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TRANSACTIONS OF ST-PETERSBURG ACADEMY OF SCIENCES FOR STRENGTH
PROBLEMS. VoL. 1, 1997
Tryibl CAHKT-IIETEPBYPPCKOIT AKAJJEMHU HAVK 10 IIPOBJIEMAM
nPoYyHocT. Tom 1, 1997

ON THE VECTOR OF CHANGE OF BOUNDARY CURVATURE
IN THE NON-LINEAR T-R TYPE THEORY

OF SHELLS '
(Paper dedicated to Prof. E. I. Mikhailovskii on his 60th birthday)

W. PIETRASZKIEWICYZ
Polish Academy of Sciences, Institute of Fluid-Flow Machines
ul. Fiszera 14, 80-952 Gdarnisk, Poland

A non-lincar deformation of the shell lateral boundary surface is analysed.
Two definitions of the vector of change of boundary curvature are discussed.
The first definition of the vector was used in the author’s earlier papers. The
second definition of the vector is applied here, from which an alternative set of
deformational boundary quantities is derived. In the case of small strains, the
quantities are consistently simplified and expressed in terms of physical compo-
nents of shell strain measures at the boundary contour.

1. Introduction. Within the linear theory of shells with account of transverse shear
and normal strains, which is also called the Timoshenko-Reissner (T-R) type theory,
deformational boundary quantities were introduced by Shamina [1]. Pietraszkiewicz
[2-4] derived such quantities for the non-linear shell deformation compatible with the
linear distribution of displacements across the shell thickness. These five deformational
quantities are: the elongation 7, the transverse shear ;3 and three components of the
vector k; of change of curvature of the shell boundary contour. The components of
k; derived in [2-4] are complex functions of shell strain measures. In the case of small
strains, these complex expressions were cousistently simplified in [3,4] and presented
in an easily readable form through physical components of the strain measures at the
shell boundary contour.

Deformational boundary quantities, appropriate for the geometrically non-linear
T-R type shell theory, were also proposed by Mikhailovskii in [5]. T noticed that the
quantities derived in [5], which are analogous to the components of k;, do not agree
with the corresponding quantities following from [3,4] and, when linearized, they do
not reduce themselves to the results of [1]. After a correspondence with the author
[6] I came to the conclusion that the deformational boundary quantities introduced in
[2-4] and [5] difler from each other simply by definition.

In this report | analyse an exact non-lincar deformation of the shell lateral bound-
ary surface. | show that the total rotation of the shell lateral boundary element can
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On the vector of change of boundary curvature ...... 141

be defined in two altcrnative, non-equivalent ways depending upon the choice of an
orthonormal triad of vectors describing the geometry of the lateral boundary element
of the deformed shell. In the triad used in [2-4], one of the unit vectors was taken to
be tangential to the boundary contour of the deformed shell. In the alternative triad
introduced here I take one of the unit vectors to be colinear with a vector, into which a
unit vector normal to a reference surface of undeformed shell is transfomed. For such
an alternative choice of the triad, exact expressions for the deformational boundary
quantitics arc derived and their relation to those given in [3,4] is discussed. A consis-
tent reduction of these expressions is carried out for the geometrically non-linear and
linear T-R type theorics of shells. In the case of geometric non-linearity, the relations
derived here are equivalent to those of Mikhailovskii [5] within an error permitted in
the shell theory.

2. Deformation of the shell boundary. A non-linear deformation of the shell and
its lateral houndary surface was decribed in detail in [3,4]. We use notations and some
basic relations derived in thosc papers.

Fig. |

Let the lateral boundary surface dB* of the undeformed shell B be defined by
the position vector p(s,() = r(s) + ¢n(s), see Fig. 1, where r is the position vector
of the boundary contour dM of the shell reference surface M, n is the unit vector
normal to M, s is the arc length along M, —h~ < ¢ < At is the distance from M,
and h = A~ 4+ h' is the shell thickness. The surface 9B* is rectilinear and orthogonal
to M along O M.

