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Abstract—Non-linear problems of thin elastic shells may conveniently be formulated in the Lagran-
gian description in terms of three displacement components of the reference surface. Assuming that
an approximation to an equilibrium state of the shell is known, the explicit form of incremental
equations for the correcting increment of displacements, which allows one to calculate the next
approximation, is derived for arbitrary configuration-dependent external static loads, and for
arbitrary work-conjugate boundary conditions. The derivation is performed applying the New-
ton—-Kantorovich method which is based essentially on successive approximations to the exact
solution of some linearized shell problem. As a special case, the ultimate Lagrangian buckling
equations for thin shells are constructed.

1. INTRODUCTION

The Lagrangian non-linear bending theory of thin shells was developed by Pictraszkiewicz
and Szwabowicz [1] and Pietraszkiewicz [2, 3]. Several equivalent-to- [2, 3] versions of
non-linear shell equations were discussed by Schmidt [4], Tura and Hirashima [5], Stumpf
[6], Basar and Kratzig [7], and with modified definitions of the tensor of change of
curvalure, also in several other papers [8,9]. In [1-3] it is assumed from the outset that the
deformation of a thin shell as a three-dimensional solid 1s determined entirely by deforma-
tion of its reference, usually the middle, surface. The resulting non-linear equilibrium
equations and work-conjugate boundary conditions, following from the two-dimensional
principle of virtual displacements, are referred to the known geometry of the undeformed
reference surface. They are two-dimensionally exact for the reference surface, since no
further restrictions are imposed on magnitudes of the surface displacements, rotations,
strains and/or changes of curvatures. When appropriate constitutive equations of elastic
shells are used, the resulting boundary value problem is formulated entirely in terms of three
components of displacement vector u of the reference surface as the only independent field
variables.

For many years, the Lagrangian displacement shell equations, or their simplified ver-
sions, have been used to solve geometrically non-linear problems of thin elastic shells
undergoing small strains (e.g. [10—13]) primarily becausc the simple constitutive equations
of such shell theory, to within the consistent first approximation, were well established in
the literature [9, 14-16]. As a result, several attcmpts to derive various Lagrangian
equations for superposition of deformations within small-strain elastic shell problems were
reported.

In the pioneering paper by Galimov [17] the Lagrangian cquilibrium equations and
static boundary conditions for superposed deformations were derived in terms of non-
symmetric surface stress measures, while Pietraszkiewicz [18] derived the perturbed Lag-
rangian shell cquations in terms of symmetric surface stress measures. However, the
effective force and couple resultants used in [17, 18] were not work-conjugate to the
geometric parameters of boundary deformation (see also ref. [39]). In the Lagrangian
incremental equations derived in [2, 19] the increments associated with boundary rotation
were approximated by lincar terms and the perturbed equations of Budiansky [20] were
given for the membrane fundamental state. In the ones derived by Stein et al. [21] there
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were still six incremental boundary conditions, while in the variational formulation of
incremental shell equations proposed by Basar and Ding [13] some integrals associated
with the increments of external loads were omitted. Lagrangian stability equations for the
version of shell theory based on a modified tensor of change of curvature were derived by
Nolte [ 10, 22], Schmidt and Stumpf [23] and Stumpf {247, while the ones based on the shell
theory of [2] were given by Stumpf [6]. The final stability equations of [6, 22, 24] were
presented in an operator form, where the operators had still to be calculated as Gateaux
derivatives of some other operators associated with the fundamental equilibrium state.
There are also other forms of incremental or buckling shell equations available in the
literature which are referred either to the basis of deformed shell [2,25-28] or to the
intermediate rotated basis [29-32], but we do not discuss such forms here.

Irrespective of the names used for the resulting Lagrangian shell equations in the papers
referred to above (incremental, superposed, perturbed, stability, buckling, etc.), the equa-
tions were usually derived as some kind of linearization of the field equations about an
equilibrium state of the shell. However, when deriving incremental shell equations for the
current iteration step, the successive approximations to the unknown equilibrium state may
not belong to the equilibrium path. As a result, some unbalanced force vector should always
appear explicitly in correct incremental shell equations. Note that only papers [2, 13, 19]
introduce explicitly unbalanced force vectors, although some self-correcting numerical
procedures certainly had to be used implicitly in [10, 127 in order to obtain the correct final
results.

