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ABSTRACT

Deformation of a thin shell is described entirely by three displacements of its reference
surface. No restrictions are imposed on magnitudes of the displacements, rotations,
strains and/or changes of curvatures of the surface. Ezplicit form of Lagrangian
incremental shell equations is derived for arbitrary configuration-dependent external
static surface and boundary loads as well as for arbitrary work-conjugate static and
geometric boundary conditions. The most general form of the Lagrangian buckling
equations for thin shells is presented.

Keywords: Shells = Non-Linear Theory » Incremental Formulations s Buckling
Equations

RESUMO

Neste trabalho o campo de deformagdes de uma casca fina é inteiramente descrito por
trés deslocamentos definidos em sua superficie de referéncia. Nao hd restri¢ées im-
postas sobre as magnitudes dos deslocamentos, rota¢ées, deformagdes e/ou variagoes
de curvatura da superficie. Uma forma ezplicita das equagdes incrementais la-
grangianas de cascas € obtida para carregamentos externos estdticos arbitrdrios, de
superficie e de fronteira, dependentes da configuragdo, bem como para condi¢cdes de
contorno arbitrdrias, geométricas e estaticas de trabalho-conjugado. A forma mais
geral das equacgées lagrangianas de flambagem para cascas finas é apresentada.

Palavras-chave: Cascas w Teoria Nao-Linear m Formulagdes Incrementais w Equagdes
de Flambagem
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INTRODUCTION

Within the field of thin shell theory hundreds of specialized versions of shell
equations were proposed in the literature, each of them having a limited
range of applications. The specialized versions are usually derived assuming
different constraints on deformation or stress state in the shell space, restricting
the magnitudes of strains, displacements or rotations, discussing only special
material behaviour, shell geometry or external loads, using particular sets

of independent field variables in the resulting boundary value problem etc.,
[14+16].

The rapid development of computer hardware and software based on the
finite element method makes it possible to solve more and more complex shell
problemns with suflicient accuracy. However, the shell finite elements available
in the literature are usually based on some particular simplified versions of shell
theory, and their applicability is restricted to the limited range of applicability
of the shell theory itself. Any change in underlying version of shell theory
results in the need of developing a new shell finite element, what makes the
shell analysis so complex and time consuming.

The aim of this paper is to present a unified formulation of a wide class
of non-linear theories of thin shells. In our development we apply only one
apparent assumption: the deformation of the shell as a three-dimensional body
is determined entirely by deformation of its reference surface. No restrictions
are imposed here on magnitudes of the displacements, rotations, strains and/or
changes of curvature of the reference surface. For different material behaviour
the reduction from three-dimensional solid mechanics to the two-dimensional
shell theory may have different analytic representation, which is treated here
as part of constitutive relations of the shell.

Let us note that members of that class of shell theories are various versions of
the classical linear and geometrically non-linear theory of thin isotropic elastic
shells based on the Kirchhoff-Love type constraints [16]. Another example
of member of that class is the bending theory of rubber-like shells developed
in [22], where the three-dimensional shell deformation was expressed through
deformation of its reference surface applying a relaxed normality hypothesis and
incompressibility condition. Still another members of that class are some simple
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versions of inelastic shell theory expressed entirely in terms of the reference
surface deformation as well, as discussed in [20], for example.

A common feature of that class of shell theories is that their equilibrium condi-
tions have the same form following from the principle of virtual displacements
written for the reference surface. The geometry of undeformed reference surface
is usually the only one which is known in advance, and an arbitrary deforma-
tion of the surface can always be described by components of the displacement
veetor u relative to the undeforimed surface geometry. Thercfore, the resulting
boundary value problem of the shell can always be expressed in the Lagrangian
description in terms of displacements as the only independent field variables.