Within the non-linear theory of shells taking into account of transverse shear and
normal strains, it is assumed that during the deformation process the surface 9B*
moves into the lateral houndary surface 9B of the deformed shell described by the
position vector

(8,¢) =T(s) + (as(s),

T

(1)

F:r-l—u, 53:-'1'1"[',6
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where T is the position vector of the deformed boundary contour M, u is the dis-
placement field, 8 is the difference vector, and (s, () are convected surface coordinates
of OB". According to (1), the surface OB is again rectilinear, although not orthogonal
to the deformed reference surface M along OM.

During the deformation process an orthonormal triad v, t,n associated with dB*
moves into a skew triad of non-unit vectors a,,a;, a; (see Fig. 1) such that

a, = fal/a, a; = fvata = CLgt, 53 = a;,d,

ae =|a;|= T+ 27, a3 =|73|= /1 + 27, (2)

Yt = 7aﬁtatﬁ7 Yt = 7uﬂuatﬁa etc., ( ),a = 30°( )

Here 8%, « = 1,2, are convected curvilinear surface coordinates on M and M, a, = ) g
are the natural base vectors of M, t = a,t* = dr/ds = r’ is the unit tangent vector
and v = a,v* =r, is the outward normal vector of M such that v =t x n.

The spatial Green strain tensor F,, a = 1,2,3, is expressed in the neighbourhood
of M through the shell strain measures .4, o according to

. ) 1 ]
Lo = Yap + (T0p)yy  Eaz = Yaz + 3¢ e E33 = 733, (3)

where T(,p = %(7!'”,{3 + Tga), and b, Tap,a = 1,2,3, are quadratic functions of u, 3
and their surface gradients given in [3,4].

While in convected coordinates (s,() the vectors @, and &z constitute a natural
surface basis of 9B, the vector &, is not normal to OB . For further discussion it is
convenient, to introduce three other vectors

a, =8 X & =aup, 4y =|au]= V(1 +27)(1 + 2y33) — 49,

an, =a, X a; = a,m, d, :Iam ‘: Ay, Y3 = 7031/07 (4)

a, =az Xa, =4a,T, ar :Iar |= a,as, Y3 = Yast®.

The unit vector g is normal to OB although not tangential to M, the unit vector m
is orthogonal to M but not normal to M, and the unit vector T is not tangential to
M although orthogonal to d and g at M € GM.
Derivatives of @; and a; with regard to s can be expressed entirely through the shell
strain measures (cf. [3], Section 4.4):
ay = A, 5t°t7 + Aat* 517 = (1% |5 Ao + t%bap@s + A% Veapt®ag)td,
(5)

ﬁg = ﬁg‘gtﬁ = (—bgﬁ\ + ’}’C3ﬁéc)tﬁ,

where , , ,
. Hab— —
Yeab = Veah T Vebia = Vabiey @ Uge = 5ca

at = 2 et (ape + 20 )(acs + 27¢5),

& = LeedS (g + 2aq)(abe + 2e)(acs + 2er),

a :[aﬂblv €abe = (80 X @) - ac, a" = &rdﬁd.
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In (5) and (6) we have explicitly used spatial bases a, = (a,,n) at M and &, = (@a, a3)
at M. By ( ).. we have denoted the spatial covariant derivative in the metric az =
a, -a, and by ( )|, the surface covariant derivative in the metric aop = a, - ag. Spatial
indices in the deformed configuration are raised with the help of @, while surface
indices with the help of @#, where a*f # @*#, in general.

It was shown in [3] that the rectilinear boundary surface B can be defined, with
an accuracy up to a rigid-body deformation in space, by three strains vy, v:3, 733 and
three components of the vector k; of change of curvature of the shell boundary contour.
For any particular elastic material behaviour, 433 1s expressible entirely through other
shell strain measures and surface forces applied to upper and lover shell faces.

