell to three
statically equivalent effective force resultants and one bending
couple resultant. In particular, he replaced the torsional cou-
ple resultant by additional force resultants by applying the
same procedure which had earlier been used by Love (1927) in
the classical linear theory of shells and by Thompson and Tait
(1883) in the linear theory of plates. The rigorous validity of
those four reduced static boundary quantities was later con-
firmed by Koiter (1964) on the basis of purely static
arguments.

From variational considerations it follows that each effec-
tive force resultant should perform work on an appropriate
translation of the boundary while the bending couple resultant
should perform work on a scalar parameter which describes
the rotational deformation of the boundary. Such work-
conjugate sets of static and geometric quantities and their
related static and geometric boundary conditions have been
established for the classical linear theory of shells as well as for
various versions of the first-approximation geometrically
nonlinear theory of shells undergoing moderate rotations {cf.,
Schmidt and Pietraszkiewicz, 1981, and the references given
there). When strains and/or rotations of the shell material
elements are not restricted, however, the effective force and
couple resultants derived by means of purely static considera-
tions do not necessarily possess work-conjugate geometric
counterparts,
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of the reference surface.

On the other hand, Novozhilov and Shamina (1975) per-
formed a purely geometric analysis of an arbitrary deforma-
tion of the shell lateral boundary surface subject to the
Kirchhoff-Love constraints. They were able to show, in par-
ticular, that three translations and one scalar parameter &,
completely describe an arbitrary deformation of the shell
boundary. Unfortunately, the corresponding work-conjugate
static boundary conditions have not been given in the
literature.

A similar geometric analysis performed by Pietraszkiewicz
and Szwabowicz (1981) led to the conclusion that three
translations and an additional scalar function n, of the
displacement derivatives may also be used to describe an ar-
bitrary deformation of the shell boundary. The four work-
conjugate static boundary conditions were then constructed in
terms of n, as the natural boundary conditions generated by
the two-dimensional principle of virtual displacements.

In most other works on the nonlinear theory of thin shells,
the four static boundary conditions have also been obtained as
the natural boundary conditions of the two-dimensional prin-
ciple of virtual displacements, but this has been done without
explicit reference to the corresponding geometric boundary
conditions. Instead, it is usually assumed that the wvirrual
displacements and rotations should be kinematically admissi-
ble. As a result, in the transformed boundary line integral, the
bending couple resultant performs virtual work on some varia-
tional expression that describes the virrual rotation of the
boundary but not the variation of a scalar parameter describ-
ing the rotation itself. Various forms of the variational expres-
sion associated with different natural definitions of the bend-
ing couple have been proposed in the literature. In each case
the question arises whether the wvariational expression,
possibly multiplied by a scalar function, can be represented as
the variation of some scalar function ¢ of displacement
derivatives. Only if such a representation is possible, the four
natural static boundary quantities possess work-conjugate
geometric counterparts.

The aim of this paper is to investigate the problem of ex-
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istence and to derive the general form of the work-conjugate
sets of static and geometric boundary conditions for the
nonlinear theory of thin shells expressed in terms of
displacements as basic independent field variables. In the
analysis it is only assumed that the deformation of the shell as
a three-dimensional body is completely determined by the
stretching and bending of its reference surface. This assump-
tion is far less restrictive than the usual Kirchhoff-Love con-
straints. In particular, the deformation of the shell in the
direction of the normal to the reference surface is not
restricted by this assumption.

A new and entirely general approach to the problem of
work-conjugate boundary conditions is developed here. It is

shown that at any point of the boundary, each of the varia- -

tional expressions associated with the bending couple resultant
may be regarded as a differential 1-form w on a suitably de-
fined six-dimensional manifold of displacement derivatives.
Then the theorem of Poincaré provides the necessary condi-
tion for w to be exact, i.e., of the form w = ¢, and the
theorem of Frobenius provides the necessary condition for w
to be integrable, i.e., of the form uw = 8¢, where u is an in-
tegrating factor. Applying those theorems to various varia-
tional expressions proposed in the literature, their exactness
and integrability is established. In particular, it is proved that
the variational expression used originally by Galimov (1951)
and in various different but equivalent forms in many subse-
quent papers, is not integrable. In such formulations of the
nonlinear theory of shells the four natural static boundary
quantities do not possess work-conjugate geometric
counterparts.

The general procedure is worked out for the transformation
of a nonintegrable 1-form into an integrable 1-form for which
the primitive is obtained using a method of integration of total
differential equations. This primitive is an arbitrary scalar
function ¢ of the displacement derivatives. Associated
general expressions for the natural force resultants and bend-
ing couple resultant, which perform virtual work on variations
of the respective displacement components and of the function
¢, are derived. Three particular definitions of ¢ are discussed,
and the work-conjugate static boundary and corner conditions
corresponding to the geometric boundary conditions of
Novozhilov and Shamina (1975) are established.

Notation and Basic Relations

In this paper we largely rely on notation used by Koiter
(1966) and Pietraszkiewicz (1977, 1979).

