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PIETRASZKIEWICZ, W.

On deformational boundary quantities in the
nonlinear theory of shear-deformable shells

Deformational boundary quantities in the non-linear theory of shells with account of transverse shear and normal
strains were derived by Pietraszkiewicz [1,2]. These five quantities to be prescribed along the shell boundary contour
are: the elongation ¢, the transverse shear y;3, and three components of the vector k. of change of curvature of the
boundary contour. The components of k; are themselves complex functions of the shell strain measures, and follow
from differentiation along the boundary contour of the total rotation of the shell lateral boundary surface.

In this report we show that the total rotation can be defined in two alternative, non-equivalent ways. Its first
definition leads to the results given in [1,2]. Its second definition leads to the alternative results reported briefly here.

Let the lateral boundary surface 9B* of the undeformed shell B be defined by the position vector p(s,{) =
r(s) + ¢n(s), where r is the position vector of the boundary contour M of the shell reference surface M, n is the
unit vector normal to M, s is the arc length along 0M, and ¢ is the distance from M. The surface 3B* is rectilinear
and orthogonal to M along M. During the shell deformation described in detail in [1,2], it is assumed that 98*
moves into the surface dB* defined by the position vector p(s,{) = £(s) +(a3(s). Now I = r+u is the position vector
of the boundary contour M of the deformed reference surface M, u is the displacement field, a3 = n + 3, 3 is the
difference vector, and s,( are convected coordinates. The surface B is again rectilinear, although not orthogonal
to M along M. Within such an assumption, the spatial Green strain tensor E,3, a = 1,2,3, in the neighbourhood
of M is expressed through the shell strain measures 7,5, 745 according to: Eap = Yap + {T(ap); Loz = Va3 + %Cfaa,
E33 = v33, @ = 1,2, where m(sp) = %(ro,ﬂ + T8a), and 7qs, Top are quadratic functions of u, 3 and their surface
derivatives.

With 0B* we can associate the natural orthonormal triad v, t,n along M, such that t = dr/ds = r' = r 41,
v=r,*=r, =txn,where ( ), =0/00°( )and 6" are surface curvilinear coordinates on M. After the shell
deformation the triad v, t, n is transformed into the skew triad of non-unit vectors a,, a, as, such that a, =r v,
a; =T ot® = ast, a3 = azd, where a; =|a¢|, a3 =]as| and t, d are the unit vectors.

In order to define the total rotation of AB8* relative to dB*, we should associate also with 8B* some orthonormal
triad. Let us introduce the vector a, = a; x &3 = a,u, where a, =|a, | and g is the unit vector normal to 0B*
along OM. Since t and d are not mutually orthogonal, it is apparent that we can associate with 9B* two different
triads of unit vectors: p,t,m and p,7,d. Here a,, = a, X & = ayym, am =|am |= aya; and a, = a3 x a, = a,7,
ar =|a,|= aya3. Each of the two triads can be regarded as a different analogue on 8B* of the triad v, t,n given on
oB*.

In the papers [1,2] the total rotation of 9B* relative to 9B* was described in terms of the triad p,t,m. We
introduced the total rotation tensor R; = g @ v + t ® t + m ® n, which differentiated with respect to s leads to
R,TR; =kix1, wherel=v v+ tt+n®n and k; = —kyv/ + ket — kenn. Exact expressions for ke, ktw, ken
in terms of the shell strain measures, and several approximate expressions appropriate for particular shell theories,
were derived in [1,2].

The total rotation of 8B* relative to dB* can alternatively be described in terms of the triad pu, T, d. Let us
introduce the alternative total rotation tensor Q;: = p Qv + 7 @ t + d ® n, then differentiate it with respect to s
to obtain QIQ’, = K¢ X 1, where now k; = —ku + Kt — Kinn is the alternative vector of change of curvature of
OB* along OM. Each of the components of x; can now be expressed entirely in terms of the shell strain measures
Yab, T(ap) in the way presented in detail in [3]. These expressions are:

—Kit = a}aa [a§(a?(a?at = 2TVt — ‘)’aaﬂtatﬁ) + 27e3(27e 703 — 20473 + 733;3tﬁ)] — O,

Key = a,.la, \/E(Tt + V@ ycaptl) — o, (1)

—Ktn = a_ul“—:\/g[azza("t — Vo8P Yoapt®t?) + 2m3(Te + 1,07 7c3p17)] — K.

