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Abstract—A non-linear bending theory of rubber-like shells undergoing large elastic strains is
proposed. The theory is bascd on a relaxed normality hypothesis and the incompressibility condition.
Using series expansion in the normal direction and applying some estimation technique a consistent
first approximation and a simplest approximation to the elastic strain energy of the shell are
constructed. Lagrangian displacement shell equations are derived and the incremental shell defor-
mation is considered. The numerical results presented for one- and two-dimensional large strain
shell problems confirm the accuracy and efficiency of the proposed shell theory.

I. INTRODUCTION

The classical geometrically non-linear theory of thin isotropic elastic shells as developed by
Aron, Love, Chien, Mushtari, Galimov, Alumyae and Koiter, to mention only a few veteran
names, has reached a certain degree of completeness in the last two decades. We refer to a
comprehensive review by Pietraszkiewicz (1989), where extensive references are given.
Within this classical theory the adequate description of shell deformation can be based on
the simple kinematic hypothesis that normals to the undeformed reference surface remain
normals and inextensible during deformation. This allows the transverse shearing and
normal strains to be ignored from the outset in the description of shell kinematics. However,
the effect of change in the shell thickness due to the normal strains is taken into account in
the constitutive equations by using an independent static hypothesis about the approxi-
mately plane stress state in the shell. As a result, the two-dimensional surface strain energy,
being a sum of two quadratic functions describing the stretching and bending of the shell
reference surface, is the consistent:first approximation to the three-dimensional shell strain
energy [see Koiter (1960)]. Based on this classical theory efficient computer programs were
developed and applicd to analyze a number of highly non-linear problems of one- and two-
dimensional deformation of thin elastic shells within the full unrestricted range of finite
displacements and rotations [see e.g. Nolte (1983) and Nolte er al. (1986)]. During the past
few years shell theories with additional rotational degrees of freedom had been presented,
accounting also for shear deformation [sce e¢.g. Gruttmann et al. (1989), Basar and Ding
(1990) and Simo er al. (1990)].

The aim of this paper is to derive a non-linear bending theory of rubber-like shells
undergoing large elastic strains. Contrary to the classical small-strain theory, in this case
the effect of transverse normal strains becomes of primary importance and should be
taken into account not only in the two-dimensional constitutive equations, but also in the
description of the shell kinematics. In the first papers devoted to this problem it was usually
assumed that normals remain normals but are allowed to change their length. The uniform
deformation in the normal direction due to stretching of the shell middle surface was
taken into account by Biricikoglu and Kalnins (1971), while Chernykh (1980, 1983) also
considered the quadratic normal deformation due to the stretching and bending of the
middle surface. These results werc extended by Stumpf and Makowski (1986) who proved, in
particular, that within such a modified normality hypothesis the incompressibility condition
allows the determination of the non-linear distribution of strains in the normal direction,
in closed form. On the other hand, Simmonds (1985) assumed from the outset that the state
of a thin shell is entirely described by the change of the mid-surface metric and curvature
tensors. With the help of invariance requirements it was then shown that the corresponding
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surface strain energy function should be quadratic in the bending strains and of the same
form as for a flat plate.

A more general theory for shells undergoing large rotations and large strains was
proposed by Makowski and Stumpf (1986, 1989, 1990). Using on one side cquilibrium
equations and statical boundary conditions derived by descent from the three-dimensional
continuum and on the other side the corresponding kinematical model of a Cosserat
surface with three deformable directors, the theory is statically and kinematically exact.
Analogously to Stumpf and Makowski (1986) the incompressibility condition is used to
determine the non-linear distribution of strains through the shell thickness in closed form.
Approximations are entered into the theory by reducing the three-dimensional constitutive
equations to a two-dimensional form. Applications are considered for axisymmetric defor-
mations of shells of revolution undergoing large strains (Makowski and Stumpf, 1989).
Finally it should be mentioned that the shell model of Simo er a/. (1990) accounts for a
uniform deformation in the transverse direction.

It is not apparent, however, that during an arbitrary deformation of rubber-like shells
the initially normal material {ibres remain normal or straight, as it is assumed in the papers
cited above. All that follows from the known one-dimensional solutions given, for example,
by Taber (1987a, b), Libai and Simmonds (1988) and Makowski and Stumpf (1989) is that
the transverse shearing strains are usually small and only near clamped and loaded edges
or near poiht loads they have to be taken into account [see c.g. Taber (1987b)]. Their
influence on the solution can be ignored in a wide range of parameters. Therefore, in this
paper we use a relaxed normality hypothesis (6), according to which material fibres, initially
straight and normal to any undeformed surface parallel to the reference surface, remain
normal to it during the shell deformation (see Fig. 1). This hypothesis allows us to ignore,
from the outset, the transverse shearing strains, but does not put any constraints on the
extension and bending of the initially normal material fibres.

The behaviour of most rubber-like materials undergoing finite strains is such that they
allow only for an isochoric (volume preserving) or almost isochoric deformation, e.g. Green
and Adkins (1960) and Green and Zerna (1968). Therefore, in this paper we freely use the
incompressibility condition (7).

The short discussion given in Chapter 3 shows that the range of shell problems in
which bending effects may become important is limited to shells of at most moderate
initial or/and deformed thickness, undergoing at most moderate bending strains, while the
membrane strains should not exceed the order of unity (see eqns (13) and (14)).