In a recent report by Schieck er al. [33] we constructed the consistently simplified
two-dimensional strain energy function and the corresponding constitutive equations for
shells made of incompressible rubber-like materials undergoing large elastic strains, which
generalized and put on a more rational basis carlier results given in [34 -37]. This opened
the possibility to apply the Lagrangian shell equations to large-strain problems of elastic
shells as well. We also proposed in [33] some incremental procedures which allowed us to
perform numerical analysis of highly non-linear problems of rubber-like plates and shells
using the finite element method. However, the derivation of the explicit Lagrangian
incremental shell equations was not included in [33], because of the limited volume of that
paper, and because we analysed test problems of rubber-like plates and shells with clamped
boundaries only. But still open theoretical and numerical problems remain, however, when
non-linear problems of shells with arbitrary boundary conditions are discussed, particularly
problems with unrestricted rotational deformation of the shell boundary. In our opinion,
the correct derivation of explicit incremental Lagrangian equations for the most general
case of shell deformation, external loadings and boundary conditions has enough novelty
for itself in order to be published separately, independently of their various possible
computer implementations and various possible particular two-dimensional forms of
constitutive equations applied.

In this report we present a detailed and explicit derivation of the incremental equations
which allows one to analyse the highly non-linear shell problems on the basis of the
Lagrangian non-linear bending theory of thin elastic shells as developed in [2, 33]. As
a special case, we also construct the explicit form of corresponding buckling shell equations.

After recalling in Sections 2 and 3 some of the gecometric formulae and basic relations of
the Lagrangian non-linear shell theory, we discuss briefly in Section 4 the general scheme
for analysing parametrized non-linear operator equations with the help of the
Newton-Kantorovich method. Assuming that an approximation to an equilibrium state of
the shell is known, we present as equation (12) the consistently linearized principle of virtual
displacements at this approximation, which itself may not be an equilibrium configuration.
In Section 5 the directional Gateaux derivatives of vanous fields, defined inside the refer-
ence surface and on its boundary, are explicitly calculated and presented in a readable
vector form. This allows one to transform all integrals in the linearized functional of the
principle of virtual displacements and present it in the final form (35), from which follow
immediately the explicit incremental equations (36) and (37) for the Lagrangian non-linear
theory of shells. Lagrangian buckling shell equations (39) and (40) are then derived from the
incremental shell equations as their particular case, which is discussed in Section 6.
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2. NOTATION AND GEOMETRIC RELATIONS

In this report we apply the system of notation used by Pietraszkiewicz [2, 9].

Let r(6*) be the position vector of the reference surface .# of undeformed shell, where 6°,
o = 1,2, are surface curvilinear coordinates, With each point M e.# we associate the
natural base vectors a, = dr/d0* = r ,, the covariant (components of the surface) metric
tensor a,y = a,- &, with determinant a = |d,4/, the unit normal vector n = a™'/?a, x a,, the
curvature tensor b,y = — a,-n; and the permutation tensor ¢,5 = (a, x ag)-n. The con-
travariant base vectors a® arc defined through a®-a; = 63, and the contravariant metric
tensor ¢*¥ = a®-a” is used to raise indices of tensor components on ..

'The boundary contour % of .# is assumed to consist of the finite set of piecewise smooth
curves defined by r(s) = r[0%(s)], where s is the arc length along %. With each regular point
M e€¢ we associate the unit tangent vector t = dr/ds = r' = t*a, and the outward unit
normal vector v =r,, = v*a, = txn, v* = £t where ( ), denotes the outward normal
derivative at €.