The position vectors of the undeformed and deformed
reference surface M and M of the shell are denoted by r(6%)
and f(©®), respectively, where ©%, =1, 2, are convected
(material) surface coordinates. At each point Me€M we have
the natural base vectors a, = dr/d0% =r,_, the unit normal
vector n = 1/2¢*fa_ X a4, the covariant metric tensor a,5 =
a,-a, with its determinant ¢ = det a,5 >0, the curvature ten-
sor b,; =— a,+n,5, and the permutation tensor ¢,4 =
(a, xag)en. The reciprocal base vectors a®* and the con-
travariant metric tensor @*® are then defined by a®+a; = &3
and a*® = a%s+af, where 8§ denotes the Kronecker symbol. In
what follows Greek indices always refer to the coordinates <,
and for a diagonally repeated index the summation convention
will be invoked.

The boundary C of M is assumed to consist of a finite set of
piecewise smooth curves with the position vector r(s) = r
[8%(s)], where s is the arc length along C. At each regular
point MeC we denote the unit tangent vector by t=r" = a_t*
and the outward unit normal vector by » = r,, = a,»* =
txn, »* = ¢, Here, (.)’ indicates differentiation with
respect to the arc length s and (.),, denotes the outward nor-
mal derivative at C.

Consider now an arbitrary smooth deformation M—M of
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the shell reference surface and let u(8*) = u*a, + wn be the
associated displacement field such that £ = r + u. To
distinguish all geometric quantities defined on M and on its
boundary C from those on M and C we use an overbar, e.g.,
a,, N, d.g, b, », [, etc. The deformation of the shell
reference surface may then be expressed in terms of the
geometry of M and the displacement field u. In particular, we
obtain (cf., Pietraszkiewicz, 1980, 1984a)

a,=f,,=a,+u0,, , ;ﬁ=—;—j-'euﬂf,a X g, (la)
1 . M
Yo =5~ (aaa—”aa)=T (Fro*Fog—dgg), (1)
Kopg = = ( Dog—bog) =Foqoii g+ bog, (1¢)
a_ 4 _ U s . : .F
Fr=—m = (F,0°Fsp) (Fra=Fy). (19)
Similarly, along the boundary we have
Fr=dgtf=t+u' =¢,v+ct+en, (2a)
i, =28 =r+u,,, (2b)‘
n=j"'F, Xf =nwmtnt+nn, (2¢)
J=| X E =] = (F, ) (2d)
For future reference we also note the following relationships
A,=f =4l 4,=3a,x0=4,7 (3a)
a,=|F’|=V1+2y,, a, =va,, 3b)
£,,=4a,7 ' (ji+2y,1), 3¢)
88 =1 (4,8 —2y,d,” ') +d,” 1L, (3d)
2y, =2'ya3v”t5 =r,,*f', 27, =2-yﬂﬁt“t“’ =| f’|" —-1. (3e)

Statement of the Problem

We are concerned here with the class of nonlinear theories
of thin shells for which the deformation of the shell as a three-
dimensional body is completely determined by the stretching
and bending of its reference surface. A common feature of
various shell theories within this class is that their equilibrium
conditions may be expressed by the following principle of vir-
tual displacements

SSM (Nﬂﬂ&yaa + M"ﬂbxuﬁ)dA = SSM (p-dr+h-én)dA

+ Scf (T-ér + H-6n)ds. “)

In (4) all quantities are defined with respect to undeformed
reference surface M (Lagrangian description) and C; is the
part of C where the external boundary force and moment
resultants T and H are prescribed. The Lagrangian surface
strain measures v,4 and «,, are defined by (1, ¢) while i on C
is given by (2¢, d). The mechanical variables N°¥ and M*? in
(4) are two-dimensional symmetric second Piola-Kirchhoff
type stress resultant and stress couple tensors while p and h are
the external surface force and moment resultants on M. Ex-
plicit expressions for N°4 M*8 and p, h, T, H in terms of three-
dimensional surface and body forces and of the reference sur-
face deformation depend on the particular type of nonlinear
shell theory employed.

In view of (14, ¢), the only independent variable undergoing
variations in M is the position vector r (or, equivalently, the
displacement vector u). Therefore, applying the standard
variational procedure, the principle (4) may also be rewritten
in the form
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- HM (T2, + p)edidA + Xc [(TP5,)+5F + (MP4_v,) 5] s

+ Sc_, [(TPyy —T)-8F + (MSd_vs —H)+80)ds =0,  (5)

where
TA =N8a_+ M=Sn, + [ [(MM4,)], +h]"ﬁ" In, (©)]

and C,, C = C,U C,, denotes the part of C where the
geometric boundary conditions are prescribed. Also, (.); 4 in-
dicates covariant differentiation in the metric of M. From (5)
we directly obtain the familiar equilibrium equations

Tﬂ|ﬂ+p=0iﬂM. (7)

The derivation of static and geometric boundary conditions
which are consistent with (4) and (5) is, unfortunately, not
straightforward and unique and has up until now never been
performed in complete generality. Note that i is not an in-
dependent variable on C, since by virtue of (2¢, d) it is the
function of f,, and r’. Rather, the independent variables
undergoing the variation on C are the position vector r (and,
hence, F’) and its outward normal derivative r,,. Those
variables, however, have to satisfy two identities

along C. ®

These identities imply that three components of r (or u) and
one additional scalar function of position (or displacement)
derivatives, say o(f,, &), are necessary and sufficient to
describe the shell deformation along its boundary uniquely.
Consequently, the number of corresponding static boundary
conditions can also be reduced to four.