Within the constraints and the range of parameters described above, the three-dimen-
sional Green strain tensor and the corresponding shell strain energy density are expanded
into series in the normal direction, and orders of all terms in the series are estimated in
Chapters 4 and 5. As a result, by ignoring all small terms the two-dimensional consistent
first approximation (40) and the simplest approximation (47) to the elastic strain energy of
rubber-like shells are constructed and used to derive in Chapter 6 corresponding constitutive
equations. It is interesting to note that both approximations are expressed only in terms of
stretching and bending of the reference surface. The structure of our derived constitutive
equations in the case of thin shells seems to be simpler than the one suggested by Simmonds
(1985). FFor the special case of cylindrical deformation of shells our first approximation (40)

ot

undeformed deformed

Fig. 1. Undeformed and deformed shell element
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leads to the strain encrgy density of Libai and Simmonds (1981) and for shells of revolution
with axisymmetric deformations the simplest approximation (47) corresponds to the result
of Simmonds (1986).

In Chapter 7 the Lagrangian displacement shell equations are derived and in Chapter
8 the incremental formulation of the large strain shell theory is considered. In Chapter 9
we present the numerical results for several one- and two-dimensional large strain shell
problems. A comparison of our one-dimensional results with those reported in the literature
shows the accuracy and efficiency of the presented shell theory. Results for two-dimensional
problems are not yet available in the literature.

2. NOTATION AND GEOMETRIC RELATIONS

In this paper we shall follow, where it is possible, the notation scheme used by Koiter
(1966), Naghdi (1972), Pietraszkiewicz (1977, 1979, 1983, 1989), Stumpf (1981, 1986) and
Schieck (1989).

Let P be the region of three-dimensional Euclidean point space occupied by the shell
in the undeformed configuration. In B the normal system of curvilinear coordinates {6% {},
o = 1,2, 1s introduced such that —h/2 < { < +h/2 1s the distance from the middle surface
I of B and 4 is the undeformed shell thickness.

The geometry of the undeformed shell middle surface MM is described through its
position vector ¥ = r(0*). At each point M eI we define the natural surface base vectors
a, = Jr/00* = r , the unit normal vector n = j¢™a, x a, as well as the covariant components

of the surface metric tensor a,; = a,*ag, of the surface curvature tensor b, = —a,"ny
= a,5°n and of the surface permutation tensor ¢,; = (a, x ag) *n such that ¢;, = ¢,, =0,
E17= —&y = \/a where a = |a,]. The reciprocal surface base vectors a’ and contravariant

components of the surface metric tensor a* are then defined by a’-a, = 6* and ¢* = a*- a’,
respectively, where 8% is the Kronecker symbol. A dot indicates the scalar product and the
symbol x the cross product of two vectors.

The geometry of the undeformed shell space P is now described in the convective
coordinates {0'}, i = 1,2,3, 8° = {, through the position vector p(#*) = r(6*) +{n(6*). At
each point Pe P we have the natural base vectors g; = p;, the covariant components of the
metric tensor g;; = g; g, and of the permutation tensor ¢, = (g, x g,) * g with g = |g,l, the
reciprocal base vectors g’ satisfying g/ g; = 6/ and the contravariant components g” = g'- g/
of the metric tensor. These spatial quantities are related to the surface quantities by

g = lu;ab g3 =0 gaﬂ = N;#ﬁa;‘.;n Ga3 = Oa g3z = lv
3

g = hia, g'=n g7 = i D", g7t=0 g =1 M

where the shifter u and its inverse (u~')% are given by

1
(07 = 421107 = b)),

pr =840k, (Wi =65, (uDi=-
U

p=lul = \/i = 1=Q2H+ UK, H =3, K=1"¢,b0. (2)

Consider now an arbitrary smooth deformation y: B — B, p(6") = x[p(0")], of the shell
described in the convective coordinate system {0'}. The geometry of the deformed shell
space B is now described by geometric quantilies analogous to those describing ‘B, only
now marked by an overbar: g;, g, g/, §”, etc. Introducing the deformation gradient tensor

F - VX, = gi ® gi* gl = an (3)

where ® indicates the tensor product of two vectors, the strains in the shell space are
described either by the right stretch tensor U = (F'F)"? or by the Green strain tensor
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E=SFF-1)=Eg®g, L=1i4,—-g,) (4)

where 1 is the metric tensor of ‘R.

During the deformation y the shell middle surface moves from M (o M defined by
r(0%) = [r(0)]. The geometry of M is described by quanmles analogous to those describing
M, only now marked by an overbar: a,, 0, a,, b4, @, 3", @, H, K, etc. The Lagrangian

surface strain tensor y = y,za’ ® a’ and the tensor of chdngc of surface curvature
K = K,za" ® a’ are usually defined by

Vap = %(@ﬁ - a:xﬂ)a Kop = — (Eoz[} *'ba/;)- (5)

They are functions of the displacement ficld u through ¥ = r+u.

3. BASIC ASSUMPTIONS

In order to simplify subsequent transformations we ignore the transversc shearing
strains by assuming from the outset that E,, = 0, or equivalently

gz.gl EguJ = O (6)

We call this assumption the relaxed normality hypothesis. Indeed (see Fig. 1), the hypothesis
requires the material fibres, initially straight and normal to any undeformed surface @
defined by { = const., to remain always normal to it during the shell deformation. Please
note that (6) does not put any constraints on the extension and bending of the initially
normal material fibres.