Let .# be the deformed configuration of .# defined by r(¢%) = r(6*) + u(#*), where
u:.# — E> is the displacement field and 6" are the same surface convected coordinates.
With each point Me.# we now associate geometric quantities which are defined
analogously to those defined on .#, only now marked by an overbar:
Ay, dgg, @, N, b_a,,, Eap, 2%, a®, t, v, etc. The quantities defined on A and the deformation of
M are given by the relations [2, 9]

a,=r,=a,+u,, ﬁ=%j‘laﬂa,xaﬂ,

yap = 'li(daﬂ aaﬂ)s Kap = (haﬂ - baﬂ),

=== _Ca}'{r‘p“daﬁauq

a” = a*fa,, a't = (1 + 2y5)a? — 2%, (N

where y,4 and k,g are the Lagrangian surface strain measures.
Along the deformed shell boundary contour @ we have the following relationships [2, 97:

’

JdP=ttu' = ari, a, = |r'l,

-t
li
0

=1z ’ -

Joor,xr, r'xn=aqv,

PP = F ),

n

29w = 2ppVitP =1 -1,

af = 1@ — 2p.a” ) + a; et )

Itis apparent from (1) and (2) that the geometry of # is entirely determined by the geometry
of .# and u ,, while the geometry of € is entirely determined by the one of ¢ and u ,, u".

3. LAGRANGIAN NON-LINEAR DISPLACEMENT SHELL EQUATIONS

In order to make the paper self-contained, let us recall here some basic results on
Lagrangian non-linear shell equations [2].

Lel . be the reference surface of a deformed shell in an equilibrium state, under the
configuration-dependent static surface force p and the surface moment h, both defined per
unit area of undeformed surface .#, as well as under boundary force T and the boundary
moment H, both defined per unit length of undeformed boundary . Then for an additional
kinematically admissible virtual displacement field du:.# — E* the internal virtual work,
performed by the internal second Piola—Kirchhoff-type stress and couple resultants N*# and
M=# on respective variations of the strain measures dy,; and dk,y, should be equal to the
external virtual work, performed by the external surface and boundary loads on respective
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variations of displacemental parameters or, equivalently,

Gu; éu] = G;[u; ou] — G.[u; du] =0,

G,[u; u] = Jj (N5, + M dk,p)dA,
M

Gelu; 6u] = Jf (p+éu+ h-dn)dA + j (T-6u + H-én)ds. (3)
R €
Here %, denotes that part of the shell boundary ¥ where static boundary conditions are
prescribed, and all the functionals G depend non-linearly on u but are linear in du.
Variations of the surface strain measures appearing in (3), are given through u and éu by

0Vap = Jz‘(fs“.a‘ﬁﬁ + a,-du p),
(SKaﬁ = %(l-l.a'(su'ﬁ + l—lvﬁ'éu'a + ﬁd-éﬁvﬂ + ﬁﬂ'éﬁ_a),
si = — a’(n-du ). (4)

At the boundary contour € the vector n = n(s) should satisfy the constraints ' -n = 0 and
n-n=1. As a result, three components of translation u(s) and one scalar function
@(s) = @[u, ,(s), u'(s)] describing the rotational deformation are necessary and sufficient in
order to describe the deformation of the shell boundary uniquely.

The general structure of the function ¢ and associated with ¢ work-conjugate boundary
conditions compatible with (3) were discussed by Makowski and Pietraszkiewicz [39].
Three physically reasonable particular cases of ¢ arc known in the literature:
(1) n,=n-v=j""u'xv — n)-u, introduced in [17; (2) $, = a, (n — n)-(r’ x n) introduc-
ed in [38]; and (3) w,, the angle of total rotation of the boundary, defined in [41] through
displacements by 2cosw, + 1 = v+v + t-t + n-n. Since almost all general results available
in the literature have been obtained using the function n,, in this report we also apply n,, in
terms of which the variation of n of € takes the form

S = a, '[(vxn)n-du + (r' xn)on,],
a,=(Fxi)-v, (5)

where én, = én,[u_,, u’; du_,, ou’] is non-linear in u ,, u’ but is linear in du ,, du’".

