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Abstract. The non-linear theory of thin shell structures with irregularities of geometry, material
properties, loading and deformation is developed. The irregular shell is modelled by a reference
network being a union of piecewise smooth surfaces and curves, with various fields satisfying relaxed
regularity requirements. By transforming the virtual work principle postulated for the entire reference
network, we derive the corresponding local field equations and side conditions. Particular attention
is paid to formulate the general form of static and kinematic jump conditions at singular geometric
and physical curves. Several special kinds of irregularities are considered and some particular forms
of the jump conditions are discussed.
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1. Introduction

Theory and analysis of shell structures are presented in a considerable number of
papers and summarized in almost one thousand books and review articles compiled
in [1, 2]. It is somehow surprising to note, however, that practically all the papers
and books concern regular shells with reference surfaces consisting in fact of a
single, smooth and regular surface element. It is also assumed, implicitly rather
than explicitly, that:

(a) the reference surface admits a global, regular parametrization;

(b) material properties and the shell thickness vary smoothly over the shell;

(c) the surface deformation can be described by a globally invertible and smoothly
differentiable map;

(d) all static and kinematic fields are smoothly differentiable as many times as
required over the reference surface.

Real shell structures may contain folds, stiffeners, branches, self-intersections
and additional design elements such as technological connections, stepwise thick-
ness changes, parts made of different materials, etc., which cause some fields to be
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discontinuous along specified curves on the shell reference surface. Imperfections
of the real shell shape caused by technological inaccuracies (e.g. when assembling
convex or concave metal shells from initially flat sheets), influence additionally the
real shell geometry. In many cases stiffeners, branching regions, junctions or tech-
nological connections may possess their own mechanical properties different from
those of the adjacent shell elements. Furthermore, the shell deformation itself may
not be smooth along some lines on the reference surface, e.g. in a technological
hinge allowing some rotation about its axis. The non-smoothness of deformation
may also appear during the deformation process itself, e.g. when a plastic hinge
develops at some level of bending. Finally, the external forces or constraints may be
concentrated at some curves or points of the shell space or at its boundary, and this
introduces additional irregularities into the shell theory. All such shell problems
are regarded in this paper as irregular ones.

The existing methods of analysis of the irregular shells are based on a division
of the structure into regular parts, each having a smooth and regular surface as its
reference surface. The regular parts are modelled separately, and all the parts are
then assembled into the whole structure by adjusting boundary conditions of the
adjacent shell elements along the junctions with account of a possibly different
mechanical behaviour of the junction itself, if necessary. Such a methodology
requires some jump conditions to be applied explicitly at each of the junctions
in a way that should be consistent with the particular variant of shell theory em-
ployed. Note that the jump conditions are not provided by the shell theory used
for the regular parts. As a result, in engineering calculations of irregular shells
the jump conditions used in the assembling process are taken intuitively in a form
suggested rather by the solution method applied than by the shell theory itself.
It should be realized, however, that such an approach replaces the problem of
theory and analysis of the whole irregular shell structure by another, supposedly
equivalent problem of an assemblage of its regular parts analyzed separately, where
any particular assembling technique employed should be regarded as an additional
mechanical postulate (see e.g. [3-8]). It is not apparent under which assumptions,
or whether at all, both problems are equivalent. A critical review of existing as-
sembling techniques presented in [9, 10] for 5-parameter shell theory suggests that
each of them is applicable only to a limited class of shell problems.

The general six-field theory of irregular shells was developed in [9, 11], where
the corresponding static and kinematic jump conditions were derived from basic
laws of continuum mechanics by their direct specification for shell-like shapes of
the body. We refer the reader to those papers for an extensive characterization of
various irregular shell problems and a review of the relevant mathematical and shell
literature.