The unified formulation of Lagrangian non-linear shell cquations presented here
is based on generalization of our results given in [19,15] for the geometrically
non-linear theory of elastic shells, which were extended in [22] into the large-
strain bending theory of rubber-like shells. Our Lagrangian shell equations (8),
(9) are two-dimensionally exact for the shell reference surface. They are valid
for arbitrary configuration-dependent external surface and boundary forces and
moments, as well as for arbitrary work-conjugate set of static and geometric
boundary conditions. In order to allow correct numerical implementation,
the Lagrangian shell equations are presented in Section 4 in the consistent
incremental form applying the general Newton-Kantorovich method [6] to the
functional (6) of principle of virtual displacements. In particular, we take
into account that, in general, the successive approximations to the unknown
equilibrium state may not belong to the equilibrium path. This results in some
unballanced forces (14) appearing explicitly at each iteration step. We managed
to calculate explicitly Gateaux derivatives of all corresponding fields, and to
derive the explicit form of the general Lagrangian incremental shell equations
(24)+(27). As a particular case of the incremental shell equations follows the
explicit form of the most general buckling equations (28) for thin shells.

GEOMETRIC RELATIONS
In this report we apply the system of notation used by Pietraszkiewicz [14+16].

Let the reference surface M of undeformed shell be defined by the position
vector r(6<), where 8%, « = 1,2, are surface curvilinear coordinates. On M we
have the natural base vectors a, = dr/06“ = r,,, the (covariant components
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of the surface) metric tensor a,g = ay - ag with determinant a = |a,gl, the

unit normal vector n = a~1/2a; x ag, the curvature tensor b,3 = —ay-n g and

the permutation tensor €,3 = (ay X ag)-n. The contravariant base vectors a®

are defined through a® -ag = g, and a®® = af . aﬂ are used to raise indices

on M.

The boundary contour C of M consists of the finite set of piecewise smooth
curves r(s) = r[#(s)], where s is the arc length along C. With each regular
point M € C we associale the unit tangent vector t = dr/ds = r’ = {®a,, and
the outward unit normal vectorv = r,, = t x n = v®a,, v* = Eo‘ﬁtﬁ, where
( ),» denotes the outward normal derivative at C.

Let M and C be deformed configurations of M and C defined by the position
vectors T(0%) = r(6*) + u(6) and r[°(s)] = r(s) + u(s), respectively, where
u = usa® + wn is the displacement vector while 6% and s are convected
coordinates. With M and C we can associate analogously defined quantities,
only now marked by an overbar: a,, asg, a, n, i)aﬁ, Eaps a? a%P ¢, v etc.
All the quantities can be expressed through the geometry of M or C and
the displacement field u by relations presented in more detail in [15,16]. In
particular, on M we have

1
~ - _ -1 _ .
aa:r}OK:aa+u)Q! n:§] saﬁaaxaﬁ )

Ao = a8 + 2708, bap = bop — Kaps

1 L
Yap = 5(Fia .5 ~ap), Ko = Fra Byg +bag, (1)

j'Z - 601/\€ﬁn-

aa,@‘_l/\n )

BN =

ISHE=1

a=a%ag, @ =1+ 29%) a®f — 29°0]

where v,3 and k. are the Lagrangian symmetric surface strain measures.
Along the deformed shell boundary contour C we have [16,8]

F=t+u =at,n=;"1r, xi’,

r,=r+u,= dt_l(jl;+ 27ut£) »
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ar = f'll ) 2yt =T, b ) (2)

a
2 — Iflv |2|i,/l2 _ (f‘,y 'f‘l)2 ,

j —_
a
a8 = j 7Y@ — 2ya; 1P o+ a; Pt

All the vectors in (1) and (2) are understood to be expressed through
components with respect to the known bases a,, n orv, t, n of M or C|
respectively.

DISPLACEMENT SHELL EQUATIONS

Within the class of non-linear theories of thin shells discussed here the
deformation of the shell as a three-dimensional body is assumed to be
determined entirely by deformation of its reference surface. Therefore, the
equilibrium conditions of the shell should follow from the Lagrangian principle
of virtual displacements for the reference surface {15,8,17]

G[u; bu) :/ /(N“ﬁé'yaﬁ + MPéky5)dA~
M
—/ /(p-6u+h-6ﬂ)dA—/ (T-éu+H. 60)ds =0, (3)
M Cy

which is valid for all kinematically admissible virtual displacements éu. In
(3) NoB and M*P are the internal 2nd Piola-Kirchhoff type stress and couple
resultants, p(u) and h(u) are the external surface force and moment vectors,
per unit area of M, T(u) and H(u) are the external boundary force and moment
vectors, per unit length of C, while § is the symbol of variation.