The static boundary and corner conditions may be obtained
from (4) as the natural boundary conditions. Indeed, perform-
ing the variation of (2¢) directly or varying the identities (8),
&n may be written in the form

Fefi=0, fA-n=1

dfi= —rya® (De8F,, ] — 1528 (B06F"). (9a)
The expression (92) may now be substituted into the second
line integral of (5) and, subsequently, all terms containing &r’
may be eliminated by integration by parts. This leads to a
reduced form of the line integral along C, and some additional
terms at each corner point M, € Cr,n = 1,2, ..., N.Forar-
bitrary éf and n«éf,, along C; and ér, at each M, € C, their
multipliers should vanish identically, which then gives four
natural static boundary conditions along C; and three natural
static conditions at each corner M,, € C,.

The derivation of static boundary and corner conditions in
the way just outlined is not unique, however, since using (8),
5n may also be expressed in several other, though essentially
equivalent, forms such as, for example,

Sn = b {pedn) —% £’ (ReéF"), 9b)
1

1
a

(9¢)

[a, {p+dit] +v¥X 1 (n-dr")].

Still other forms will be discussed subsequently. Each of the
possible forms of ém may be used for the derivation of a dif-
ferent set of natural static boundary and corner conditions,
and each set of conditions will be consistent with the principle
of virtual displacements (4). In particular, the corresponding
bending couple resultant, which in each of the cases of (9) is
defined by a different expression, performs virtual work on
the respective variational expression fiéfr,,, g+on or veén.

In the variational principle (4) all virtual displacements are
assumed to be kinematically admissible, so that the first line
integral over C, in (5) must vanish identically. It will be shown
in Chapter 5 that for any given set of the four geometric

Journal of Applied Mechanics

parameters F, ¢, which describe an arbitrary deformation of
the shell boundary, the kinematically admissible virtual
displacement field indeed satisfies the kinematic constraints ér
= 0 and én = 0 along C,. In view of expressions (9), the
vanishing of the line integral over C, in (5) is also assured by
the fulfillment of only four kinematic constraints, that is by &r
= Qand a+6f,, = 0, #=6n = O or »-én = 0, respectively, along
C,,and 6f,, = 0 ateachcornerM, €C,,m=1,2, ..., M.
It is apparent that the constraint 8f=0 is equivalent to the
geometric boundary conditions f=f* along C,, and that ér,,
= 0 corresponds to the geometric corner condition f,, = £ at
each M,, ¢ C,, where (.)* denotes the prescribed value. It is
pot immediately obvious, however, what kind of scalar
parameter should be prescribed on C, in order to satisfy the
fourth kinematic constraint a+dr,, = 0, 7+dii = 0 Or »-én =
0, respectively. The question thus arises whether there exists a
scalar function (F,,,f’) such that its variation will coincide
with n«ér,,, #+én or »-6n, possibly multiplied by some other
nonvanishing scalar function u (¥,,,f’). When such a ¢ does
exist, the fourth geometric boundary condition takes the form
¢=¢"* along C,. Only in such a case are.the four natural static
boundary conditions generated from (5) and (9) work-
conjugate to the geometric ones.

In the particular case of a pure rotation of the shell bound-
ary, i.e., when three translations are prescribed, Zubov (1982)
showed that such a scalar parameter ¢(f,,) is the solution of an
integrable Pfaffian equation. Later particular definitions of
the parameter ¢ were discussed by Zubov (1984). In this paper
we develop an alternative and entirely general approach to the
problem of existence and of the form of the parameter . This
approach is valid for an arbitrary deformation of the shell
boundary.

Integrability Conditions

Let w denotes any variational expression of the type en-
closed in braces in (9). Its general form is

w=A(f,,,£')*5F,, + B(F,, i) 5", (10)

where vector-valued functions A and B must be specified for
each particular case.

The w defined by (10) may be considered as a differential
I-form on the infinite-dimensional space consisting of the
ordered pairs (F,, (5), F’ (s)) of vector-valued functions defined
along C (cf., Cartan, 1970). However, for our present pur-
poses it is sufficient to consider w at an arbitrary fixed point M
€ C. Then w, as defined by (10), may be regarded as a differen-
tial 1-form on the six-dimensional manifold X with local coor-
dinates ¢;, i=1, 2, ..., 6 (in a neighborhood of x, € X),
which may be identified with components of (f,,, f") in the or-
thonormal base {», t,n}, i.e.,

(1

Here x, with local coordinates (1, 0, 0, 0, 1, 0) signifies the
undeformed state of the shell boundary. Thus, the I-form w
may be rewritten as

(§)=(rer,,, teT,,, NoF,,, peT’, tof’, ner’).

