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Introduction

Within the Quasi-linear Viscoelasticity, a closed-form solution to the hereditary integral in
the case of uniaxial deformation is given. Loading with a constant rate, a logarithmic
relaxation function and a polynomial representation of the elastic response is assumed. The
resulting force-elongation relation is enhanced to comply with experimental limitations.
Fung (1972, 1981) proposed to use a Quasi-linear Viscoelasticity (QLV) for the description
of the nonlinear behavior of soft biological tissues under uniaxial deformation. The QLV
combines both elastic and time-dependent components of a tissue’s mechanical response
using a hereditary integral formulation. A vast variety of soft tissue structures were modeled
using this theory (see e.g. Haut and Little, 1972, Woo et al., 1980, Myers et al., 1991,
Visarius, 1994, and references given there).

In QLV theory the hereditary integral is given in terms of the reduced relaxation function and
the elastic response, which must be determined experimentally. As a result, the hereditary
integral is usually evaluated by direct numerical integration of the experimental data.

The purpose of this note is to provide a closed-form analytical expression to the hereditary
integral for loading with a constant rate, and enhance this expression to comply with
experimental constraints which are usually associated with one-dimensional simple extension
tests.

Hereditary Integral

According to QLV proposed by Fung (1972, 1981), the Lagrangian stress and strain measures

are related through the hereditary integral. In one-dimensional simple extension tests it is
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more convenient to use alternative global work-conjugate variables - the tensile force F and

the elongation u - which are related through the analogous hereditary integral

! OF¢(u) Ou(t)
F(t)= |G(t-1)—— ——dt . (1
Oj ou

In (1) £ denotes time, with loading and motion starting at /=0, F°(u) is the time-dependent
elastic response (which can be a non-linear function of ) and G(¢) is the reduced relaxation

function, which can be defined in terms of a relaxation spectrum S(¢) by

G(z)=—~m—[——~-{1+°]5(r).e': d‘c} . ?)
1+ [S(x)dr 0
0

In order to account for the weakly frequency dependent behavior of soft biological tissues,
Fung (1981) proposed S(t) of the form

¢ fort, <t <7,

T : (3)
0 fort <t,,1>1,

Performing time integration in (2) with (3) we obtain the well-known expression

G(t)=

5 C))
l+c- ln(rzj
T

© ¥
where E(x) = Ie ? dy is the exponential integral function.
0

Experimental values of c, 1, and T, for various soft tissues are available, see Visarius (1994,
Table 4.3.1). It is known, however, that the values of ¢, 1, and 1, are sensitive to small
changes of experimental data, cf. Sauren and Rousseau (1983), Dortmans et al. (1984).
Besides, the form (4) itself is inconvenient to use in parametric studies or for the derivation of
analytical solutions.

Many experimental results indicate that G(¢) is almost logarithmic in a certain time domain.

This allows us to use here the simple formula
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G(t)=A-In(H)+B , )

where the constants 4 and B are either expressed through c, 1, and 1, as in Tanaka and F ung
(1974), or determined directly from experimental data.

For the approximation of the elastic response F*(u), series expansions in terms of polynomials
or exponential functions are primarily used in the literature. In this note we prefer to apply the

simplest polynomials, thus representing F*() in the form

F”(u):Z":c,.-u’,n?.l (6)

i=l

with constants c; to be determined experimentally. For the loading at a constant rate R the

following relation is introduced

u=R-t . ™

Force-el ion Relati

Introducing (5), (6) and (7) into (1) we obtain

F(t)=][A.ln(t-r)+3]{2"li-ci-u"‘]-Rdr : ®)

i=1

The time integration can now be directly performed in (8) with the use of substitution and the

rule of de ’Hospital, which yields

Fu)= ic,. o -[A-(ln(%) + f,) + B:l , ©)

i=1

v =D
where f; —l;m . (10)

The numerical values of the first ten factors f; calculated from (10) are listed in Table 1.
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TABLE 1: Factors f;for 1 <i<10

i 1 2 3 4 5 6 7 8 9 10
f; | -1.00 { -1.50 | -1.83 | -2.08 | -2.28 | -2.45 | 259 | -2.72 | -2.83 | -2.93

The closed-form expression (9) provides us the analytical force-elongation relation F(u) with
free coefficients 4, B and c; to be determined from the non-linear curve fitting of the

experimental relaxation and elastic response test data.