Within M variations of v,3, ko3 and n are expressed through u and §u by
1 _ _
6Yap = 5(6u,a ‘ag+aq-dug),
1
6'%:6 = E(ﬁ’a ~§u,ﬂ +n,g 0u,, +ay 6fl,g +ag - on, ), (4)

sn=-af(n dug) .

At the boundary contour C' the vector fi = n(s) should satisfy the constraints

¥ .-n = 0 and o -0 = 1. Therefore, i on C should be expressible
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through the geometry of C, three translations u(s) and one scalar function
¢(s) = ¢lu,, (s), u'(s)] describing the rotational deformation of the shell
lateral boundary surface.

The general structure of the function ¢, and corresponding four work-conjugate
static and geometric boundary conditions compatible with the principle of
virtual displacement (3), were discussed by Makowski and Pietraszkiewicz [8].
In particular, three physically reasonable special cases of ¢ were noted in [8]: 1)
n, =n-v=j"Y(u'xv—n) u, introduced in [19], 2) v, = a; 2(A—n)-(¥' x @A)
introduced in [13], and 3) w¢, the angle of total rotation of the boundary, defined
in [14] through displacements by 2 cosw; =#-¥+t-t+n-n—1. In what follows all
transformations leading to displacement shell equations are performed applying
n, as the fourth parameter of boundary deformation. Corresponding results
for v, and wy taken as the fourth parameters of boundary deformation are given
in [8,18], respectively.

Thus, in terms of u and n, the variation of n of C takes the form [15]

én = a; v x n)i - Su’ + (¢ x n)én,] , ay = (¥ xn) v, (5)
where 6n, = én,[u,,,u’;éu,, ,éu’] is non-tincar in u,,, v’ but is lincar in
bu,, , bu'.

Introducing (1) and (5) into (3), applying the Stokes’ theorem to the surface
integrals, then applying integration by parts to tlie line integrals we can
transform (3) into [15]

G[u;au]z_/ f{T’6|5+I)+[(h‘éﬁ)ﬁ]|ﬁ}‘6udA+
M
+ / {[TPvs + F' = T = F*' + (h-3Pup)i] - bu+ (M — M*)én, }ds+
Cy

+ Y (Fn—F}) 6u, =0, (6)

where
T? = N*Paq + M*Pn,, +{[M"*a,), -2} i,
F=—a;'[(0xa,) YyM*Prgn, F =—a'[(axH) Vi, (7)
M =a;'(n xa,) - FM Py, M*=a;'(axH) ¥,
F,=F(sn+0)—F(s, -0), up = u(sy) .
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Since (6) should be satisfied identically for all kinematically admissible du,
from (6) follow the Lagrangian equilibrium equations and static boundary and
corner conditions
TPs+p+[(h-a”)alz=0 inM,
Tﬁuﬁ+F':T+F*'—(h<ﬁﬁVﬁ)ﬁ, M=M" on(y, (8)
F, =F; at each corner M, € Cy .
Corresponding work-conjugate geometric boundary conditions are

u(s) = u*(s), nu(s) = ny(s) on Cy . (9)

All the vectors appearing in (8), (9) are understood to be expressed through
compouents with respect to known bases ay, n ory, t, n of undeformed M or
C, respectively.

In the case of an elastic material the constitutive equations for No#, preh
compatible with (3) are
Naﬁ — _Oi 7 Maﬁ - aE ,
Map Ok g

(10)

where T = X(¥ap, Kap) is a two-dimensional strain energy function defined
over M. In the particular casc of isotropic elastic material undcrgoing
small strains (but unrestricted rotations) the strain energy ¥ is, to the first
approximation, a quadratic function of the surface strain measures, [5,14,16].
In the particular case of large-strain bending theory of shells made of isotropic
elastic incompressible rubber-like materials the structure of X, to the first
approximation, is given in [22]. Therefore, for each particular elastic material
the constitutive equations can explicitly be expressed in the form NeB =
N“ﬁ[‘yaﬁ(u),nag(u)], M8 = M"‘ﬁ['yag(u),naﬁ(u)] for any u. As a result,
the boundary value problem (8), (9) of the Lagrangian non-linear theory of
thin elastic shells is expressed entirely in terms of displacements 1 as the only
independent field variables.