An explicit expression for ky in terms of 4,4, m(sp) depends upon the choice of an
orthonormal triad describing the surface 8B along @M, which would constitute an
analoguc of the triad v, t, n describing 0B* along @M. The unit vector p defined in (4)
is a unique analogue on 8B of the unit vector ¥ on @B*. Two other unit vectors t and
d tangential to @B, which result during the deformation process from the respective
unit vectors t and n tangential to OB*, are not mutually orthogonal. Therefore, with
OB we can associate either the triad i, t,m or the triad g, 7,d. Each of the triads
can be regarded as a different analoguc on 3B of the triad v, t,n given on 8B™.

In my ealier papers [2-4] the triad p,t,m was used. According to (1), the surface
AB" is constructed along dM by attaching at each M € 9M the rectilincar element
(as. Tt seemed to me more natural to include the vector t tangential to OM, rather than
d, into the triad describing the bending properties of 9B along 3M. With the choice
of the triad p,t, m along dM, the total rotation tensor R,, as well as corresponding
vectors of change of curvature k; and 1, of the shell boundary contour, can be defined
concisely using [7] by the following relations:

Ri=pov+t@t+mon,
R/R, =k, x1, RR] =1, x 1,
ki = —kuv + kot — kpn, 1 = Rik,

l=vdr+tOt4+ndon, i:u®u+f®f+m®m.

Here ® denotes the tensor product, ( )7 is the transposition of the tensor and 1,1 are
different representations of the metric tensor of the 3D Euclidean vector space.

Exact expressions for the components ky, by, , ki of k; in terms of the shell strain
measures Yo, (o) Were derived in [2-4]. In the case of geometric non-linearity, these ex-
pressions were consistently simplified i1 [3,4] and presented in a readable form through
physical components of the shell strain measures at the boundary contour M.

3. Alternative vector of change of boundary curvature. With the lateral bound-
ary surface B of the deforined shell, we can associate the alternative orthonormal
triad w, 7, d which also fully describes the geometry of 9B along M. The choice of
such a triad allows one to define an alternative total rotation tensor Q; of 8?, as well
as corresponding vectors of change of curvature K, and A, by expressions analogous
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to (7):
Q=uR®r+7t+d®n,

Q'Q =rx1, QQ/ =X x1,
K= —KuV + Kt — kmn, Ay = Quky,

l=p@pu+7r0r+ded.

We can now calculate Q; and Qj from (8);, and evaluate «; by inverting (8); and
applying some geometric identities. This leads to two equivalent definitions of the
components of K,:

. — 1 ! - . !
“hu = gragdr "33 T 0t = Tz dr a3 Iy
P — | -
Kty = a3, Az A, — Tt = _aga“ Az -4, — T, (9)
- = ere— ! - — > _— ——— . ! —
—Kin = @La,; 8 & T Rt = T A A Rt

where o4, 7 and k; are the normal curvature, the geodesic torsion and the geodesic
curvature of OM, respectively. From the relations (4) we can also find that

— a3 =
a, = aja; — 27,323,

A, = 273,38, + ajA; — 2583 — 2y.385, (10)

a, = &, X a3 + aq; x Ay,
It is now apparent that all three components of &; can be calculated from only two

differential expressions (5). Therefore, introducting (5) and (10) into (9) we obtain

—Ky = arl% [a3(a?or—27 Yt =Ya3at 1P ) +27i3( 2T V03— 20 Vi3 + 733587 ) | — 0
Ky = au1a3 % (Tt + I/pa‘pCPYCSﬁtﬁ) — T, (ll)

—Kin = a—“l&;\/é [a2(ki — V0@ Yeapt®t?) + 29a3(T, + 1,8 Ye35t?)] — K.

The expressions (11) for three deformational boundary quantities are exact within
the assumed linear approximation (1) of the displacement field across the shell thick-
ness, i.e. they are valid for unrestricted values of 44 and 7(.5). In definitions (6); of
Yeab included into (11) only first derivatives in the normal direction of the spatial Green
strains E,p are present. This means that any more complex distribution of the shell
deformation across the shell thickness, such as used in [5] for example, cannot change
the expressions (11).