6
w= 3, A,(&) 8¢,

i=1

(12)

where 8¢, are understood to be differentials in the usual sense
andA4,,i=1,2,...,6,are defined as components of (A, B)
in the base {», t, n}, that is

(A4;,)=(r+A, t<A, n-A, v+B, t«B, n+B). (13)

The interpretation of w as a differential 1-form makes it possi-
ble to apply some basic definitions and theorems of the theory
of differential forms (cf., Cartan, 1970, Westenholz, 1981).
For convenience they are briefly summarized below in our
notation.

The 1-form (10) is said to be exact on X if there exists a
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scalar-valued function ¢ (f,,,r"), called the primitive of w,
such that w = 8¢, i.e., d¢/dr,, = A and d¢/dr’ = B. Ac-
cording to the lemma of Poincaré, the necessary condition for
« to be exact. is dw=0, where dw denotes the exterior
derivative of w. In the notation of (12), the condition dw = 0
reads

Ay =Ap=0forij=12,...,6, (14)

which implies that the matrix 34,/38; = A;,; has to be sym-
metric. In a sufficiently small neighborhood of x, € X the con-
ditions (14) are also sufficient for w to be exact.

The 1-form (10) is said to be integrable on X if there exist
scalar-valued functions u(r,,, F), called the integrating factor,
and ¢(r,,, F’) such that pw = 8¢, i.e., u~! (dp/dF,,) = A and
p~! (Bp/3r’) = B. According to the theorem of Frobenius,
the necessary condition for w to be integrable is wAdw = 0,
where A denotes the exterior product. In a sufficiently small
neighborhood of x, € X this condition is also sufficient for w
to be integrable. In the notation of (12) the integrability condi-
tion wAdw = 0 takes the form (cf.. Ince, 1956)

Ai(Agj—Ap)+Aj (A — A+ A (A, —A,)=0  (15)

fori,j,k=1,2,...,6.There are twenty such equations of
which only ten are independent. It is obvious that the exact
1-form is integrable and that pw is exact if w is integrable.

Now we are in a position to discuss the problem of existence
of the fourth geometric boundary condition corresponding to
various variational expressions enclosed in braces in (9). Con-
sider the case (9b) for which the natural static boundary condi-
tions were given first by Galimov (1951) and were rederived in
different but equivalent forms in many subsequent papers. In
this case w = »+0n, and the corresponding vector-valued func-
tions A and B, calculated with the help of (94) and (3d), take
the form

i

BIZdraljil'Ywﬁv (16)

where all quantities on the right-hand sides are functions of r,,
and 7’ given by (2¢,d) and (3¢). Differentiation of (16), with
respectto r,, and r’, gives

dA

A=—dj'n,

PP =a%"? G@n+n®#), (17a)
dA _ T
=i 1@h- 2, (ﬁ®ﬁ+ﬂ®ﬁ)=(—%—) . (17b)
B ) .
W”’:_z M@®p+4/"2y% (GOR+NR®F)

—2ly, (®@i+a@D]. (170)

Since (17a) is symmetric and (175) holds, (17¢) leads to the on-

ly nonvanishing expression

aB aB\T
= (5) =4 G- @,

ar’ or’

(18)

Therefore, conditions (14) are identically satisfied for any
combination of i, j € (1, 2, ..., 6) except for (i, j) = (4, 5),
(4, 6), and (5, 6). As aresult, the I-form w = 7+dn is not exact
on X.

If components of (17) are introduced into (15), the in-
tegrability conditions are satisfied identically for any com-
bination of i, j, k € (1, 2, .. ., 6), except for such combina-
tions in which any two of three indices i, j, k assume the values
(4, 5), (4, 6) or (5, 6) while the remaining third index assumes
the value 1, 2 or 3. For example, it is easy to see that for (7, j,
k) = (1, 4, 5) the left-hand side of (15) is 4, 'j~! (ven)(m-t),
which does not vanish identically. As a result, the 1-form w =
7+6n is not integrable on X.

The variational expression #+8n may itself be represented in
several different but equivalent forms. If 8 = n — n s the dif-
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ference vector, then én = 88 and 5+6n = #+868 = 8f,, which
was used by Pietraszkiewicz (1977). However, in the expres-
sion 63, the symbol & should not be understood as the symbol
of variation, since so defined 68, # 6(5+8).