In what follows we also assume that during the shell deformation the following
incompressibility condition

detF= [==1 (7)
1s satisfied, where

‘q = 66" €1 (0 + 2ED) (8 + 2ET)(8: + 2E7). (8)

Under the relaxed normality hypothesis (6) we can reduce (8) to

Y R,
=/3" . Ay =gy°8y = 1 4+2F5;,, e
g g
= 14 2E+ 2EZEN - ESLE), g = |Gupl. (10)

If we introduce the unit vector m such that

g = A, (Om(0), (11)

it follows from (9) that i, = 4,({) describes the stretching of those material fibres which
arc initiallty normal to Y. Under the additional incompressibility condition (7) the stretching
/4+1s uniquely defined through £,; by
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1, e B (12)

Under the assumptions (6) and,(7), the non-linear theory of shells to be discussed in this
paper should properly describe the shell deformation caused by the stretching and bending
of its reference surface and by transverse normal strains according to (12). Let y and « be
the greatest eigenvalues of the surface strain measures y and «, while R and R be the smallest
principal radii of curvature of MM and YR, respectively. Let f be a small parameter such that
8% « 1, ie. 1+6% ~ 1. It is commonly accepted that a shell theory can be applied only to
such problems of shell-like solids in which neither 4 and R nor /2 and R are of comparable
order, where h and / are the shell thickness in the undeformed and deformed configuration,
respectively. Itis also known that if the deformation is finite, i.e. y > 0(1), where (}( ) stands
for “*of the order of ”, then for sufficiently thin shells bending effects can be ignored and the
simple membrane theory can be applied, as in Green and Adkins (1960). Therefore, the
range of shell problems in which the bending effects may become important is limited by
y < 0(1). Within this range it follows from (12) that A = A[1 +0(y)] = 0(h). Moreover, since
k = 0(1/R+1/R), the bending strains in the shell space can reach the order hx = 0(f)
provided one of /R, h/R or both are 0(6). Therefore, in the subsequent derivation of non-
linear relations of shells, we assume the following ranges of admissible values of the
parameters:

h

%< 06), <o), (13)

i

Y <0(1), Ak <0(0). (14)

4. SHELL STRAIN MEASURES

Since by (12) and (9) 55 is entirely determined by E,4, let us introduce the (ensor
E = Eg" ® g’ defined on the surface © and expand it into series with respect to the normal
coordinate

~ |
EQ =)  UEw ()

n=20 n

with
Eq, = E'::o Ey:yzﬂa“(@aﬂ, (16)
E
E. == =k, ' ®a’, nz=l; L7)
™= G0 .33 3li-0 (

E) =1 = g2 ®a", Eg =2n=2n,2 @4, (18)

where ( ).; denotes the covariant derivative in the {-direction with respect to the metric g,,.
Introducing the curvature tensor of & by

hap = — 81085 = 83" 8oy = /7:#1/; = - égaﬂ.lv (19)
hozﬁ.l = ‘bibw, hg.} = hﬁhlxj, (20)

for two first covariant derivatives in (17) we obtain

SAS 29:6-C
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Ly = Eyps +hyEg+ hyE,, (21)
Ea/i;l‘t = Eaﬂ,"ﬂ + 2h§E1B;3 + Zh;:iEaJt.fs - 2h:h7}E1p- (22)

Defining the curvature tensor 4,5 of © analogously to (19) we obtain under the relaxed
normality hypothesis

8,38 = *AJ};a/h 8138, = —Avdva Bi37 8y = Azds;, (23)

which allows us to find

haﬁ.s = —(malgﬂ).J
= —(m; gy, +m;" r'aﬂg: +hg, g5
= Ayayp— Ashihg (24)

where m = (g, x gz)/\[q is the unit normal vector on & (see also eqn (11)), and ( ),, denotes
the surface covariant differentiation in the metric g,;.

Now with the help of (19)—(24) we obtain for x,; and n,,

Yap = — (’U;rzﬁ —bug)+ by + bfi}’a;., (25)

271::1;9 = llzgig,w — béblﬂ — A’{‘a"ﬂ — p[)_aﬂ + 2/’;Xm + 2béxag — Zbibﬁ))un (26)

where with the help of (12) two surface invariants have been introduced

a 1
A=A = \/ i 7
\/1 + 29+ 2(vays — Vhva)
p= )-3.31(=o = —}»J[Xz +2()’2Xg ‘V?Xf)} (28)

Note that according to (27) A = A(y,4), and from (25), (27) and (5) it follows that
Xap = Xap(Pau> K1x). Thercfore, it is apparent from (25)—(28) and (5) that p = p(y,4, kyp) and
Tap = Tap(Vaps Kap)-

For higher order terms of the expansion (15) it is possible to prove [see Schieck (1989)]
the following estimates

1 e (1 1 1>
777-—:0 T B 7 b n}l, 29
IEwl ~\R R L %)
where L is the smallest wavelength of deformation pattern on Yt allowing the estimation
of orders of the surface covariant derivatives in the metric a,; by | ( ) lI/11C )| = 0(1/L).
Let us define the small parameter 6 by
I (h h h) 10
=max{ o, 5. 7| (30)

Using estimate (29) and egns (12) and (13) it follows from (15) that within the relative
error 0(0?) in the bending strains y, the strain tensor E of the surface @ can be approximated
by the following quadratic expression

E = y+(Cx+m)[1 +0(87)]. (31)

This approximation is compatible with the assumptions (6) and (7).
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5. ELASTIC STRAIN ENERGY OF THE SHELL

The constitutive equations of an incompressible isotropic solid are described by the
three-dimensional strain energy density W(E) = W([I,,I,), defined per unit volume of *§,
as the function of the two standard strain invariants /, and [, with /; = 1 [e.g. Green and
Zerna (1968)]. Since by (12) and (9) E3~3 i§ entirely determined by E,5, we can always express
E;; as a function of E,; and obtain W(E) from W. This is a consequence of the assumed
incompressibility of the matcrial, but it should be pointed out that it does not exclude
hydrostatic pressure or transverse normal stress.

The shell strain energy function, per unit area of M, can be defined by

+h/2 N
b = J Wudl. (32)
k2

Let us expand the integrand of (32) into series with respect to { and integrate it through
the thickness to obtain

hz h2 hz hA
= — W, | — — b e —
D h{W(o)(l-l- ]2K>+ W |: 12b1x+<24+ l60K>211:
i ‘E +( a | h K)E
T 480 T T\1920 T 10752 )
W - hz N h? K> AN 5
FWar i {54 e K@% 50t @ 2m

h4 6
. . [ 2 .