If the shell is thin in some sense, it can be modelled within a reasonable accuracy
by a representative material surface offering resistance to stretching and bending.
Such a model includes the classical Kirchhoff-Love type geometrically non-linear
theory of elastic shells (see [13, 14] and references cited therein), some finite-
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strain theories of rubber-like shells [15-17], simple theories of elastic—plastic shells
[18] and the theory of elastic—plastic shells undergoing finite strains [19]. Jump
conditions appropriate for such a three-field theory of thin irregular shells could
also be derived from those formulated in [9, 11] applying respective simplifying
hypotheses corresponding to the particular version of thin shell theory. However, it
seems to us more reasonable to derive the jump conditions from the onset for the
whole class of theories of thin irregular shells, independently of the general results
of [9, 11].

In this paper the undeformed geometry of a thin irregular shell structure is
described in Chapter 3 as a union of piecewise smooth surfaces and space curves
forming together a complex reference network. Each space curve in this network
may represent a singular curve on a surface, but also a one-dimensional continuum
endowed with its own kinematic and/or physical properties. It is assumed that the
deformation of the entire irregular shell structure is determined by the deformation
of its reference network, but no restrictions are introduced on the magnitude of
the displacements, stretchings and bendings of the network. Then, the principle
of virtual work is postulated on the entire reference network, with various fields
satisfying relaxed regularity requirements. The non-standard transformations of
the principle presented in Chapter 4 lead to the local equilibrium equations and
boundary conditions known from the theory of thin smooth shells. Additionally,
we obtain in Chapter 5 the general form of jump conditions appropriate for the
theory of thin irregular shells. As examples, we discuss in more detail the geomet-
ric irregularities (folds, intersections, rigid junctions) and kinematic irregularities
(elastic and inelastic junctions), for which particular forms of the jump conditions
are derived.

2. Basic notation and preliminary relations for smooth surfaces

List of basic notation:

& — three-dimensional Euclidean point space,

E — translation (three-dimensional vector) spacé of

M — undeformed shell reference surface,

oM — boundary of\,

oMy — part of the boundary M along which external loads are prescribed,

IM, — complementary part of the boundaiy/ along which displacement and rotation are
prescribed,

M®  _ smooth surface elements= 1,2, ..., K),

aM®  — poundary ofr®,

r@ — smooth curves which are common parts of two or more smooth surface elements,

r — union of all curveg™ @,

xM — tangent space at a regular poindf M,

N — deformed shell reference surface,
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m,n — unit normal vectors to the undeformed and deformed reference surfaces,

P, I — projection and inclusion operators 8fi

X — deformation mapping a¥7,

Xr — deformation mapping df,

u — displacement vector of the shell reference surface,

¢ — scalar function describing the rotational deformation of the shell lateral boundary
surface,

V= (v,w) - generalized virtual displacements,

v — virtual displacement vector of the shell reference surface,

w — virtual change of the unit normal vector

% — virtual change o,

F — surface deformation gradient,

G — tangential surface deformation gradient,

A, B — metric tensor and curvature tensor of the shell reference surface,

L — surface gradient of the virtual displacement field,

D — appropriate measure of the virtual surface strain,

E. K — Lagrangian surface strain tensors of stretching and bending,

E. K — virtual change of the Lagrangian surface strain measures,

E. K, — Eulerian surface strain measures,

IZ‘e, Iv{e — convective virtual change of the Eulerian surface strain measures,

N.M — internal surface stress and couple stress tensors of second Piola—Kirchhoff type,

Ng, Mg — internal surface stress and couple stress tensors of Kirchhoff type,

p.h — external surface force and moment vectors,

t* h* — external boundary force and moment vectors,

G; — internal virtual work,

Ge — external virtual work,

Gr — additional virtual work of generalized forces acting aldhg

w; — internal virtual work density,

W, — virtual work density of the external surface loads,

We — virtual work density of the external boundary loads,

or — virtual work density along regular parts Bf

o; — virtual work at singular points df.

In this paper we shall use the coordinate-free approach to the description of
surface geometry and to the analysis on surfaces developed in [11, 20, 29], where
all necessary definitions, theorems and relations can be found. We recall below
some of those relations in order to fix notation and make the paper self-contained.