The total rotation of the shell boundary is described by the
total rotation tensor R, = »@»v+t1@t+i®n such that i =
R,n (cf., Pietraszkiewicz, 1979). The skew-symmetric tensors
SR,RT and RBR, can be associated with the respective axial
vectors of virtual rotation éw, and éw, such that

8R,RT=bw, x 1, RT SR, =éw, X 1,
dw, =R,éw,,

(19a)
(195)

where 1 is the metric tensor of the three-dimensional Eucli-
dean space. Since i = 6w, X =R, (§w, xn), it follows that
78R = dw,-t = dw,t. An expression analogous to bw,*{ was
used in a number of papers, for example, by Wempner (1981),
Sakurai et al. (1983), and Axelrad (1987) while éw,+t may be
found in the recent paper of Szwabowicz (1986). Likewise, in
the definitions of dw, and éw, the symbol & should not be
understood as the symbol of variation, since the symbols w, or
w, alone have no geometric meaning.

The variational expression 7+ may also be transformed as
follows: '

Pedli= —Redb= —Nedf,, = (20a)
= — (@+0F),; + b8 #%a,+6F. (208)

The expression (n+6r),; was used by Koiter (1966), Danielson
(1970), and Zubov (1982).

From the discussion just presented it is seen that, as far as
their representations in terms of derivatives f,, and r’ are con-
cerned, all differential 1-forms 88,, dw,+t, dw,st, — f+d5 and
— n-dr,; are equivalent to the 1-form #+8n, i.e., all 1-forms
are defined by the same expression (10) with (16). As a result,
neither of those I-forms is exact or integrable as well. In all
cases there exists no function ¢ such that u#-6i = 6¢, and the
natural bending couple generated by (5) with (9b) does not
possess a work-conjugate geometric counterpart. In the
language of analytic mechanics, this means that all kinematic
constraints which are equivalent to #6n = 0 are
nonholonomic constraints. As a result, all those versions of
the nonlinear theory of thin shells, in which the natural static
boundary conditions are constructed with the help of (5) and
(9b), can not be presented in a variational form which requires
a functional to be stationary. In particular, it immediately
follows from this discussion that several variational principles,
which have been proposed in the literature for such versions of
geometrically nonlinear first-approximation theories of elastic
shells, must be incorrect.

The discussion of the exactness and integrability of two
other differential 1-forms appearing in braces in (9a) and (9¢)
is given in the Appendix. There is proved that w = n+ér,, also
is not integrable on X, while at the same time it is confirmed
that w = »-8n is indeed exact on X.

It is quite obvious that »+6n is exact because » is not varied
and, therefore, w = »eda=34(yen) = dn,. As a result, the
specification of f and n, along C, establishes those geometric
boundary conditions which are work-conjugate to the cor-
responding static ones following from (5) and (9¢). Such a
complete set of the work-conjugate boundary conditions was
originally derived by Pietraszkiewicz and Szwabowicz (1981)
with the help of a modified tensor of change of curvature and
rederived by Pietraszkiewicz (1984a,b) using .5 defined by
(1c). Within the geometrically nonlinear first-approximation
theory of elastic shells, this led to a number of results on varia-
tional principles, consistently approximated relations for
shells undergoing restricted rotations, stability equations, and
superposed deformations, which have been summarized by
Szwabowicz (1982), Pietraszkiewicz (1984a), Schmidt (1985),
and Stumpf (1986) where further references are given.
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General Form of Boundary Conditions

The differential 1-forms previously discussed are only ex-
amples of the variety of 1-forms which may appear in the
boundary line integral of the principle of virtual
displacements. Each particular 1-form generates a different
set of the natural static boundary and corner conditions on C,.
Indeed, each of the 1-forms enclosed in braces in (9) may be
multiplied by a nonvanishing scalar function 75(r,,,f’). This
leads to a modification of the corresponding natural boundary
condition for the bending couple resultant which essentially
consists of a division by 5. Furthermore, an additional term of
the type e(f,,,f")*6f’ may also be added to each of the
1-forms. If, then, the same term is substracted from the
1-form one obtains, upon substituting (9) into (5) and in-
tegrating by parts, appropriate modifications of the cor-
responding force boundary and corner conditions. Among the
variety of the l-forms, which may be obtained by such
transformations, the most important are the exact, or even on-
ly integrable 1-forms, since only those 1-forms generate the
proper natural static boundary and corner conditions which
are work-conjugate to the geometric ones.

Let the expression (9a) be rewritten as

= —pg j~'4P {d6F,,} —tgaf (ReSF°), 21
d=F, Xi'. (22)
The simple variational expression appearing in (21),
O0=d«br,, =A 8¢, + A8, + A;6¢,, (23)
A =bbe— bk, Ay=58, -8 ks Ay =E 55 - bk, (24)

may also be regarded as a differential 1-form of the type (10)
on the six-dimensional manifold X, only in this case B = 0. It
is easy to verify that the 1-form (23) is not integrable on X, for
the conditions (15) are not identically satisfied when, for ex-
ample, (i, j, k) = (1, 2, 4). Our aim is to transform the expres-
sion (23) in such a way as to represent it in terms of an exact
1-form. y

Suppose, for a moment, that r is prescribed along C. Then
so is F’ and, hence, the coordinates £,, £, £ are not varied
but rather play the role of parameters in (23). Thus, (23) may
now be regarded as a differential 1-form on the three-
dimensional submanifold YC X with local coordinates §,, £,,
;. It then follows from (23) that for different /, j € (1, 2, 3)
A;; # Aj;, and the 1-form & is not exact on Y. There is only
one integrability condition (15) for (i, j, k) = (1, 2, 3). Using
(24), it is easy to verify that this condition is identically
satisfied. Therefore, the 1-form ¢ is integrable on Y. In order
to find its integrating factor and its primitive on Y, we follow
the method of integration of total differential equations (see
Ince, 1956, Section 2.8).