A 4 he
+We [ 480be®X®X+<ﬁ+ 1792K>X®X®21‘£— :l

h* h®
+W<4)'[<|—9*2*0+’10752K>X®X®x®x—"]Jr--}, (33)

wherc
o " WIE(Q)
W = WIEOli=0, Wi = —(Ef)f—l oozt (34)
=0

The range of values that can be taken by derivatives (34) is determined by the material law
and by the range of admissible membrane strains (14). However, all we need in order to
simplify (33) is to estimate orders of magnitudes that might be taken into account by (34)
and not their precise values. This can be done on the basis of the following approximate
considerations.

Let us take, as an example, the incompressible Mooney material {[see Mooney (1940)
and Green and Adkins (1960)] for which

L=i+A+ 55, L= ~l-+—l—+,12,12 (36)
| | 2 /1%/1%3 2 }f )'% 14425
Al=142E,, 2(C,+C,) =G, (37)

where 4, are principal stretches, E, are principal Green strains and G is the shear modulus.



696 B. SCHIECK e! al.

Let 4, be the larger principal stretch value. Then within the admissible y < 0(1) estimates
for W, can be obtained by reducing the problem (o the one-dimensional case, i.¢. assuming
A, = 1, which gives

E? aw E,+E} d'W \
" 4 , = 1G(=1)n2 o p2.
14+2E," dE, T2E @gy - e Y gy

W=2G

It follows now from (38), (34) and (14) that the order of W,, can be estimated by
Wy =GO, Wl =G0@G), [[Well =G6nl2""'[1+0()] = Go(l), nx=1. (39)

We have applied the same technique to several material laws other than (35) and in each
case the estimates were of the order of (39), which indicates that (39) does not depend upon
the material law. Indeced, for y «< 1 and with the absence of initial stresses the function W
of any elastic material can be approximately described by a quadratic function of strains,
which immediately leads to the order estimates (39);, and (39), for n = 2.

It follows now from (39) and (29) that, to within the relative error 0(6%) in the bending
energy, the shell strain energy function (33) can be approximatgd by

3 3

h h
O = hW o [1+0(6%)] + B W, -(n—ﬂx_)[l +0(6)] + EZW”) (@ O[14+0(8%)].  (40)

We call the expression (40) the consistent first approximation to the elastic strain energy of
rubber-like shells.

The estimate in (40) suggests that within the same relative error it is possible to simplify
consistently the strain measures (25) and (26) for various ranges of admissible strains. Note
that within the admissible order of at most moderate bending strains Ax < 0(6) three
principal cases can be discussed :

(A) y = 0(1),1.e. hx/y = 0(0). Here W5, = GO(1), Wyl = GO(1), [ W5 || = GO(1). Since
hilxll = 0(0) and h?*||x| = 0(8%) the strain energy (40) is dominated, to within the
relative error 0(6?), by the first term, which leads to

© = AW o [1+0(07)]. @n

The strain energy function (41) describes the membrane theory of rubber-like shells.
The possible simplifications of y and = are irrelevant here, since those strain measures
themselves are included in the error margin of (41).

(B) y =0(6%), i.e. y/hx = 0(#). In this case W, = GO(0Y), |W, | = GOO?), Wyl
= GO(1). Since again h|x| = 0(0) and h*|=| = 0(#?), the strain energy (40) is
dominated, to within the relative error 0(6%), by the last term which leads to

3

® =2, Wa (x®@0)[1+06)]. (42)

Within the same relative error 0(6?) the change of curvature measure y in (42) can be
simplified to be

Aap = Kap+0(8/h). (43)

The possible simplification of n is again irrelevant here, since x itself falls into the error
margin of (42). Additionally, here W, (y) can be expanded into series of y, and to
within the relative error 0(#?) only the first constant term for y = 0 can be taken
into account. This leads to the modified elasticity tensor H defined in the reference
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configuration. It corresponds to the classical one of the geometrically non-linear theory
of elastic shells

Wi (y) = Wi, (0)[1+0(6)]

azI/V(O) 2\ 2
= — [14+0(69)] = H[14+0(6%)], (44)
dy 0y ly-o
E 2v
iy _ ad . Pu au . fA - «B . Au
_—"2(l+v)<a at*+ata + 1——_va a ), (45)

where F is Young’s modulus of the material in the undeformed configuration and v is
the Poisson’s ratio which, for the incompressible material, should be taken to be
v=290,5.

The strain energy function (42), with (43) and (44), describes the inextensional
bending theory of rubber-like shells.

(C) y=0(), ie. y/hk =0(1). In this case W, = G0(8%), Wl = G0(6), Wl
= G0(1), which together with ||l = 0(f) and h*| x| = 0(6%) shows that the first
and the third term of (40) are Gh0(6?), while the second term is Gh0(6°). Therefore,
to within the relative crror 0(0%) all terms in (40) should be taken into account.
However, the strain measures appearing in the second term of (40) can be approxi-
mated to within the relative error 0(8) by

2n,p = K‘i’ﬁﬂ + (byp — Kaﬂ)Ki + blrcs + b?}’%x +0(8%/h*),

bixes = bixay +0(6°/h%). (46)

As a result, the strain energy function (40) with (25) and (46) describes the bending theory
of rubber-like shells.

Similar discussion performed for the weak bending case, when y = 0(\/5) hikly =0
(\/5), and for the strong bending case, when y = 0(6\/6), ylhk = O(ﬂ) leads to within
the relative error 0(0?) essentially to the results given for the case C of the bending theory
of rubber-like shells.