Let & denote the three-dimensional point space (the physical spacey &ad
translation (three-dimensional vector) space. Within the classical theory of smooth
shells the undeformed configuratiah c & of the shell reference surface is as-
sumed to be a connected, oriented and regular surface of@tags> 2, with a
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Figure 1.

boundaryo M consisting of a finite number of closed, piecewise smooth curves that
do not meet in cusps, Figure 1.

At each pointx € M we can define a two-dimensional subspdg®/ of E,
called a tangent space, which allows to decomp@salditively intoE = TyM &
TyM~*, whereT, M~ is an orthogonal complement @M. The surfaceM is en-
dowed with local structure by, M and a locally unique mapy: TxM — & with
rangeRg(myx) C M in an open neighbourhood of the zero vedos TyM. Then
atx € M we can introduce two operators: an inclusibix): 7yM — E, defined
by I(x) = Vny(0), whereVm,(0): TxM — E is a spatial gradient ofy, and a
perpendicular projectio® (x): E — TyM defined byP(x) = I(x)”; I(x) maps
any vectorr € TyM into itself but considered as an elementffand P (x) assigns
to any vectom € E its tangential component dikM. These operators satisfy the
relations

It=t,  t-(Pu)=(It) u,

(2.1)
PPT = A =171, IP=1—mQ®m,

whereA(x): TyM — TyM andl(x): E — E are identity maps (metric tensors)
onTyM andE, respectively, aneh (x) € TyM~ is the unit normal vector assigning
the orientation toVf at eachy € M.

Let ®: M — F be a differentiable surface field, whefedenotes any finite-
dimensional inner-product vector space. Special caseq apecial surface fields
®) to be used in this paper arR: (the scalar fieldp), TxM (the tangential vector
field t), E (the spatial vector fiela), TxM ® TxM (the tangential tensor fieldl)
and E ® TyM (the mixed tensor fields). The surface gradient cb atx € M
is the unique surface field Grad#(x) € F ® TxM defined by Grad®(x) =
V(® o 74)(0). In particular, the Weingarten map (the surface curvature tensor),
B(x) € TuyM ® TyM, is defined at any € M by B = —P(Grad m).

The surface divergence of a differentiable tangential surface vector {ield:
TyM is a surface scalar field Div(x) € R defined at eaclv € M by Div,t =
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tr(P Grad t). The surface divergence of a differentiable surface fllck) <

F ® TyM is the unique surface field DiW(x) € F defined at eaclx e M by
(Div,¥)w = Div,(¥"w) for anyw e F. Then the classical surface divergence
theorem takes the form

/ Wy ds =// Div, ¥ da, 2.2)
oM M

wherev(x) € TyM is the outward unit normal tdM atx € dM while ds and d
are differential length and area element9$ & and M, respectively. In particular,
for a spatial vector(x) € E and a mixed tensa$(x) € E ® TxM surface fields
we have

/ u-Svds =// ((Divy S) -u + S - Grad u) da. (2.3)
oM M

The proof of theorems (2.2) and (2.3) under classical regularity assumptions
may be found in many papers and books (see [21] and references cited therein). In
general, it is required that the surfadg be regular in the sense of [20] while the
fields W andu must be ofC? in the interior of M and have the extensions of the
same class to the closure &f.

In the derivation of basic relations for thin irregular shell structures we need to
generalize theorems (2.2) and (2.3). We shall admit piecewise smooth surfaces and
a network composed of such surfaces, as well as suitably regular fields defined on
them.

3. Postulates and General Relations

A consistent formulation of field equations and side conditions (boundary and jump
conditions) for thin smooth shells as well as for irregular thin shell-like structures
can be based on the following two postulates:

() The deformation of the entire irregular shell structure is determined, within
a sufficient accuracy, by the deformation of a distinguished material surface-
like continuum, called the shell reference network (the reference surface in
the case of smooth shells)

(I The equilibrium equations of the entire thin irregular shell structure are de-
termined, within a sufficient accuracy, by a suitable form of the principle of
virtual work involving only kinematic and dynamic fields associated with the
reference network.