Here o, 7t and k. are the normal curvature, the geodesic torsion and the geodesic curvature of M, respectively,
au,ar,as, \/aja, a*,v.q are known functions of the shell strain measures 7,5, 7(op), While 7,¢ = 7,,ﬂu"tﬁ, Yva =
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Yo3v® etc. are physical components of the shell strain tensor at M.

The expressions (1) for the deformational boundary quantities k4, K1y, K1y, are exact within the assumed linear
distribution of displacement field across the shell thickness, i.e. they are valid for unrestricted values of vap, T(ap)-
In the definition of 744 given in [1,2], only the first derivative of E4p in the normal direction parametrised by ¢ is
present, with the value taken at ( = 0. As a result, any more complex distribution of deformation across the shell
thickness, such as used in [4,5] for rubber-like shells for example, cannot change the expressions (1).

In the case of geometric non-linearity, v, ~ hm(apy ~ O(7), where 7 < 1. Then all the relations (1) can
consistently be approximated by linear terms in each of the shell strain measures. Additionally, the shell bending

tensor m(4p) can be expressed through the tensor 8.5 = —(bap — bap) of change of curvature of the reference surface
by the consistently approximated relation (ap) = Bap — (bap — Bap)¥33 + Ya3|s +7p3 las Where bog = —F o -11 5 and
bag = —r o -m g are curvature tensors of M and M, respectively, and ( )|q is the surface covariant derivative in the

undeformed metric a,3. After all the consistent approximations of (2), performed in terms of physical components
of Yab, Bap at OM, we obtain

Kie = P+ (00 — Bu)1e + 2607038 + 2713,

Kip = ﬂut + 2(": —Aﬁl_t’)')'vt - (Tt +g£)7uv + 27{,3 — 2I€t7t3a (2)

where 8, = ﬂapu"tﬁ, Bit = ﬁapt“tp.

The relations (2) provide consistently approximated explicit expressions for the deformational boundary quan-
tities K¢q, K1v, Ken appropriate for the geometrically non-linear theory of shells with account of transverse shear and
normal strains. In the relations (2) terms underlined by the wavy line are responsible for the geometric non-linearity,
together with the non-linearity of strain-displacement relations, while terms underlined by the solid and dashed lines
take account of transverse shears. Note that the relations (2) do not depend explicitly upon the normal strains vyaa.

The alternative expressions (2) derived here differ only by terms proportional to y;3, and underlined by the
dashed line, from the corresponding expressions for ki, ki, kin given in [2]. This is the result of using the alternative
total rotation tensor Q; here as compared with R¢ used in [1,2]. Within the error of geometric non-linearity the
relations (2) can be shown [3] to be equivalent to those introduced by definition in a different form by Mikhailovskii

[6]-

Acknowledgements

This research was supported by the Polish Committee for Scientific Research under grant KBN No 7 T07TA 025 09.
References

1 PIETRASZKIEWICZ, W.: Finite rotations and Lagrangean description in the non-linear theory of shells. Polish Sci. Publ.
Warszawa-Poznan, 1979.

2 PIETRASZKIEWICZ, W.: Finite rotations in shells. In: KOITER, W.T.; MikHAILOV, G.K., (eds.): Theory of Shells. North-Hol-
land, Amsterdam 1980, pp. 445-471.

3 PIETRASsZKIEWICZ, W.: Deformational boundary quantities in the non-linear theory of shells with transverse shears. Int. J.
Solids Structures (submitted).

4 StumPF, H; MakowsKI, J.: On large strain deformations of shells. Acta Mechanica 65 (1986), 153-168.

5 ScHIECK, B; PIETRASZKIEWICZ, W.; STUMPF, H.: Theory and numerical analysis of shells undergoing large elastic strains.
Int. J. Solids Structures 29 (1992), 689-709.

6 MimxHAILOVsKII, E.I.: Boundary conditions for the reinforced edge of rigid-flexible shells in the non-linear Timoshenko-Reis-
sner type theory. Mechanics of Solids (English transl. Izvestiia RAN, MTT)(1995), 109-119.

Address: PIETRASZKIEWICZ, W., Institute of Fluid-Flow Machines, PASci, ul. Fiszera 14, 80-952 Gdarisk, Poland.