As a result of the discussion given above, within the whole range of admissible mem-
brane strains and curvature changes (14) and within the associated range of thickness-to-
radii ratios (13), the consistent first approximation to the elastic strain energy of the rubber-
like shell takes the form (40), where the full expression (25) for y and the consistently
approximated expressions (46) for the corresponding strain measures appearing in the
second term can be used,.

Let us note that the maximal influence of the second term in (40) has been found to
be in the case C of the bending theory, where the relative error of the strain energy function
resulting from dropping those terms can be estimated to be 1,0(6) with respect to the first
term describing the membrane strain energy. Although such an error cannot be included
in the consistent relative error 0(6%), it is apparent that the contribution of the second term
to the strain energy function (40) is very small indeed, considerably reduced due to the
additional multiplier 1/12 to the terms, whose contribution to (40) has already been
estimated to be at most 0(#) as compared with the first leading term. Therefore, in many
engineering calculations of rubber-like shell problems it is reasonable to simplify (40)
further by dropping the second term, which leads to

3

= h
O = W(O)f24

Wo - (x®7). (47)

We call the form (47) the simplest approximation to the elastic strain enerqy of rubber-like
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shells. Tt takes into account only the primary parts of the shell strain energy due to the
stretching and bending of its reference surface and due to the corresponding transverse
normal strains.

Our numerical tests show that the use of the simplest approximation (47) needs over
33% less computer time than the consistent first approximation (40). At the same time, in
most of the examples the numerical results are essentially the same, while for various
examples the differences in the numerical results do not exceed 2%. It seems, therefore, that
for many engineering apphcations the simplest approximation (47) might be a very attract-
ive alternative to (40).

6. CONSTITUTIVE EQUATIONS

If the strain measures y, x and = are treated as independent, the first variation of (40)
gives

SO = 0 8y, +m™ Sy + K 51, “1(48)

with the constitutive equations :

ao h? , S
e e N e A T}
v
rn!x/i’ — aixi — 17727(7 Gaﬁb: +GQMHX).,1)s
eff e = oo
o
kY = — = = G 4
on,g 12 © (49)

The components of tangent elasticity tensors of various orders arc defined analogously to
(34) by

2
G = (1{/,[:(,01 G — ﬁ W(U)

Gobirdn 0’ W( 0)
ayaﬂ

) - (50)
a))uﬁ 5')))';1 a‘yaﬁ ay;’p C?),,u
In (49), n**, m*# and k* are the symmetric surface stress measures which are work-conjugate
to the strain measures 7,5, ¥,5 and n,4. If the simplest approximation (47) is used, the terms
underlined by the solid line in (48) and (49) have to be omitted.

If k,p 15 used as a bending strain measure, it follows from (25)—(28) that

g OXup e
(Sx,aﬂ - 5:\,‘——. f\"}’;ﬂ + aKB 5’{)\;1)
Ap Ap
(’)7[“(; E)naﬂ
6ty = T Sy Sk, (51)
Py, ok,

This allows the expression of the variation of @ in a form which is well known from the
classical geometrically non-linear theory of thin elastic shells

OB = NP8y, + M ok, (52)

only now we have to introduce
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Naﬂ — nflﬂ +m"~ﬂ axff‘ +k1“ —=

aygzﬁ ayab’

Maﬁ — n,l)-y _% +k)-ﬂ %i‘i . (53)
K‘,[; 51(“3

The symmetric surface stress measures N*/, M are work-conjugate to the surface strain
MEeASsUres Y., Kqp, TESPectively.

Within the consistent first approximation it follows from (25) and (46) that

Nap = A° (bop — Kap) [(1 +2y5)a™ —2)11#]6},ly+'{6xmﬂ +b§5?w +b507a1 s

20T, = KidKp+KpOK, + (bap — Kop) @H K, — K1 8Ky + bESK s + bhOK,,

b;8xap ~ bidK,s  (see also (46),). (54)

. . . . . .o5f ..
This allows us to give the constitutive equations for N*¥ and M* in the following explicit
form:

3

h
N“ﬁth“ﬁlez{G“““(nM BiKy ) ~ GBI (b, — w)[(1+2y,<)a“’5 2y+]

Gnﬂbdba Gxabdbﬂ+(jlﬂypl3xxu(b yp)[(1+2y§)a"5—2y"ﬁ]

+ (G kP b“ + GoxAs bﬁ ) X+ %Gal?lwp XauXyp } ’

3

h
M =2 (G (B +xD) + G (b +xx)+G‘“(bl,,—m,‘)a — G

—2G BT A+2G P 2y, (55)

_—

Again, if the simplest approximation (47) is used the terms underlined by the solid line in
(55) have to be omitted.

When the initial thickness of the shell is assumed to be small, i.e. #/R = 0(6?), the two
last terms in (25), the term with the dashed line in (40) and all terms including b, in (46)
can be omitted within the error of the consistent first approximation, and y, in (25) can
be approximated by Ak,. In this case terms underlined by the dashed line will not appear
in the corresponding relations (48), (49), (54) and (55) and therefore our constitutive
equations become independent of the initial curvature of the shell reference surface, as was
already suggested by Simmonds (1985). However, the structure of our so reduced consti-
tutive equations (55) scems to be simpler than the one following from Simmonds (1985).

7. LAGRANGIAN DISPLACEMENT FORM OF SITELL EQUATIONS

The surface strain measures y,4 and «,s are known functions of the displacement field

u = u,a"+wn. They are given by the following exact vector expressions [cf. Pietraszkiewicz
(1983)]

yaﬁ = %(ﬁa ) ﬁﬁ —aocﬂ)s Kaﬂ = ﬁa ‘ ﬁ,f)‘ +buﬂ’ (56)

where

¥ oA

e
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a, =a,tu, n=11efa xa; 1 7=-="1"M@E, 2,3, (57)

QT

Let the boundary & of MM consist of a finite set of piecewise smooth curves with the position
vector r(s) = r[0*(s)], where s is the arc length parameter along €. At each regular point
M e € we introduce the unit tangent vector t = dr/ds = r’ = (*a, and the outward unit
normal vector v =r, = v*a, = txn, where ( ), denotes the outward normal derivative
at €.