Enhanced Force-elongation Relation

It is impossible to experimentally impose an instantaneous elongation u to the tissue. As a
result, errors are introduced into such a modeling process which, in turn, effect the accuracy
of experimentally determined coefficients of (5) and (6) as well as predictions of tissue
behavior made with (9).

In case of the reduced relaxation function (5), an adjustment of these coefficients may be
achieved by extrapolation of the experimental data. Following Myers et al. (1991), we can
approximate the reduced relaxation function over the ramp portion of the relaxation test by a

linearly decreasing function

G(t)=1-a-t . (11)

The approximately corrected elastic response F*° can be calculated by deconvolution of F*

according to

F":JG(t—‘c)-w-@—(T—)dt , (12)
; Ou ot
where (6) and (5) are used for F° and G, respectively, and R describing u in (7) has to be
replaced by the specific ramp R, chosen in the experiment.
To solve (12) for F*° the Laplace transform of (12) is taken to give
F’”(s):é(s)s-ﬁ”(s) (13)

with  £(s)= [f()-ed (14)
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denoting the Laplace transform of a function f{7) (Erdelyi et al., 1954). Applying (14) to (11)

and (6) we obtain

~ s—a
G(s)= = (15)
~, a ;!
F (s)=Zc,.-Re-Si+l (16)
i=1
which introduced into (13) allows one to solve it for F “(8):
~ z ;i
F(s)= . CR-—
()=— Zc e S 17)
Using
' 1y m -0, (_1\(m-5)
P IS SRS SN ) ST O D _ (18)
s" s"-(s—a) ()" S ()" (- 1)
the back-transformation of (17) takes the form
J
u
n ) 1 ra i-1 (R J
F(u)=) ¢;-R.-i" —i~[e"' —1]— — 19)
iZ=]: o e (-
The exponential term in (19) can be expanded into series
au © | k
ol 0‘__") 5
et =2 [ ) 20)

which introduced into (19), after contraction of some terms, leads to

(k=)
ec _ . k 1 c . o
Feuy=Y u -F-Zc,-z!-(i) . (1)

k=0 =l

In the practically important case of truncation of the expansion (20) the following estimate of

the error may be given (Madelung 1957)
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k
1 (a-u
ek‘Zﬂ(*ﬁ:} +ho, (22)

ey S (23)

Upon substitution of (21) into (9) the enhanced form of the force-elongation relation for the

one-dimensional simple extension tests is obtained

F="5"a [ 4. [m(%) + f,j ¥ B} , (24)

i=l

where

min(i,n)k' o (i-k)
d=Y [#j c . (25)

v 11 AR,

The expression (24) is a closed-form force-elongation relation which already accounts for the
experimental limitations inherent to biomechanical testing. It incorporates corrected

parameters d; which account for the unwanted relaxation during the elastic test.
Discussion and Conclusion

The systematic characterization of the nonlinear material properties of biological soft tissues
is a challenge for bioengineers since decades. This study provides a closed-form solution of
the hereditary integral of one of the most popular viscoelastic theories, the quasi-linear theory
proposed by Fung (1972).

Several models used in the literature can be found as special cases of the general closed-form
solution. From (9) the analogous solution to the form used by Haut and Little (1972) can be
derived for i=2. Expressions (17) and (19) can be used with n=4 to directly deduce results
obtained by Myers et al. (1991) (note the misprint in eq. 15 of the publication).

The closed-form relation presented allows for studies of isolated parameters (e.g. the loading

rate) as well as for implementation as a material law into other models. Accuracy and
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computation speed are further advantages of the closed-form, since no iterative numerical

solution is necessary.

The experimental application of the model with an analysis of its predictive ability and the

influence of the loading rate will be published in a separate paper.
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