It should be pointed out that the underlying principle of virtual displacements
(3) is an incremental principle, which itself does not reguire NoB and Mof
to be derivable from the strain energy function. Therefore, our resulting
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shell relations (8), (9) are valid also for inelastic shells. However, in the
case of inelastic material behaviour N and M®P at successive equilibrium
configurations u should be calculated in an incremental-iterative way applying
appropriate two-dimensional incremental form of constitutive equations for
NoB and M8,

INCREMENTAL SHELL EQUATIONS

The highly non-lincar boundary value problem (8), (9) can effectively be solved
only by incremental-iterative procedures applying computerized numerical
methods, for which the shell equations (8), (9) should be presented in a
consistent incremental form.

In gencral, the external loads p, h, T and H may be specified arbitrarily, or
through several independent. dimensionless parameters (A1, A2,...,Ap) € A C
RP. In the latter case any information concerning the principal features of the
solution manifold can be obtained analysing the set of solution submanifolds
corresponding to a smoothly varying single parameter. Therefore, in the
following considerations we restrict ourselves to the casec when the external
loads are specified by a single parameter A € A C K.

For smoothly varying A the regular solutions of (8), (9) form an equilibrium
path u(}) for which G[u(A);éu] = 0 for all kinematically adinissible virtual
displacements du. For tracing u(}) it is convenient to apply the Newton-
Kantorovich method [6].

Let w,, = u(Am) be an equilibrium state associated with some A = Ay, and let
115,’1) be a known i-th approximation to u,,, which in general may not belong to
the equilibrium path u(A). In order to calculate the correction Augfrl) such

that u,(Ti“) = u£,‘) + Augfrl) is the next approximation to u,, we linearize

G[u; 6uj at usf;) in the direction Augfl), what leads to the functional cquation
(6] , _ .
G[ug,?; bu] + AG[u,(fl);:Su, Augﬁl)] =0, (11)

where AG is the Gateaux derivative of (3) taken at u£,? in the kinematically
admissible direction Aug,?-l). When u$,’) does not belong to the equilibrium

path the first term of (11) allows to calculate the unballanced force vector. The
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second term of (11) is linear in the unknown Augf["l) and allows to calculate

(1)

the tangent stiffness matrix at wy’ of the problem.

In order to simplify notation, in the following part of this Section we sci
(5) _ u, AulitD (1)

uy = m = Au, whilc the values at ;' of corresponding external
loadings we denote shortly by p, h, T and H.

Let us consider a curve u(n) through the 7-th approximation u to u,,, which
in the ncighbourhood of u takes the form u(n) = u+ nAu. The directional
Gateaux derivative of the functional G, taken at the :-th approximation u to
un, iu the direction Au, is given by

d
AG{w; u, Auf = - Glu(r)iouly,o (12)

where G[u(7n); fu] is defined analogously as the functional G[u;éu], only now
u(7n) appears in place of u.

Along the curve u(7n) the external loads are denoted by p(7), h(7n), T(n) and
H(n), while the internal stress and couple resultants by NP (n) and M4 (n),
respectively. The corresponding Gateaux derivatives of those fields are defined
according to

d d
Ap = p P(My=0, AT= an T(M)y=0 >
(13)
d
ANP = E]' Naﬁ(n)l,”=0 , ete.

Let us apply the linearization (11) to the already transformed functional (6).

Since our u = unz-b) may not belong to the equilibrium path, let us introduce
the unballanced residual surface and boundary forces and couples

PR = T'Glﬁ +p+ [(h : éﬁ)ﬁ]l,@ y
Pp =T+ F — T —F + (h-ap)n , (1)
Mp=M - M*, F,p=Fn - F}, .
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The quantities (14) allow to evaluate the first term in (11) in the form

Glu;éu] = _-/M /pR-éudA+/c (PRr-du+Mgén,) ds+2 F,r-6u, . (15)
. f n

In order to calculate the second term of (11), let us remind that along the curve
11(n) the shell geometry is defined by ay(n), a?(n) and n(n). Therefore, taking
Gateaux derivatives of the identities a?(n) - aq(n) = o5, af(n) -n(n) = 0 we
have in M

Ay = Auye, A= -a%(n Auy),

(16)
Aal = —(a®  Aun, ) a" +a(n-Au, ) n.