The two different vectors k; and k; of change of boundary curvature can be related
through the proper orthogonal tensor P, rotating u,t, m into u, 7,d:

Pi=pop+rot+dom, Q =PR,,
(12)

P;rpi = Ww; X 1, Wy = —wi L +w,,,t — WM
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_ 1 |
—Wit = a’TaSaT ag aid,, at * Ay,
_ 1 1 [
Wy, = —————a3aua3 -a, — ama“am -a,, (13)
1 1 . =
TWin T Gla, 2e B T @ B R

Explicit expressions for the components of w,; in terms of 7,4, T(ag) can now be derived
with the help of (10) and (2)-(6).
If Q; following from (12); is introduced into (8),, then using (7)2 we obtain

Ky = kt -+ R;rwt,
(14)

K = /Ctt + Wy, Ky = kiu + Wiy Kin = ktn + Win,

which provide simple transformation rules between k; and k;.

In order to present (11) in a more readable form, let us express all the spatial
tensors Ye.p through physical components of v, and 7,5y at M. For this reason, we
should express all the spatial covariant derivatives 4,4, in terms of the surface covariant
derivatives Yappn, Yaspy as well as vz, 7o) and bu g, the curvature tensor of M, keeping
in mind that

Ms = bas, Ths = —0f, I, =13 =T =0,
(15)
Vaps = gdgl'jnﬁ(f) le=0= T(ap)-

Taking into account geometric identities given in [3], after transformations we obtain

\tatﬁ

Yvtt = Ydapl’ - 27[,{ — Yt + Qh"u‘)/ut + g’it(’)/uv - 7tt) - 20t7u3,

Y = Yaapt ot = 1, + 28700 — 201713,

Yatt = ‘Y:mﬁtot’j = T M) — 201y33 + 2R,V + 27Z3a
(16)
Y3t = 7036t0t/3 = M(ut) + 20‘!7@: - 27—!71/1/ + ’7:/3 + KyYuz — Y3, — K73,

Y3t = ’YaBﬁtatﬁ = Ty + 20000 — 270,

va3t = 7336l” = Va3 — 27 vua + 2043
It is now apparent that using (8) and identifying the spatial alternation tensor ¢*#3
“# we are also able to express \/a/a, vad®Pug,
Va@®Plg, 1,a°% in terms of physical components of v, T4 at OM. As a result, the
deformational boundary quantities (11) can be expressed explicitly in terms of the
physical components.

“with the surface alternation teusor e

4. Geometrically non-linear T-R type theory of shells. In the case of geometric
non-linearity, ¥, ~ hr(agy ~ O(y), where 7 < 1. Then all the relations can consistently
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be approximated by linear terms in cach of the strain measures. In particular, we have
a, >~ 14+ v+, ¢ =1+ +2y3, az>~1+ 733,

(}_ﬂ’il—%t—‘/w, J—T’il—‘th—Q’Yssa %321—733,

\/%’11+7uu+7u+‘733, \/%21—’7././*711'733,

ve@®Puy o~ 1 —29,,, I/Q,ftaﬁtg ~ =294, Va@®P N —27,3.

When (17) together with (16) are introduced into (11), and only linear terms in each
of ab, T(ap are taken into account, we ohtain

Ko = Ty + (00 — T(w)) (et 733) = 27 + 275,

Ko 2 T + 2000 = Tay) Yoe = (704 Tpg) (Yow 4 733)

(18)
T 1 R e + R 280

Kiyp = 27;/;5 — Yt + 2’\'1/71/( + ""/.(71/1/ — 7“) - 2(06 - 7T(u.))‘Yu3 - g(z_t :*':n;(ut))‘th

— ——

The relations (18) provide consistently approximated explicit expressions for com-
ponents of the vector K, of change of boundary curvature, which are appropriate for the
geometrically non-linear theory of shells with account of transverse shear and normal
strains.