Let, for a moment, one of the coordinates £; be constant.
Since in the undeformed configuration 4; = I, &5 = 1, it is
convenient to assume this to be £,. Then the I-form d=A4,
(&;)dE, + A,y(E,)dE,, given on the two-dimensional sub-
manifold ZC Y with local coordinates £, &4, is always in-
tegrable on Z. [ts integrating factor then is A = — £;/4,A;
and its primitive is given by x=In|A4,/4,| . If now £, is again
allowed to vary, that is, the 1-form ¢ is again supposed to be
given on Y, then the functions A(¢;) and «(§)), i=1, 2, 3,
previously calculated allow one to evaluate the function S (x,
£,) = M, —«,,. In the present case it vanishes, so that S = 0.
As a result, N\ (&;) is the respective integrating factor and «(§;)
is the primitive of the I-form ¢ on Y, such that Ad =4« holds.
This can easily be confirmed by a direct analysis. Moreover,
B (k) is also the primitive of d for any differentiable scalar
function B so that, as a result, the general form of the
primitive of 9 on Y is given by 8 (In[ | | (A4,/43)]} =
h(A,/A,), where h is an arbitrary differentiable function (cf.,
Zubov, 1984).
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If one follows the same procedure keeping &, or &; tem-
porarily constant, one finds that &(A4,/A4,) or /(A,/A,) are
also primitives of ¢ for arbitrary differentiable functions k
and /. But from the identities (8), the fact that r is prescribed
along C and the arbitrariness of A, it is seen that primitives k
and / are different but equivalent forms of the primitive A.

Now we remove the initial constraint that r is prescribed
along C and allow it to vary again. Thus, we return to the
{-form ¢ given on X, according to (23) and (24). Let o(f',a),
a=A,/A, = n,/nbe an arbitrary differentiable scalar-valued
function of its arguments. The variation of « then leads to

o= —Ay72 (£5d05F,, — £,de8r"), (23)

which allows one to derive the expression for the variation of
¢ in the form

Sp=ndebF,, + codF” (26)

TI="A3—255X, C=A+A3-zzzxd, (270)
d¢ dyp

X: N ] 27b

aF’ da (@76)

It follows from (26) that we have, in fact, constructed the
scalar-valued function 5(r,,,F ") and the vector-valued function
¢(r,,, ') which have allowed us to transform the
nonintegrable 1-form (23) into the exact {-form  defined by
the right-hand side of (26), such that ¢ = §¢. If now (26) is
solved for d-ér,, and the result is introduced into (21) we ob-
tain

Sii=acv, f (8p) — &% ([pfA+ (g + L )il+5i"),  (28)
b L (anmen
Ik Y TE ( Je +27">' @

This is yet another expression for &a. It differs qualitatively
from (9a, &) and (21), since it is given directly in terms of the
exact 1-form d¢.

If now (28) is substituted into the boundary integral of (5)
and the term containing 8f’ is eliminated by integration by
parts, the integral takes the final form

SC [(P—=P*)edr +(M—M*)op]ds + E ¥,~Fye-or,, (30)
/ n

where the effective force resultants and the bending couple
resultant are defined by

P=TPv;+F', F=/M, A+@EM, +M)4, (3la)

P =T+F*", F*=(H-3%) [va/A+(vzg + )], (31b)
M=fM,,, M*=f(H-av;), (31c)
F,=F(s, +0)— F(s, —0), F1 =F*(s, +0)~F*(s,—0), (31d)
Fo = F(5,)s Ble)

M, =MBy s, M, =M5y 1, G31H

From (5) and (30) it follows that the static boundary and cor-
ner conditions take the form

P(s)=P*(s), M(s) =M"(s) on C,
F,=F, at each corner M, € C,.

(32a)
(32b)

Furthermore, it is seen from (5) and (30) that the geometric
boundary conditions which are work-conjugate to the static
ones (32) are given by

1) =r"(s), o[F'(5), a(s)]=¢*(s) on C,, (33)
where, by definition, a(s) =« [F,,(s), £'(5)]. It also follows
from (30) and (28) that f is kinematically admissible if ér=0
and &¢ = O on C,. Hence, 611 = 0 on C, as well.