A(én) = B”. ou,z,
(17)
B’ =[(@® Au,)a*— ¢ (n Au,)n)@n+(n-Au,)a’®@a”.

Similarly, let us introduce fi(n) and én(n) on C, defined by respective formulae
(2)1 and (5), where now u(7) stands for u. This allows to calculate Gateaux
derivatives of i and én on C in the form

An =a ¥ xn)n-Au' + (v x1)An,],

A(bn) = A - 6u’ + Bbn, +a; (¥ x n) A(6n,) ,

A=—-a?v (Au' xB+ 7 x An)j xa)@n+a, (v x (AR® A +0®An],

(19)
B=—a v (Au x i+t x An))(r' x n) + ¢, ' (' x Af + Au’ x @) .
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With the help of (16)+(19), (12), (13), (6), (7) and some transformations, the
second term of (11) can be presented in the form

A su,au) = — [ [((AT?+ 575+ Ap + (k-3 n-
M
~h - Bﬂ]lﬁ} -budA+ (20)

+ / ({(AT? + 8%) v + (AF + ©) ~ AT ~ (AF" 4 C") + [(Ah - a") -
Cy

—h- Bﬁ]l/ﬁ }-bu+ (AM + K — AM™ — K™) én, + MRA(dn,_,)) ds+

+ 3 (AF, + Cp ~ AF}, - C}) - bu,
n

where

AT? = AN“Fag + AMPh . +[(AM™*a,),, -a"la ,

(21)
8 = NP Aw,, +M*P Ao +[(M" Au,y )|, -aP] 5 — (M"a),, - B?

AF = —a; '[(n x a,) ~V]AMaﬁ1/ﬁﬁ ,
C=—a,'[vxn) 'Au,a]Maﬁugﬁ - M“’@éavﬁ “A

(22)
AM =ajt (i x &) - FAM*Pug
K =a; (¥ x i) Au ) My + M*Pa,us - B,
AF* = g [(ax AH) »Ja, C*=-H-A,
(23)

AM* =a;'(ax AH)-¥', K*=H-B
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The fields AT?, AF, AM, AF,, are linear in Au and represent the material
part of changes of u, while the fields S, C, K, C,, are also lincar in Au but
represent the geometric part of changes of u at the incremental step.

Since (11) with (15) and (20) should vanish for any kinematically admissible
$u, from (11) we obtain the following incremental equilibrium equations as well
as the incremental static boundary and corner conditions for the Lagrangian
non-linear theory of thin shells

(AT + 8%) 5+ Ap + [(Ah - @)a —h - BF| s+ pr=0 in M, (24)

(AT? 4 8#) vy + (AF + C) = AT + (AF* + C*)'—

~[(Ah &) n —h-Bflyy - Pp } on Gy,  (25)
AM+ K = AM* 4+ K* | Mp=0
AF, +C, = AF; +C; —F,p at each corner My, € Cf .

The corresponding work-conjugate geometric boundary conditions to be satis-
fied at each incremental step are

Au=20, An, =10 on (Y, (26)

All the vectors in (24)=(26) are given through compouents in the respective
undeformed bases a,, n, andvy, t, n.

The incremental shell equations (24)<-(26) constitute the linearized boundary

(1)

value problem for the increment Au = Aug,’lﬂ) which allows from known g,

(i+1)

to calculate the next approximation uy, ' to the equilibrium state up,.