We describe the deformation of the shell boundary by the displacement field u(s) and
its normal derivative u,(s). Then the geometry of the deformed boundary € can be expressed
by:

Fo=agt = thw, F,=av =viu, A=AF,xi, A=, xF| (58)

Let p = p*a,+pn be the external surface force resultant per unit area of Yt and let the
undeformed boundary € consist of two parts, €, and €, with €, U ¢, = €, where on €,
geometric quantities and on @, static quantities are prescribed. We assume that on €
the external boundary force resultant T* = T'fv+ T¥t+7™*n and the moment resultant
H* = H*+ H¥t+ H*n are given, both per unit length of €. They are determined through
the prescribed external boundary surface force vector f*, defined per unit area of the lateral
boundary surface §°0 of the undeformed shell

VA2

+hi2?
T* ds = J‘ f*d4, H*ds = j f*{ dA. (59)

—h2 2

If geometric and static quantitics are given on the same part of € they must be comp-
lementary with respect to the external virtual work (63).

Let us denote displacement ficlds admissible, if they satisfy sufficient differentiability
conditions in M and on €, the geometric boundary conditions (74) in homogeneous form.
Then the deformed shell is in an equilibrium state if for all geometrically admissible
virtual displacement fields du the following Lagrangean principle of virtual displacements
is satisfied:

Glu; ou] =0, (60)

where the functional of virtual work G is defined through the internal virtual work G, and
the external virtual work G, by :

G =G -G, (61)
Gi = J\J (Naﬂéyaﬂ+Mﬂﬁ5Kaﬁ) dA (62)
m
G. =” p-budA+j (T* - Su+H*- 6n) ds. (63)
i E

From (58); it follows that on € the normal vector fi(s) depends on the displacement
derivatives u’(s) and u,(s) and therefore can be given as a function of the two vector fields
u(s) and u,(s) with six independent components. Introducing in 9 and on € the constraints

na,=0 #nn=1 in M (64)

n'r'=0 n'n=1 on€ (65)
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then the sct of independent geometrical variables on € is-reduced to four. In this paper we
choose as geometrical variables on € the displacement field u(s) and the scalar component
n,(s) of the normal vector n = n.v+nt+nn

The variation of n in M and on € can be found by varying the constraints (64) and
(65) leading to

|
Sii = — (v x A)A-SW + (F' x n)om],

a,=(t'xn)'v, on € (67)

n =iy = A xv—n)-u, (68)

was first introduced by Pietraszkiewicz and Szwabowicz (1981). The use of scalar finctions
other than »n, as fourth geometrical boundary variable is considered in Makowski and
Pietraszkiewicz (1989).

Using (64) the variation of the strain measures (56) leads to:

8., = 3(a, - duy+a;-ouy,)
SKup = 3(M, - OU +0g Su, +2, Shy+a,-0i,) (69)

with (66)—(69) the virtual work functional (61)—(63) can be transformed into
Glu; ou] = JJ (T’3|,3+p)-5u+JL (P—=P*)-du+(M—M*)on,)ds
n &
+Z(F,—FJ*)-5u]+J (P-du+Médn,)ds, (70)
J €,

where asterisks indicate prescribed boundary functions, but depending on the deformation,

and the sum Y is taken over all corner points M;e €. In (70) the following short notations
]
are used :

T¢ = N*Pa,+ M*“n,+[(M*a))],- 3°]n,
P =T, +F, P*=T*+F*,

1 1
[ = [(Axa,) v]MPvi, F*= — — (@ H*) vIn,

a,
L . 7
M = (nxaa)-r(Muﬁvﬁa M*:—(an*)'l",
a, a,
F, = Fls;+0) = F(5,—0), Ff=F*(s,+0)—F*(5,~0). )

It follows from (70) that on & the static quantities P(s) = Plu(s), n,(s)] and M(s) =
M[u(s), n,(s)] are work-conjugate to the chosen geometric quantities u(s) and n,(s), respec-
“tively.
Introducing (71) into the virtual work principle (60) we obtain the Lagrangian equi-
librium equations
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THy+p =0 in M (72)
and the static boundary and corner conditions

P(s) = P*(s), M(s) = M*(s) on G
F, =F, ateachcorner point M;eC;. (73)

The corresponding work-conjugate geometric boundary and corner conditions are

u(s) = u*(s),
n,(u(s), u,(s)) = n¥(s) ’
uw, = uf ateach corner point M, c&,. (74)

With (74) the last integral term of (70) vanishes.

[t should be pointed out that the equilibrium equations (72) and the static boundary
and corner conditions (73) are linear in N** and M*", but non-rational in the displacement
u. This non-rationality is caused by the presence of 4 in the definition of k.4 in Mrand by
the non-rationality of n on €. The gcometric boundary condition (74), depends non-linearly
on the boundary displacement u(s) and its normal derivative u_(s).

In the case when the external loadings acting on the shell have a potential ¥(u) such
that G lu; ou] = —dV[u; ou| a functional of total potential energy exists defined by

J(u) = Jj Oly.p(u), Ko, (W)] dA + V(u), (73)

where for the strain energy density ®(y,,, x,,) we have to introduce (40) or (47) cxpressed
as a function of the displacement u. Then we can formulate the principle of total potential
energy for large strain shell problems as follows: If for all gcometrically admissible dis-
placement fields u satisfying the geometric boundary conditions (74) the variation éJ
vanishes

dJ(u; éu) =0 (76)

then u is an equilibrium configuration satisfying (72) and (73) as Euler-Lagrange equations.