Introducing (4) and (5) into (3), applying Stokes’ theorem to the surface integral and then
applying integration by parts to the line integral, the principle of virtual displacements (3)
can be transformed into

Glu; 6u] = —H {T?|, + p + [(h-2a%)a]|,)} - oudA

+ J [(P — P*)-u+ (M — M*)én,]ds + ¥ (F, — F¥)-du, = 0, (6)
K13 n
where
T? = N**a, + M**a , + {[(M**4,)|,]-2" ),
P=T/;+F, P*=T-(h-a’v)n+F*,

F=-a '[(@xa,) vIMPvi,  F*= —a'[(axH)-v]a,
M=a '(nxa,) -FM¥v,,  M*=u '(ixH)F,
F,=F(s, +0) - F(s, —0), u,=u(s,) (7)

Alternative to (7);, 4 definitions associated with 9, and w, as the fourth parameters of
boundary deformation are given in [39, 40], respectively.

Since (6) should be satisfied identically for all kinematically admissible du, from (6) follow
the Lagrangian equilibrium equations and static boundary conditions

T+ p+ [(h-da")all, =0 in .2,



Explicit Lagrangian incremental and buckling equations 213
P(s) =P*(s),  M(s) = M*(s) on &,
F,=F}* ateach corner M,e%;. (8)

Corresponding geometric boundary conditions, which are work-conjugate to the static
ones (8), 3, have the form

u(s) = u*(s), n(s)=n¥(s) on€, ©
In the case of an elastic material, to which we confine ourselves in this report, the
constitutive equations compatible with (3) are

NS 702 Mo = 0L

Ovap’ 0Ky

(10)

where £ = X(yq4, Kqp) 1S the two-dimensional strain energy function of the shell.

Let us recall that the function X is usually constructed as some kind of approximation to
the corresponding three-dimensional elastic strain energy function of the shell, and is
approximate virtually by definition. Its explicit form depends on the mechanical properties
of the material the shell is made of. In the particular case of an isotropic elastic material and
small-strain (but unrestricted rotation) shell theory the X is, to the first approximation,
a quadratic function of the strain measures y,s, Kq, cf. [9, 14—16, 41]. In the case of
large-strain theory of shells made of isotropic elastic incompressible rubber-like materials
the consistently simplified structure of X, within the consistent first approximation and the
simplest approximation, and corresponding constitutive equations of the type (10) are given
in [33]. Still other forms of £ compatible with (3) were proposed in [34-37, 42, 43] for
large-strain problems of elastic shells.

In each particular case of £ = Z(y,y, k4p) the constitutive equations are of the form
N = Ny, Kog)y M = M (y,5, Kap), Where yo5 = 145(0), K45 = Kqp(w) are known func-
tions of u following from (1). Since all other geometric quantities in (7) associated with
# and & are understood to be expressed through u as well, the boundary value problem (8)
and (9) or its weak formulation (3) of thec Lagrangian non-linear theory of thin elastic shells
is expressed entirely in terms of displacements u as the only independent field variables.

4. SOLUTION OF PARAMETRIZED NON-LINEAR OPERATOR EQUATIONS

The highly non-linear boundary value problem (8) and (9) can be effectively solved only
by numerical methods, provided the correct incremental-iterative procedure in the total
Lagrangian description is developed.

It has been pointed out in Section 1 that many incremental forms of Lagrangian shell
equations available in the literature do not take into account that successive approxima-
tions to the unknown equilibrium state follow a path which may not be the equilibrium
path. Therefore, in what follows, we briefly recall some basic facts about the incremental-
iterative procedures which are used for solving highly non-linear problems; cf. [44, 45].

In general, the configuration-dependent external loads applied to the shell may be

specified by several independent dimensionless parameters (4, 4,,...,4,) =4€A < R?,
and the boundary valuc problem (8) and (9) can be presented in the form
F(u, 1) =0, (1D

where the non-lincar continuously differentiable operator F is defined on the product space
C(A, E®) x R” with values in the Banach space, and C(.#, E*) is a set of all configurations
of the shell reference surface in the three-dimensional Euclidean space, i.e. infinite-dimen-
sional configuration space. Under rather general conditions (see Chapter 4 of [44]) the
solution manifold consisting of all points (u, 4) satisfying (11) has the structure of a p-
dimensional differential manifold in C(.#, E*) However, any information concerning the
principal features of this manifold can be obtained by analysing the set of one-dimensional
submanifolds corresponding to the smoothly varying single parameters. Therefore, we also
restrict our further discussion to the case when the external loads are specified by a single
parameter Ae A < R.
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For smoothly varying A the regular solutions of (11) or (8) and (9) form a one-dimensional
submanifold u(4) in C(.#, E*) which is usually called the equilibrium path. According to the
principle of virtual displacements (3), u(4) is a weak solution of the boundary value
problem (8) and (9) if G[u(A); du] = 0 for all kinematically admissible virtual displacements
du. For tracing the equilibrium path u(4) it is convenient to apply the Newton-Kantorovich
method (cf. [45]), which essentially is based on successive approximationsto the exact
solution of some linearized problem.