The first of these postulates is kinematic in nature and can be regarded as the
definition of the general thin irregular shell-like structure. The second one should
be regarded as the basic dynamic postulate of the theory. It is important to note
that both postulates are independent of constitutive equations needed to specify
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particular classes of materials. It remains to define precisely the representative
surface-like continuum referred to in the kinematic hypothesis, and to lay down a
suitable form of the principle of virtual work referred to in the dynamic hypothesis.
Intuitively, the representative, two-dimensional, surface-like continuum should
be capable of undergoing motion and deformation through the physical space and
of having resistance to stretching and bending. Such a continuum, variously called
in the literature on regular shell structures (the shell reference surface, the shell
fundamental surface or the shell carrying surface), can be defined as a union of
geometric surfaces in the space satisfying suitable regularity assumptions. Such a
surface-like continuum in an undeformed configuration will be denotety bgnd
the union of all singular curves in will be denoted byl". The deformation of
M\T" andT itself will be described by two mapg: M\I' — & andx,: I’ — €.
The principle of virtual work can then formally be expressed as a statement which
asserts that for all virtual displacemenighe following holds

G(M;V) = G:(M; V) — G,(M; V) — Gr = 0. (3.1)

HereG; andG, are real-valued set functions designated to represent the internal
and external virtual works of the shell-like structures wltile stands for an addi-
tional virtual work of generalized forces acting along theThe explicit form of
these three terms and of the virtual displacemémust be consistent with the two
hypotheses.

The regularity assumptions introduced in Section 2, and also explicitly or impli-
citly in most papers on thin shell theory, are far too restrictive for many problems of
engineering importance if various geometric, material and kinematic irregularities
are to be admitted.

A fully satisfactory treatment of those problems, from the mathematical point
of view, would call for use of concepts from the geometric measure theory. For ex-
ample, the configurations of the surface-like continuum representing a thin irregu-
lar shell-like structure (in the broadest sense) may be defined as rectifiable currents
— the 2-dimensional surfaces of geometric measure theory. Then the deformation
of the reference network can be described by Lipschitz continuous mappings. Let
us note that the development of the geometric measure theory [12] was motivated
in part by problems of minimal surfaces and soap bubbles, which surely we would
like to treat as thin shells (actually membranes). However, the formulation of the
theory of irregular shells within such a setting seems to be beyond the scope of any
single paper at the moment, and we shall not develop such a theory here as well.

Various irregularities encountered in the analysis of irregular shell problems can
be grouped into three broad classes, [11]:

(1) The undeformed reference surface of the shell is not smooth (thus it may con-
tain folds), or it is not a surface in the sense of classical differential geometry of
surfaces (for example, two smooth intersecting surfaces do not form a surface
as a whole). Such irregularities may be called geometric.
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Figure 2.

(2) Deformation of the shell reference surface (smooth or non-smooth in the un-
deformed configuration) fails to be smooth. We may refer to this kind of irreg-
ularities as kinematic, since they are associated with the deformation.

(3) The shell structure cannot be considered as a single shell (smooth or non-
smooth and undergoing smooth or non-smooth deformation) but rather as a
union of some number of single shells interconnected along junctions. This
type of irregularities may be called mechanical, because the junctions them-
selves may have their own mechanical properties, possibly quite different from
properties of the adjacent shells.

The basic assumption made in the three cases is that all the irregularities are re-
stricted to distinct curves and points (i.e. to sets of zero area measure) on the shell
reference surface. Under this assumption, all three classes of irregularities can be
considered at once as follows.

In the most general case, the undeformed configuration of the reference surface-
like continuum of a thin irregular shell-like structure can be defined to be a network
M e & consisting of a finite number of surface elemem®, k = 1,2,..., K,
with the following properties:

(1) EachM™® is a bounded, oriented, connected and smooth surface of class
C",n > 2, whose boundar§M® consists of a finite number of closed Jordan
curves oriented consistently witlt® that do not meet in cusps.

(2) No two distinct surface elementg® have common interior points.

(3) Two or more distinct surface elemer&® may have a smooth spatial curve
'@ as a common part of the boundaries. Such a curve is defined by

Fr@ =amMm*® nam*@n...nomM*) if ky #£hky# - #ky.  (3.2)
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(4) Two or more distinct curveE@ may have in common only single isolated
points.