We want to point oul that (76) is a-stationary variational principle. Following Stumpf
(1976, 1979) we can also consider under which additional restrictions it is a minimum
principle and a dual maximum principle can be formulated. Other variational principles
can be constructed for the presented large strain shell theory following Stumpf (1976),
Schmidt and Pietraszkiewicz (1981), Schmidt (1982) and Szwabowicz (1986).

8 INCREMENTAL FORMULATION

Let us assume that the external loads are specified by a single parameter xc 4 = R.
For smoothly varying a the regular solutions of the shell boundary value problem (72)-
(74) form an equilibrium path u(«). By virtue of (60) u(«) is a weak solution of the boundary
value problem for a fixed « if G[u(x);du] =0 for all kinematically admissible virtual
displacements du. In the numerical approach the unknown equilibrium path u() is divided
into a finite number of equilibrium states corresponding to discrete values of «, &y, ..., %,
Oy 1s- -5 &y E A of the load parameter.

Let u, = u(a,) be the cquilibrium solution we are looking for, and let u? denote the
ith approximation to u,, which may not belong to the equilibrium path. In order to construct
a correction Au{* " allowing us (o determine the next approximation ul* P = u + Auf* P
to u,, we use the consistent linearization of Glu; du] at the approximation uf’, which allows
us to replace eqn (60) by
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AG[UY ; Auf ™", dul+ Gluy 5 du) = 0. (77)

The first term in (77) denotes the directional Gateaux derivative of the functional (61)
calculated at the point uf’ in the kinematically admissible direction Auf'* V. This term being
linear in the unknown Aul™ " leads to the definition of the stiffness matrix of the problem.
If u?? does not belong to the equilibrium path, the second term in (77) allows the calculation
of the unbalanced force vector.

In order to simplify the notation, in the following part of this chapter we set uf’ = u,
Aul* " = Au, while the values of corresponding cxternal loads at u, will be denoted by
p(¢,) = p, = p. T(,) = T, =T, H(,) — H, = IL

Let us consider a curve u(n) through the ith approximation to u, such that in the
neighbourhood of u

u(n) = u+nAu. (78)

Then the Gateaux derivative of the functional G taken at u in the kinematically admissible
direction Au is given by

[

AG[u; Au, du] = d% Glu(n) ; oull, o, (79

where Glu(n); du] is defined by (61)—(63) with u being replaced by u(n). Along the curve
u(n) the corresponding Lagrangian surface stress and strain measures in M are denoted by
N(n), M(n), y(n), k(n), while the corresponding Lagrangian surface forces in M and bound-
ary forces and moments on € are denoted by p(n), T(n) and H(n), respectively.
In the internal part of 9% the linearized increments of @, i and dn at u in the direction
of Au follow from the identitics a*-a, = 6%, 3’ - = 0 and (66) :
Ad® = — (@’ Au,)a" +a*(n- Au)n ,

Al = —a*(A- Au,), (80)

A(éﬁ) = Bﬂ '(SUJ),
B? = [(a” - Au,)a*— a™(n* Au,) ] ® n+ (n* Au,)d’® 2~ (81)

This leads to the following incremental strain measures and their incremental variations :

A’Yaﬂ = (ﬁa * Aulg +ﬁﬂ ° Au’a),

%
Akys = 3{N, Aug+nyz-Au,+a, Ang+a,-An,}, (82)

A(éyw') = %(Au,a : 5“,/! + Au‘ﬁ ' (Su,a)a
A(CsKaﬁ) = ‘_-g_ {Aﬁ‘a ‘ 6u‘ﬂ + Aﬁ,/} ‘ éuva 1 Au.a * ()ﬁﬂ + Au"j : (Sl—la
+3,°[AG)] 5 +a,- [A(S)],}. (83)

The corresponding incremental work-conjugate stress measurcs are
ANaﬁ d af _ (wﬁ/lpA ~affAu
:&N ('I)lq—o— -1 y1p+(47 AKi/n
AM«B _ d afl _ CnlﬂuA Ca[!/l;zA ), 84
- a;] M ('l)l,;io - >3 y1y+ 4 Kaus ( )

where the tangent elasticities C2** n = 1,2, 3,4, are defined through further differentiation
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of the constitutive equations (55), 1.e. the strain energy function ® given by (40) or (47),
with respect to y,s and kg,

By ' OO
R 6)’»15 67’1# 7 LT ayaﬁ aKA'u ’
FYr , )
Cja/fl;r — \ C%ﬁ’/‘ = ;—T—*‘ (xs)
DKy I, Ot Oty

Now, with the help of (62) and (81) (84) the interior part of (79) can be presented in the
form

AG,[u; Au, du] = JJ (Agy +Aag)dA, (86)
n

Ay = ANy, 0+ AMP 5K,y = 8y, CP* Ay, + 0y, CY* Ak,
+ 0K CY M Ay, + 0K, CF¥ Ak e (87)

Ao = N*PAu, - Suy,+MP{An, - duy+ Au, - dhx + 3, [ASRH)] 4} (88)

In the finite element implementation of the shell theory the term (87), appearing as a result
of the linearization of stress measures, allows the construction of the material part of the
tangent stiffness matrix at u. The term (88) resulting from the change of shell geometry
leads to the geometric part of the tangent stiffness matrix at u.