Let the equilibrium path u(4) be divided into the finite number of equilibrium states
corresponding to some values Ao, A4;,. .., Ams Ama1,. . ., A€ A Of the load parameter 4.
Let uf) denote the known ith approximation to the equilibrium state u,, = u(4,,). It is
apparent that, in general, the approximation uf) may not belong to the equilibrium path
u(4). In order to calculate the correction Aufi* '‘Which would allow us to determine the next
approximation ul,*" = u® + Auf*" to u,, it is convenient to linearize G[u; éu] at the
approximation ul?, what leads to the following equation for Aul," !’ (cf. [45, Chapter 3]):

G[u?; du] + AG[ul); Aufi* ), Su] = 0. (12)

The first term of (12) denotes the value of the functional (3), evaluated at the approxima-
tion uf). Since u{) may not belong to the equilibrium path, this term does not vanish, in
general, and allows one to calculate the unbalanced force vector. The second term of (12)
denotes the directional Gateaux derivative of the functional (3), taken at the approximation
u? in the kinematically admissible direction Au*". This term is linear in the unknown

Aufl* " and allows one to calculate the tangent stiffness matrix at uf) of the non-linear shell
problem.

5. INCREMENTAL LAGRANGIAN SHELL EQUATIONS

In order to simplify the notation, in this Section 5 we set u¥) = u and Aul*" = Au, while
the values at ul of the corresponding external surface forces and moments as well as the
boundary forces and moments approximating p,, = p(4,), h,, = h(4,,), T,, = T(4,,) and
H, = H(4,) we denote in short by p, h, T and H, respectively.

Let us consider a curve u(y) through the ith approximation u to u, such that in the
ncighbourhood of u

u(n) = u + gAu (13)

The directional Gatcaux derivative of G[u; du] taken at the ith approximation u in the

kinematically admissible direction Au is given by

AG[u; Au, 5u] = a-d; GLu(r); dull,-o, (14)

where G[u(n), ou] is defined analogously as the functional G[u; du] in (3);, only now u(z)
appears in place of u.

The components of the Lagrangian surface stress and strain measures associated with
the curve u(y) are denoted by N*4(y), M**(n), Yap(n) and k,g(n), while the corresponding
external surface loads by p(n), h(n), T(n) and H(n). In deriving Gateaux derivatives at u
in the kinematically admissible direction Au of all the fields appearing in the shell theory,
we follow our paper [33].

From (14) and (3) it follows that

AG[u; Au, Su] = AG;[u; Au, du] — AG [u; Au, u], (15)

AG;[u; Au, 6u] = Jl[‘ (Aoy + Aog)dA, (16)

Aoy = AN 3y, + AM™ 5k,
Ao = NP A(Bya) + M A(Grc,p), (17)

AG_[u; Au, $u] = J‘f [Ap-du + Ah-én + h-A(én)}dA

+J\ [AT-déu + A -Sn + II-A(én)]ds, (18)
€r
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where Ap, Ah, AT and AH are the Gateaux derivatives at u of the respective external loads.
Within the reference surface .# the Gateaux derivatives of various fields are given by

An= —a’(n-Au,),  A(Sh) = BF-Suy, (19)
B’ = [(i"-Au,)d" — #*(A-Au )R] @ h + (- Au, )2 ® 2", (20)
Ayy = ia,- Au g + 2z Au ,),
Akyp =3 z-Au g+ g Au, + a,- AR 4 + a5- AR ,), (21)
A(Oy.p) = 3(Au , - 0u z + Au g+ u ,),
A(OKqap) = 3{AD ,-0u g + Ad 4-du, + Au ,-n ; + Au z-6n