When (18) are compared with corresponding simplified expressions for components
of k; given in (92) of [4], it is scen that in (18) the transverse shears are present not
only through terms underlined by a solid line, as in (92) of [4]. Here we have additional
terms proportional to 7,3 which are underlined by a dashed line. This difference is a
result of the use of the alternative vector K, here, as compared with the vector k, used
in [4]. Indeed, under small strains components of w, defined in (13) can consistently
be approximated by

Wit = 27’:3» Wi = =2Rmss win =21+ ﬂuvt))%?,- (19)

It is now apparent that the components of &, given in (18) can be recalculated from
the components of k, given in (92) of [4] by applying transformation rules (14) with
(19).

In some applications it may he convenient to have the components of &, expressed
through the surface tensor 4,5 = —(5(,,3 — bap) of change of curvature of the reference
surface. In the case of geometric non-lincarity, from kinematic relations for 7(,4) given
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in [3,4] we obtain
Tap) = 3(Fa - Bap +8p - W) + bap

~ Bap = (bap = Bap)¥33 + Ya318 + Ya3jas

—

) (20)
Ty = Bu— (00— B )¥as + 28:%s — 2743,

——

Tty ~ Bur + (1o + But)¥33 + V3 — Buns + Y30 — K i,

—

which introduced into (18) allows one to find equivalent expressions for the deforma-
tional boundary quantities:

Kit = By + (Ut -7@)7“ + 26¢y03 + 2')ffga
Ko = Bue + 200 = Bi)vee — (7o + Bud)yw + 2905 — 280713, (21)

Kin = 27L¢ = Vit + 260500 + Bi(Tow — Yet) — 2(0 — Pee) s __2£Tt_“t @ut_)’z’_ta_-

— ——

It is interesting to note that the relations (21) do not depend explicitly upon the nor-
mal strain vzs.

In the relations (18)-(21) terms underlined by a wavy line are responsible for the ge-
ometric non-linearity, together with the non-linearity of strain-displacement relations.
Therefore, if terms underlined by a wavy line are omitted, and the remaining strain
measures are defined only by lincar expressions in u, 3, the relations (18)-(21) reduce
themselves to the form appropriate for the linear T-R type theory of shells. These
linear expressions differ from those given by Shamina [1] only by terms underlined by
a dashed line.

Mikhailovskii [5] proposed deformational boundary quantities for the geometrically
nonlinear T-R type theory of shells by introducing a total rotation tensor Q; . The
tensor Q, was assumed to be a superposition of two rotations: a finite rotation associ-
ated with a Kirchhoff-Love type geometrically non-linear theory of shells, which rotates
the triad v, t.n into an intermediate orthonormal triad ¥, t, 1, and a small additional
rotation corresponding to a linear approximation in small shears 4,3 and v3:

Q 2[1+2aFoi-n100)+2ston-aet))(Terv+tet+aon),

I=v@Qr+tot+anoen. (22)

Differentiating Q; with regard to 3, the length parameter along the deformed boundary
contour M, it was found in [5] that with accuracy to small terms 8,573,

LOTRTSSLESE VIS SEP VIS S S (23
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- = 5d, —
R =Ty — al;Tt + 2‘%3-2 — 2K i3, (24)
—Km = a%'iz + 201%.3 + 2T Vs-
Let us show that, to within an error of geometric non-linearity, the relations (24) are
compatible with (18) and (21). Indeed, to withiu small strains

Ty~ or—Buy Te=Ti+ By K™ Ky (25)
and changing differentiation in (8) from d/ds into d/ds = a,~'d/ds we obtain
d ~ s = 1 1
QtQ/T =Ax1, A=A =—(—hupu+ KT~ ﬁtnd)- (26)
ds ay ay

But for small shears 7,3 and 4,3,
M=V — 2’)’,,,'111—'1_1 T E — 2"”3ﬁ,
(27)
d ~ 01+ 29,3V + 27,3t
If (27) is introduced into (26) then, with the help of (25) and (21), and with accuracy
to small terms [3,57\3, we can approximately represent A, in the intermediate basis
v, t,n with components (24) proposed by Mikhailovskii [5].
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