In the case of an elastic material AN®® and AM°? follow directly from the
constitutive equations (10)

AN(xﬂ — Claﬁ)‘“'A'YA,u + C;Yﬁ/\uAK,\u ’
(27)
AMP = CEPM Ay, + CPM ARy,

where C?ﬁ’\“, k =1,...,4 are the tangent elasticities at u, defined as second
partial derivatives of L with respect to v.3, Kap (see (85) of [22]), while
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A7vap, Akqp are Gateaux derivatives at u of the surface strain measures (see
(82) of [22]). Therefore, for each particular form of ¥, [5,16,22], the tangent
elasticities can be explicitly calculated as known functions of u. In the casc
of inelastic material behaviour the tangent elasticities at each u should be
calculated by some independent incremental-iterative procedure.

The sct of incremental shell equations (24)=-(27) with (14), (16), (17), (19)
and (21)+(23) derived here generalizes considerably the previous incremental
formulations [7,15,1] which were valid for small strains, linear elastic behaviour
and restricted class of external loads or boundary conditions.

LAGRANGIAN BUCKLING SHELL EQUATIONS

Buckling shell equations are usually derived through linearization of the
boundary value problem about an equilibrium state of the shell [23].

Let u be an cquilibriumn state whose stability propcrties are analysed. Since
at u we have G[u;éu] = 0, according to (3), linearization of G at u in a
kinematically adinissible direction Au (note that now Au has different meaning
from Au = Aug,i'H) uscd in the previous Section) leads according to (11)
to the functional equation AG[u;déu,Au] = 0. Here AG can be explicitly
calculated from (6), and the calculation procedure is exactly the same as the
one performed in the previous Scclion, where A7 has been calculated at an

(3)

approximation uy,’ to an equilibrium u,, in a kinematically admissible direction
Au%‘H). Therefore, it is apparent that now AG at u in the direction Au takes

formally exactly the form (20) with Mp = 0. From vanishing of AG for any
Su we immediately arrive at the following explicit form of Lagrangian buckling
equations for thin shells

(AT? +8P) 5+ Ap+ [(Ah-a”)a—h B ;=0  in M,

(AT? +8°) vy + (AF + C)' = AT + (AF* 4+ C*)'-
—[(Ah-a®)n—h- Bﬁ]ug } on Cy , (28)
AM+ K = AM™ + K*
AF, +C, = AF; + C at each corner M, € Cy ,
Au=0, An, =0 on Cy ,
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where all the quantities are defined through u and Au by exactly the same
formulae as analogously denoted respective quantities of the previous Section
have been defined through ug,i) =uand Aug{H) = Au. All the vectors in
(28) are understood again to be expressed through components with respect to

known bases a,,n andv, t,n of M and C, respectively.

The explicit Lagrangian buckling shell equations (28) cxtend to the large-strain
range of deformation and arbitrary loading the stability equations derived
within small-strain theory of elastic shells by Stumpf [23] in operator form
and by Nolte [9] in explicit. form.

REMARKS ON COMPUTER IMPLEMENTATION

The unified formulation of the non-linear displacement 3-ficld theory of shells
presented here is necessarily quite complex becanse of its generality and
versatility. Note that k.3 appearing in the underlying principle of virtual
displacements (3) is expressible according to (1)3 in terms of u,s and u,,g.
As a result, in any consistent finite elernent approximation of the resulting
displacement boundary value problem G interclement continuity is required.
Additionally, in order to allow numerical analysis for various material laws, the
element geometry and kinematics should be decoupled from the constitutive
cquations.

These requirements were fulfilled by Harte [1] in the case of thin shells made of
linearly-elastic material undergoing small strains and moderate rotations and
extended by Schieck [21] to the case of shells made of rubber-like incompressible
elastic material undergoing large strains and unrestricted rotations. In those
papers a triangular high-precision doubly-curved shell finite element with 54
degrees of freedom proposed already by Cowper [3] is selected. In the element
of [21] biquintic polynomials arc applied as shape functions for all three
displacement components. As 18 degrees of freedom at each node the quantities
U, W; Uy 3, W,3 5 Ug B, W4~ are used, and the Gauss integration is performed
in 21 points. The geometry of the element is calculated exactly from the given
shell geometry. The shape functions are then condensed in such a way that C!
interelement continuity of all displacement components is assured. The element
is capable to represent only approximately the constant strain modes and the
strain-free rigid-body modes. Test show, however, that the approximation error
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quickly approaches zero with the mesh refinement. The strain-displacement
relations and material laws are disconnected from the finite element kinematics.
Therefore, they can easily be changed, if necessary.