+ 2, [A(0n)] 4 + a5-[A(GD)] ,}, (22)
AN = CallﬂiuAhu + C“z‘ﬁ“’AKA,,,
A]VIMj == CSBA“AYA# + Ciﬂl“AK;‘u, (23)

where C¢* k = 1,2, 3, 4, are the tangent elasticities at u, defined as the second partial
derivatives of the strain energy function Z(y.g, k,5). For each particular form of Z the
elasticities C{** are known functions of u.
At the undeformed boundary contour 4 of the reference shell surface the Gateaux
derivatives of n and dn are
An = a; '[(vxn)n-Au’ + (F' xn)An,],
A(0R) = A-Su’ + Bdn, + DA(n,), (24)
A= —ua’[v-(Ad' xii + P x AR)](¢xn)®n + a; ' [vx(An® n + n ® An)],
B= a2 [v-(Aw xn+ 1 xAn)] (' xn) + a; "(Au' xn + ' x An),
D=ua, ' xi. (25)
Now we are in a position to derive the incremental equilibrium equations with corres-
ponding boundary and corner conditions which should be satisfied by the incremental
stress measures AN*[u; Au] and AM* [u; Au].

Let us introduce (21), (22) and (19), into the first term of (16) and apply the Stokes’
thcorem, what after transformations leads to

JJAonA = - JJ (AT#)|,-dudA + J (AP -ou + AMédn,)ds + ZAF,,-éu,,, (26)
M H e

n

where
AT? = AN*a, + AM**d, + {[(AM**4,)|,]-3"} i,

AP = AT v, + AF’, AF = —a;'[(nxa,)-v]AM P vsn,
AM = a; \(fi x a,)-F' AM v,
AF, = AF (s, + 0) — AF(s, — 0). (27)

Upon introducing (22), (19), and (4); into the second term of (16) and again applying the
Stokes’ theorem, we obtain

” AcgdA = H (N Au_,-8u y + MP{An - u, + Au -8, + 4, - [A(SR)] ,})dA

= - H S|, oudA + J [Q-du + Kon, + MA(Sn,)]ds + Y. C,-du,, (28)
H %r n
where

Q =S8, +C

S = N¥Au, + M* A, + [(M**Au ,)|,-3* 10 — (M**4,)|,- B,
C=—a '[(vxn)-Au, M vgh — M¥a,v,-A,

K =a/'[(F' xn)-Au M vs + M*¥a,v;-B,
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M = M**a,v;-D, C, = C(s, + 0) — C(s, — 0). (29)
Taking into account the identity

Au, = a,(Au ,-2%) + n(Au ,-n), (30)
wc also have
(vxn)-Au,=[(nxa,) v](Au,-a"),

(F'x)-Au, = [(0xd,)-F'](Au ,-a%). (31)
This allows one to note that with (31) the first terms of C and K in (29) have the structure
similar to AF and AM 1n (27).

The exterior part of (15), given by (18), can also be transformed using (4), (5), (19), and
(24),, applying Stokes’ theorem to some integrals over .#, and then applying integration by
parts to some integrals over €y, which gives

AG,[u; Ay, du] = J‘J' {Ap + [(Ah-a*)n]|; — (h-B?)|;}-SudA

+J {[AP* — (Ah-a®vg)n + h-Bfv;]-bu

+ (AM* + K*)én, + M*A(0n,)}ds + Y (AF¥ + C})-6u,,  (32)

where
AP* = AT + (AF* + C*),

AF* — — g '[@x AH)-v]d, AM* = a '@ x AH)-¥,
C*=_—H-A, K*=H-B, M*=H-D. (33)

Finally, the first term in expression (12) can also be transformed in a similar way as
principle (3), has been transformed into form (6). For u belonging to the equilibrium path
this term should vanish identically. But, in general, the value u (recall that u means u®® in this
Section 5, according to our convention) need not belong to the equilibrium path. Therefore,
let us introduce the unbalanced residual force vectors corresponding to wu:

pr =T, +p+ [(h-a%)a]ls, Pp=P - P
MR=M—M*, FnR=Fn—F:‘ (34)
Now all the transformed integrals (26), (28), (32) and (6) with (34) can be introduced into
(12), which gives