Analogously we have to derive the Gateaux differential of the external virtual work
(63) leading to:

\3

AG,(u; Au, am:” Ap-(SudA+J [AT*-Su+AH*-5n+ H*-A(0R)| ds,  (89)
m ¢

where the incremental values of the external loads are defined by

Ap = dn Pl,—0, AT* = a;T*(n)],,_,(,, AH* = a H*()], o (90)

and the incremental values of n and dn at the shell boundary € by :

An = f BT 1, ()]l = — [(v x )~ AU+ (F x B)An,]
n u
d

v

A(én) = dn onfu(n), n.(n); éu,on]l,-y

I
= = LA XA EE AR {(vx B Su 4 (7 x )dn,]

v

|
+ —[(vx Am)n-du 4+ (vxn)An-du' + (Au’ x i +T" x An)dn, + (' x n) A(dn,)]. (91)
a,

v

Introducing (91) into the boundary integral of (89) and using some further transformations
and ntegration by parts we can derive an integral expression linear in du, én, and A(dn,),
where A(dn,) is the second Giétcaux differential of n, depending non-linearly on u [see
Stumpf (1984, 1986)].
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Finally we have to consider the second term of (77) representing the virtual work of
the approximation u{’. It vanishes, if ul” is an equilibrium configuration and for non-
equilibrium configurations it is 4 measure for the unbalanced forces.

9. COMPUTER IMPLEMENTATION AND NUMERICAL APPLICATION

The strain energy density (40) or (47), with corresponding formulac for W, and for
the strain measures (25), (460), (50)-(58), is a {unction of displacements and their first as
well as sccond surface derivatives. Therefore, in the finite clement approximation ('
interclement continuity is required. In order to fulfill this and all other mechanical require-
ments a triangular high-precision doubly-curved shell finite eclement with 54° of freedom is
selected. The basic characteristics of the element are described by Cowper (1972) and Harte
(1982) and developed to the form used in this paper by Nolte and Schieck (1985, 1986) and
Schieck (1989). In this clement biquintic polynomials are applied as shape functions for all
three displacement components. The numerical calculations of the highly non-linear shell
problems presented below have been performed on the 2-pipeline CDC Cyber 205 vector
processor available at the Ruhr-University of Bochum. In order to analyze the results and
to show the performance of the corresponding computer program various examples of shells
made of Neo-Hookean and Mooney material have been calculated. The results obtained
for the firsf approximation theory (40) and for the simplest approximation (47) are com-
parcd with those given by Libal and Simmonds (1983, 1988) and Taber (1986). Here we
present them for three large strain shell problems, whereas further examples with con-
sistently restricted strains and rotations can be found in Schieck (1989).

The following notations are used :

MLU —Mooney material, Large strains, Unrestricted rotations (see eqn (40)),

MLUS --Mooney material, Large strains, Unrestricted rotations, Simplest approxi-
mation (scec eqn (47)),

MMLS -—Mooney material, Moderate strains, Large rotations, Simplest approximation
(see Schicck (1989)),

LSU —Linear material, Small strains, Unrestricted rotations (classical geometrically

non-linear shell theory for small strains and unrestricted rotations).

The theory variant MMLS is derived from the variant MLUS by assuming moderate
membrane strains allowing to simplify (27) to A =~ 1 —32 and A* ~ 1 —2y%.

9.1. Cylindrical shell made of Neo-Hookean material under the action of two line forces
applied to diametrically opposite points

This one-dimensional example was calculated analytically by Libai and Simmonds
(1983, 1988) within the large-strain theory of plane rods using several types of approximate
one-dimensional theories. When the displacement w of the points where forces are applied
15 w/R = 0.5 the corresponding membrane strains are y ~ 0.05 and the bending strains are
hx ~ 0.25. Tt is seen from Fig. 2a that our results are in good agreement with those of Libai
and Simmonds (1988), although for w/R = 0.5 the relative deformed thickness under the
force becomes h/R ~ 0.5.

1t follows furthermore from kig. 2a that the simplest approximation leads to practically
identical results as the consistent first approximation theory. In contrast to this the small
strain solution LSU gives quite different results.

9.2. Clamped circular plate made of Neo-Ilookean material under pressure load

This problem was solved analytically by Taber (19806) for different types of boundary
conditions. For clamped boundary the behaviour of the plate is such that ncar the boundary
bending strains arc important, but when we move towards the center the membrane-type
behaviour becomes dominant. It follows from Fig. 3 that our results for both theory variants
MLU and MLUS arc identical or in good agreement with Taber (1986). After reaching
membrane strains of about 3% the moderate strain solution MMLS slightly differs from
the large strain solutions MLU and MLUS. Please note that the classical geometrically
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Fig. 2a. Load—defiection curves for cylindrical shell subjected to two line forces.
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Fig. 2b. Cylindrical shell subjected to two line forces

non-linear shell theory leads here to observably different results even before the membrane
strains reach y == 0.01.

9.3. Clamped circular cylinder made of Mooney material under external pressure

This two-dimensional highly non-linear shell problem was not yet analyzed in the
literature within the large strain range. In order to find easier the buckling mode and to
determine the postbuckling behaviour, (wo small additional forces have been applied to the
diametrically opposite points in the middle of the shell. Again both versions MLU and
MLUS of our large-strain theory give practically coinciding results, while the classical LSU
theory leads to considerably different solution curve (see Fig. 4). The moderate strain
solution MMLS starts to diverge considerably from the large strain solution after the
membrane strains increased above 3%.

Further examples obtained for doubly curved shells of revolution in Schieck (1989)
confirm the results presented here. In particular, in all cases analyzed the difference between
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Fig. 3. Load—deflection curves for a clamped circular plate under pressure load
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Fig. 4. Load—deflection curves for clamped circular cylindrical shell under external pressure.
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the MLU and MLUS versions of the theory have remained below 2%. The error of this
order has been already introduced into our shell theory by ignoring the transverse shear
strains. Therefore, we belicve that for engineering analysis of rubber-like shells the usce of
the simplest approximation (47) to the clastic strain energy function is fully justified.
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