The general forms (32) and (33) of four work-conjugate
static and geometric boundary conditions are derived here in
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terms of the function ¢(f’,a) in which a=n,/n is an in-
termediate variable. The analysis clearly indicates that the
choice of a by no means is the only possible choice of such an
intermediate variable. Other scalar functions of f,,, r’ may
also be chosen instead of «. However, since ¢ is an arbitrary
function of its arguments, this would lead to formally dif-
ferent, though essentially equivalent representations of the
boundary conditions.

It follows from the analysis that o(F’, «) should be differen-
tiable with respect to both arguments. The definition of fin
(29) indicates also that d¢/da should not vanish identically in
some neighborhood of the undeformed shell boundary.
However, in order to be physically meaningful, ¢ has to
satisfy a number of additional requirements based on
mathematical and mechanical considerations. This allows one
to arrive at a more restricted class of admissible scalar func-
tions for the description of rotational deformation of the shell
boundary. In particular, ¢ must vanish in the undeformed
state, that is ¢(t, 0) = 0, and upon linearization it should coin-
cide with the linearized rotation of the shell boundary ¢, =
n-u,, which is used in the classical linear theory of shells. It is
also reasonable to require ¢ to be a monotonous function of
«, at least in some neighborhood of the undeformed state.

Some Special Cases

We close our considerations with a brief discussion of some
particular definitions of ¢ which may be used in the nonlinear
theory of thin shells. For any choice of ¢, the corresponding
work-conjugate static boundary conditions may be derived
directly from (32), (31), (29), and (27b).

It follows from (2a) and (2b) that the identities (8) imply
that

n,o
- —-c; ' (c,a+0), (34)
I=1+a’+c;2 (c,a+c)?]" 1. (35)
Therefore, it may be expressed as the function of £ and «,
A(r’,a)=nlav—c; ! (c,a+o)t+n], (36)

where n is to be determined from (35). For an arbitrary defor-
mation of the boundary the sign of », following from (35), is
not unique. However, it follows from (2¢) and (24) that in
some neighborhood of the undeformed state, n must be
positive.

It immediately follows from (36) that n, = »-i is a par-
ticular case of ¢ indeed. The corresponding work-conjugate
static boundary and corner conditions were given by
Pietraszkiewicz (1984a, b).

Novozhilov and Shamina (1975) used the fourth geometric
boundary parameter ¢, defined by

J,=a;% (n—n)-a,. 37
From (3a) and (36) it is seen that
i, =nl(c, —c— v i (ca—e )+ (c,—— —c,a)nl,  (38)
n
and, according to (36) and (37),
Y,=nd;? [ca+c e, (c,a+)]. 39

Therefore, ¢, = ¢, (F’, ) is also a particular case of ¢. Let us
derive the corresponding work-conjugate static boundary
conditions.

Taking the variation of (37), and introducing it into the ex-
pression (9a) multiplied by a,xn, we obtain after some
transformations

da=n"1a,p80,+ (n~"' [29,3R1

+a7 @ (X n)] - d ' T®n ) -5F . (40)
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Note that the expression (40) has the same structure as the
general expression (28). Introducing (40) into the line integral
of (5), we finally obtain the following definitions for the
natural static parameters on the boundary which are work-
conjugate to the geometric parameters r and o,

F=WM,, +2d7 3y M, a—jn"'a;'M,, (29,t+4,~'ixn),

(4la)
F*=g7! (H-Yia-n"' (H»)QRO,1+4;'ixn), (41D)
M=jn"'M,,, M*=n""'a,(H-¥). (41¢)

Thus, the set of work-conjugate boundary conditions takes
the general form (32) and (33), except that d, [f,,(s), ¥’ (s)]
stands for ¢ in (33), and definitions (41) are used in (32).

Finally, the rotational deformation of the shell boundary
may also be described by the total rotation tensor R,. Noting
(3a), (2a), and (36) it is seen that the tensor R, referred to the
undeformed base vectors takes the form

R! :a-l—ln ([[C’ +C,'XC‘(C,a+C)]v¥(Ca—C,)t—
—le,c; ! (c,at ) +caln)@v+n~1(c,y+ct+m)@t

+[aw—c; ! (c,a+)t+n]@n). (42)
It follows from (42) and (2a) that R, = R,(f’,a) and the
parameter ¢ may be defined as some scalar function of R,
that is ¢ =¢(R,). In particular, the angle of total rotation w,
corresponding to R, is given by w, = arccos (1/2 trR;—1/2),
where it follows from (42) and (34) that

trR, =n? [1+é? (c,ca—c?)). 43)

Therefore, the angle of total rotation », may also be chosen as
the fourth geometric parameter of the boundary deformation.
This choice has been found by Simmonds (1985b) to be the
most natural one in the displacement form of nonlinear equa-
tions which govern an axisymmetric deformation of shells of
revolution.

The work-conjugate static boundary conditions corre-
sponding to the particular cases of ¢ discussed above, are ob-
viously quite complex. More suitable particular forms of ¢
may be obtained under additional, more restrictive,
mathematical and mechanical requirements.