- J:[ {(AT# + S")|; + Ap + [(Ah-3”)n — h-Bf]|; + pp}-SudA

+J ({AP + Q — AP* + [(Ah-a®)i — h-Bf]v, + Py} - du
ér

+ (AM + K — AM* — K* + Mg)dn, + MgA(on,))ds
+ Y (AF, + C, — AF} — C¥ + F,g)- du, = 0. (35)
Since (35) should vanish identically for any kinematically admissible u, from (35) we

obtain the following incremental equilibrium equations as well as the incremental static
boundary and corner conditions for the Lagrangian non-linear theory of thin shells:

[AT? + §* + (Ah-a® )i —h-B*]j;, + Ap+ pe =0 in #,
AP + Q = AP* — [(Ah-3%)n — h-B*]v, — Py
) on %,
AM + K = AM* + K*
AF, + C, = AF¥ + C* — F,z at each corner M, € %;. (36)

The corresponding work-conjugate geometric boundary conditions to be satisfied at each
incremental step are

Au = 0, An,=0 oné.. (37
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Equations (36) and (37) represent the required set of linear conditions for the increment
Au to be satisfied at the ith iteration stcp. When Au is obtained from (36) and (37) it allows
one to determine the (i + 1)th approximation to the equilibrium state u,,.

Equations (36) and (37) have an easily interpretable structure. The vectors AT?, AP, AF,,
and AM, being lincar in Aw, represent the material part of changes of u dependent on the
constitutive equations, while the vectors §#, Q, C, and K, being linear in Au as well,
represent the geometric part of changes of u caused by the change of shell geometry at the
incremental step. Equations (36) and (37) are given for arbitrary configuration-dependent
external static loads, and for arbitrary work-conjugate incremental static and geometric
boundary conditions associated with n, taken as the fourth parameter of boundary
deformation. Alternative forms of incremental boundary conditions associated with other
definitions of the fourth parameter can easily be derived, if necessary, by taking Gateaux
derivatives of respective boundary quantities defined in [39, 40]. The explicit appearance in
(36) of the unbalanced force vectors pg, Py and F,; assures the correct equilibrium balance
at each step.

Let us recall that the Lagrangian non-linear theory of shells, for which (36) and (37) are
derived, is valid for unrestricted displacements, rotations, strains and changes of curvature
of the reference surface. In this paper we have used explicitly the constitutive equations (10)
of an clastic material. We have done this for definiteness of our development, since the
corresponding numerical procedure, based on a triangular doubly curved finite element of
C! type with 54 degrees of freedom, was developed in [46] and successfully applied to solve
some highly non-linear onc- and two-dimensional problems of elastic shells within the
small- and large-strain range of deformation [33, 46]. It should be pointed out again that
the incremental equations (36) and (37) follow from direct linearization of the principle of
virtual displacements (3),. However, the principle itself does not require N* and M to be
derivable from the strain energy function. Since (3), is an incremental principle, it is
applicable both to clastic and inelastic shells. Therefore, our resulting incremental shell
equations may be applied to solve problems of inelastic shells as well, provided correspond-
ing incremental constitutive equations are introduced to evaluate AN*# and AM®# at each
iteration step.

The set of incremental equations (36) and (37) may be viewed as direct generalization of
the analogous incremental formulation in total Lagrangian description proposed for
geometrically non-linear problems of elastic shells in [2, 19]. Note that the incremental shell
equations of [2, 19] were derived by an engineering approach, analysing the superposition
of two deformations with subsequent linearization of the second deformation about the
intermediate configuration. Our equations (36) and (37) are valid for large elastic strains,
and the influence of surface moment h is additionally taken into account. Applying the exact
formula (24) for A(on) at ¥ we are also able to account exactly the incremental changes of
rotational deformation of the shell boundary, while in [ 2, 19] those changes were approxim-
ated by some linearized incremental rotations and the resulting error was included into the
residual force vector.