The C! shell element described above was used with the MESY 3 computer code
of structural analysis, and several test examples were run on CDC Cyber 205
vector computer applying special algorithms and programming techniques. In
particular, the number of DOF of the element was combined with the number of
integration points, what led to the vector length 54 x 21 = 1134 and allowed to
increase the computation speed by the factor 23 over non-vectorized algorithms.
The concise description of the vectorized algorithms developed is given by Nolte
and Schieck [10,11] while the modified vectorized subroutine for calculation of
the element tangent stiffness matrix and the residual force vector is described

in Schieck [21].

With the help of the C! triangular shell finite element described above, several
nuwerical results for highly non-linear one- and two-dimensional problems of
elastic shells were presented in [21,22]. The application of the element to
problems of elasto-plastic shells undergoing large strains is under developinent.
The use of other material laws, and application of other C! shell finite elements,
within the proposed unified displacement. formulation of the non-linear theory
of thin shells will hopefully be the subject of rescarch in the future.

The C' continuity requirement, and associated complexity of the finite
elements, is considered to be a disadvantage of the displacement formulation
of thin shell theory as compared with a more complex G-field theory of shear-
deformable shells [14]. In the latter one both displacements and rotations are
the independent field variables, and the finite element approximation cxpressed
in terms of those variables requires only CU intcrelement continuity [2].
However, while the 3-field shell theory has been presented here in supposedly
ultimate formulation, the 6-field shell theory is still under development and
several inportant questions of the theory itself and its FE approximation are
still under discussion. CP shell finite elements bring themselves some probleins
(locking effects, spurious zero-energy modes etc.) which are still waiting for
commonly accepted satisfactory solutions. The complexity of 3-field C! finite
elements may become less important already in the near futurc when powerful
parallel processors of the next generation are installed into computers of PC
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class, and then much better approximation quality of C! finite elements may
become a decicive advantage. One can also expect that 6-field shell models will
be absorbed in the futurc by unified computer codes of 3D analysis of structures,
while the special structure of boundary conditions required by the 3-field shell
theory does not allow it to be degenerated from the structure of 3D theory.
Therefore, onc might anticipatc that this theory would remain as the only
“shell” theory also in the future structural analysis. These are some arguments
why the derivation of 2D constitutive laws for various material behaviour, aud
development of computer codes based on C! shell finite elements, seems to he
of some importance also for future analysis of shell structures.

CONCLUSIONS

In this report a nnified formulation of a wide class of non-linecar theories of thin
shells has been presented. The analysis has been hased on only onc assumption:
tlie deformation of the shell as a three-dimensional body is determined cutirely
by deformation of its reference surface. Basic shell equations, in the global (8),
(9) and consistent incremental (24)-+(26) forms, have been explicitly derived in
the Lagrangian description in terms of displacements of the reference surface
as the only iudependent field variables. The most general explicit [orin of
Lagrangian buckling shell equations (28) have also heen derived. Particular
attention has been paid to consistency of work-conjugate boundary couditions,
and to precise evaluation of unballanced forces when successive approximations
to an equilibrinm state do not follow the cquilibrium path.

Our formulation of shell equations is valid for an arbitrary geometry of the
shell reference surface, for unrestricted displacements, rotations, strains and/or
changes of curvaturcs of the refercuce surface, for arbitrary configuration-
dependent. external surface and boundary loadings, and for arbitrary sct of
four work-conjugate static and geometric boundary conditions. Therefore, our
formulation contains many specialized versions of non-linear shell equations
available in the literature.

We have explicitly applied here the constitutive equations of elastic shells (10),
(27), since for such material bahaviour effective computer FEM programs were
developed, and several one- and two-dimensional non-linear problems of shells
within small-strain [4,9,12] and large-strain [21,22] range of deformation were
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analysed. However, our formulation of the non-linear shell theory is applicable
to some problems of inelastic shells as well, provided corresponding incremental
constitutive equations for the surface stress measures are available.
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