Concluding Remarks

In this paper an entirely general approach to the derivation
of the work-conjugate static and geometric boundary condi-
tions has been developed for a class of nonlinear theories of
thin shells. In this approach, basic theorems of the theory of
differential forms have been applied to various variational ex-
pressions which may appear in the boundary line integral of
the principle of virtual displacements. It has been shown that
the majority of static boundary conditions, which have been
proposed in the literature, do not possess work-conjugate
geometric counterparts, because the corresponding differen-
tial forms are not integrable. Such static boundary conditions
are, however, hardly acceptable in the consistent formulation
of the nonlinear theory of shells.

The general forms of the four geometric boundary condi-
tions and of the corresponding work-conjugate static bound-
ary conditions have been derived for the first time in the
literature. They have been expressed in terms of an arbitrary
scalar function ¢ of displacement derivatives which describes
the rotational deformation of the shell boundary. Since ¢ is
arbitrary, one has a wide range of possibilities to choose the
form of boundary conditions to be used in the nonlinear
theory of thin shells. This freedom of choice enables one to
select ¢ in such a way that it best suits the particular version of
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the shell theory or the particular shell problem at hand. As an
example, three particular definitions of ¢ have been discussed.

In the analysis it has been assumed that the deformation of
the shell as a three-dimensional body is entirely determined by
the stretching and bending of its reference surface. No restric-
tions have, however, been imposed on the magnitudes of the
displacements, rotations, strains and/or changes of curvatures
of the reference surface. There is not even a need to specify the
material behavior of the shell, since the principle (4) itself does
not require N** and M*# to be derivable from a strain energy
function. Therefore, the boundary conditions derived here are
valid for a large class of three-dimensionally different (even
inelastic) shell theories which have the same two-dimensional
mathematical structure implied by the principle of virtual
displacements (4). This generalizes considerably the results
available in the literature for some simple versions of
nonlinear theory of thin shells.

For any shell theory it is necessary to specify on M and C;
how the ficlds ~¥N*9, M=6 p, h, T, H are related to the cor-
responding three-dimensional external surface and body
forces and to the deformation of the reference surface. For the
geometrically nonlinear first-approximation theory of thin
elastic shells such definitions have been given, for example, by
Pietraszkiewicz and Szwabowicz (1981) and Pietraszkiewicz
(1984b). In simple versions of the finite-strain bending theory
of elastic rubberlike shells developed by Chernykh (1980) and
Simmonds (1985a), the corresponding definitions should also
explicitly take into account the appropriate approximate form
of the shell deformation in the transverse normal direction. As
was noted by Stumpf and Makowski (1986) and Makowski
and Stumpf (1986), the finite strain theory of elastic shells may
have a richer mathematical structure than the one discussed
here, if the transverse normal strains are fully accounted for.
However, in the majority of cases it is usually sufficient to ex-
press the transverse normal strains in terms of the stretching
and bending of the reference surface.

The work-conjugate boundary conditions derived here
allow for a thin shell to formulate properly the nonlinear
boundary value problem in terms of displacements as basic in-
dependent field variables. Such displacement form of
nonlinear shell equations is used most often to analyze prob-
lems of flexible shells. In the case of conservative loads the
work-conjugate boundary conditions allow to construct
various functionals, whose stationarity conditions are
equivalent to the proper field equations and boundary
conditions.
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APPENDIX

Let us verify the exactness and integrability of the 1-form
w=n+8f,, appearing in (9a). In this case A=1, B=0 so that
the differentiation of (2c) gives

EYN . B _ B
=—dj ' = =0, Al

e, A/ Ten, = (4la)

~2d )1y, i @0 —d, " t®R, (A1b)

ar’

what implies that the conditions (14) are not satisfied and the
1-form f«6F,, is not exact on X. If we introduce (A1) into (15),
eleven conditions of (15) are identically satisfied while nine are
not satisfied. For example, the left-hand side of (15) for (i, /,
k) = (1, 3, 4)is j=! (v+n){, what does not identically vanish.
As a result, the 1-form n+6r,, is also not integrable on X.

In the case of the 1-form »-8n it follows from (9a) and (3d)
that

A= —d,j '(vei)n, B=qd,~'(2j 'y, pep—rn. (A2)
Differentiation of (42) with (2) and (3) gives
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JB

FF =4¢%? [(per)(P@ N+ A ) ~ (veR)AQN], (A3a) -—-éF—=2d,'2j"y,,(2j"-y,,voi—~v-l)(ﬁ®ﬂ+ﬁ®ﬁ)+
I,
+a; 2ot =2 7y, e )A@0 + @) - (A3
—g_ﬁ,a —2j"2y,, (e H)FOR+ARF) +j(r AR =472 (1 +4j "2yl )(v-R)A @ .
r

Since (A3a) and (43c) are symmetric and (A35) holds, th
component matrix A, ; is also symmetric and all the condition

B \T o Ayt o
T (e @R+ 22y, (reR)A@ A = ( e ) (A3b) ;lcl:)oanre{;dentlcally satisfied, Therefore, the 1-form »+6n is ex
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