The recent incremental formulation proposed by Basar and Ding [13] for the geomet-
rically non-linear elastic shell theory of [ 7], which is essentially equivalent to the one given
in [2, 3], seems to be more restrictive as compared with the one developed here. Apart from
the explicit use of classical constitutive equations for thin elastic shells, which are valid for
small strains, and the omission of the less important external surface moment h, the
increments Ap, AT and AH of the external surfacc and boundary loads at the iteration step
Au are omitted in [13] as well. This unnecessarily restricts the class of admissible loads.

6. LAGRANGIAN BUCKLING SHELL EQUATIONS

Buckling shell equations, called also the equations of critical equilibrium of the shell, can
be derived through the linearization of the non-linear boundary value problem about
a given finitely deformed equilibrium state of the shell [6, 30].

Let u be a regular solution of (8) and (9) determining the equilibrium state whose stability
properties are analysed. At this configuration G [u; éu] = 0, according to (3),. Linearization



218 W. PIETRASZKIEWICZ

—~

of G at u in the kinematically admissible direction Au leads immediately to the linear
equation for Au:
AG[u; Au, du] = 0. (38)

It is apparent that (38) is a particular case of the general linearized cquation (12).
However, now u is an equilibrium state, and the first term in (12) vanishes identically.

The Gateaux derivative of G in (38) can now be explicitly calculated, performing exactly
the same transformations as in Section 5. This leads immediately to the following explicit
form of Lagrangian buckling equations for thin shells:

[AT? + S/ + (Ah-2a®)n —h-B*J; + Ap=0 in .#, (39)
with corresponding work-conjugate boundary conditions

AP + Q = AP* — [(Ah-a")ii — h-B]v, on @
AM + K = AM* + K* b

AF, + C, = AF* + C}¥ at each corner M,c ¥,
Au =0, An,=0 on¢%¥,. (40)

All the quantities are defined in (39) and (40) through u and Au by exactly the same formulae
as the analogously denoted respective quantities of Section 5 have been defined through
u=u¥ and Au = Aul* "

The Lagrangian buckling equations (39) and (40) of thin shells are again valid for
arbitrary displacements, rotations, strains and changes of curvature of the reference surface,
for arbitrary configuration-dependent external static surface and boundary loads as well as
for arbitrary work-conjugate static and geometric boundary conditions associated with
n, as the fourth parameter of boundary deformation. Therefore, the explicit Lagrangian
buckling equations (39) and (40) represent the ultimate form of such equations within the
non-linear theory of thin shells in the Lagrangian description. Their accuracy and the range
of applicability in engineering problems depends only on the accuracy of the basic assum-
ption of thin shell theory, that deformation of the shell is determined by deformation of its
reference surface, and by the accuracy of the particular constitutive equations used in the
analysis.

The buckling shell equations (39) and (40) extend to the large-strain range of deformation
and arbitrary loading the explicit stability equations derived by Nolte [10] for the geomet-
rically non-linear theory of thin elastic shells loaded by dead-type external surface force and
boundary force and moment.

7. CONCLUSIONS

In this report we have developed the general form of incremental equations, allowing one
to solve highly non-linear bending problems of thin shells. Our analysis is bascd on the
Lagrangian non-lincar theory of thin elastic shells developed in [2, 3] and on some results
given for the large-strain problems of rubber-like shells in [33]. Explicit incremental shell
equations are derived using the Newton-Kantorovich method, which essentially consists of
successive approximations to the exact solution of some linearized shell problem. Assuming
that an approximation to an equilibrium state of the shell is known, the solution of the
incremental shell equations with respect to increments of displacements allows one to
calculate the next approximation. In our procedure we have fully taken into account that
the successive approximations to the unknown equilibrium state may not belong to the
equilibrium path. As a result, some unbalanced force vectors appear explicitly in our
incremental shell equations. As a special case of the incremental shell equations, the
Lagrangian buckling equations for thin shells have been constructed.

We have explicitly applied here the constitutive equations (10) of elastic shells, since for
such shells the effective computer programs were developed in [ 10, 46], and many one- and
two-dimensional non-lin¢ar problems of elastic shells within small- and large-strain ranges
were analysed. However, our incremental and buckling equations are applicable to inelastic
problems of thin shells as well, provided some incremental constitutive equations for the
shell stress measures are available.
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