We then defineV as the union of all the closed surface elemewt§ = M® U
aM® and by’ we denote the union of all curvas®. It is clear thatl’ c M.
Moreover, the boundar§M of M defined by

K
IM = (U aM<k>> \T, (3.3)

k=1

consists of a finite number of Jordan curves (not necessarily closed). Two rather
simple examples of such a network are shown in Figure 2 and Figure 3.

EachM® can be regarded as the reference surface of a regular shell-like ele-
ment. Eaci™@ can be regarded as representing a geometric space curve, but also
the corresponding reference axis of a rod-like element, a multiple shell intersec-
tion, a technological junction, a plastic hinge developing during the deformation
process, etc. Thus® may also represent a one-dimensional continuum endowed
with its own kinematic and/or physical properties. By the requirement (4) B&¢h
coincides with parts of the boundaries of the adjacent surface elements, what is a
reasonable assumption in the case of thin shells discussed here. Note also that the
requirement (4) excludes rod-like elements, whose reference axes do not coincide
with any boundary of the surface elemens.

A deformation of any regular part o¥ is described by a mag: M\I' —

& which carries each regular surface painte M\I into its spatial placey =
x(x) = x + u(x) on the deformed networlV = x (M), whereu: M\I' — E
is the associated displacement field. It is assumed that for each regaldf\T"
the mapy o . kM — € is of classC™,m > n > 2, has aC™ inverse on
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the co-domainV = x (M) and admits finite extensions of the same classes to the
boundaries M® andaN® = x (aM®©).

Let F = Grad x (x): TxM — T,& = E be the surface gradient of the map
x. The surface deformation gradie@tis defined byG(x) = P(y)F(x), where
P (y) is the perpendicular projection on the tangent plApé. Under the regularity
assumptions given above the surface deformation gradi€m) exists at every
pointx € M\TI". Since so define@ (x): TxM — TyN, two tangential surface tensor
fields

E=1G"A(»)G-A), K=-(G"B(y)G-B) (3.4)

provide the Lagrangian type measures of the local strains and bendings of the reg-
ular parts ofM during its deformatiory, whereA(y) andB(y) denote the surface
metric and curvature tensors of the deformed netwér x (M), respectively.

Any deformation ofM is described by two mapg: M\I' — & andy: I —
&, for the singular curvd™ may be admitted to follow its own deformation, in
general. We shall not assume a priori that the deformatieny (x) be continuous
across the singular cun#é or some parts thereof. Accordingly, we regard=
x (x) as being defined for all points af © except possibly for points belonging to
I". We shall then assume that the deformation mpapstricted toM ® has a finite
limit at every pointx € T,

yO = x®P@) =lim x(x) = x +limu(x), VzeintM®, (3.5)
Z—X Z—X

wheneveil is a part of the boundagM ® . In some special cases, the deformation
X may be assumed to be the restrictionyato I

In order to describe properly a virtual deformation of the regular part of the
deformed networkV, let us consider a one-parameter family of deformatipns
x(x,t) = x+u(x,r), wherer is a scalar (time-like) parameter. Thendg, 1) =
(dx/0t)(x,t) = u(x, ) we denote the virtual displacement (the velocity field in
a real motion) and bw(x, t) = (dn/dt)(x,t) = i(x, t) the virtual change of the
unit normaln of N = x (M, t). Regarding the generalized virtual displacements,
collectively denoted by = (v, w), and the corresponding rates of change of the
strain measures (3.4) as the basic kinematic variables, we can obtain the suitable
form of the virtual work expression appearing in the dynamic postulate (3.1).

The internal virtual work is generally defined as the work done by internal stress
measures over any instantaneous rate of change of work-conjugate deformation
measures. In the formal approach it is further assumedihahould be an addit-
ive set function defined on a collection of measurable and mutually disjoint parts
of the shell. Under the additional assumption t6atis an absolutely continuous
real function with respect to the area measu#{Hausdorff measure) a¥, the
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Radon—Nikodym theorem implies the existence of the internal virtual work density
(stress power densityy; (x) such that

K
G:(M;V) = Z/ W;(x) da, (3.6)
=1 M &)

whereM ® denote the regular surface elements as defined above. Here and hence-
forth, the surface integral is understood as the integral with respgétddausdorff
measure. For smooth compact surfaces, this integral coincides with the classical
integral with respect to surface area in the sense of classical analysis.ince
should be linear with respect to the generalized virtual displacenieatgv, w),
the relation (3.6) allows one to obtain the internal virtual work denBityx) as
follows.

Let L = grad v be the surface gradient, taken on the deformed networéf
the virtual displacement field. According to [20, 29],

L=FG7, w=—L"n. (3.7)
The surface tangential symmetric tensor field
D=3(L"I+ PL), (3.8)
whereD(y) € TyN ® TyN, is an appropriate measure for the surface virtual strain.
Performing transformations o with the help of (3.7) andGG™! = A(y) we
obtain
D = J(FGH'IGG+G "G"P(FG™)
= GTF' F+F PG t=GTEG? (3.9)
= G'(G'"E.G) G = Z;
WhereZ’e is the convective virtual change (the convective time derivative in a real

motion) of the Eulerian surface strain meas#te = G~ EG 1. Similarly, the
surface virtual bending is given by

1V<e = G (G"K,G) G =—-G T(FTIB(y)PF) G
= —L"IB(y)— PUB(y)P) I — B(y)PL,

(3.10)

v
where K, = G TKG™! is the Eulerian surface bending measure, #&hdits
convective virtual change.
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Taking into account the relations

F = Grad v, IA(y)P =1 1=0,

. . (3.11)
(IB(y)G) = —(Grad n) = —Grad n,
we obtain the following Lagrangian surface virtual strain measures
E = YF"1F) = 3(F'I1G + G PF),
(3.12)

K = —(FTIB(»)G) = —(F' IB(y)G + F'Grad n).

Within the bending theory of thin shells, the simplest internal virtual work
density can be postulated in the form

. . v \%
W,=N-E+M-K=Ng-E,+ Mg K.. (3.13)

HereN ¢ andM g are the internal surface stress and couple resultant tensors of the
Kirchhoff type while N and M are the internal surface stress and couple resultant
tensors of the 2nd Piola—Kirchhoff type, respectively, which are related by

Nx =GNGT, My =GMG". (3.14)

Both pairs of the surface stress measures in (3.13) are tangential symmetric
surface tensor§Ng, Mx) € TyN ® TyN and(N, M) € TyM @ TyM.

It should be apparent that we can replace any of the strain measures (3.4) by any
other measures of the first and second order of the surface deformation. Because
all strain measures are derivable frdinand K, such a change would not lead to
guantitative new results, although in special cases other measures may be more
convenient.

The external virtual work expressi@n, (M; V) may be obtained along the same
line of reasoning. In general, the shell may be subjected to external loading applied
on the networkM\I" and on a pard M, of the boundaryoM. Thus,G.(M; V)
must consist of the surface part and the boundary part. Moreover, if any part of
M is considered, then the boundary part@f(M; V) must be split into an ex-
ternal part and an internal part. Keeping these facts in mind and adopting the same
assumptions as for the internal virtual work with corresponding modifications of
the boundary parts ofi.(M; V), the consistent external virtual work expression
(mechanical power) takes the form

K
G, (M;V) = Z/ W, da +/ w, ds, (3.15)
=1 M® My

where the virtual work densities of the external surface and boundary loads can be
given by

W,=p-v+h-w, w,=t"-v+h" w (3.16)
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Here p andh are the external surface force and moment resultant vectors referred
to the undeformed surface elemeadt®, while t* andh* are the external boundary
force and moment resultant vectors referred to the paf of the undeformed
boundaryo M.

At this stage of the analysis it is not apparent what form should be postulated
for the additional virtual work expressidiir along the union of all singular curves
in the reference network, and this will be discussed in the Chapter 5.

As for regularity assumptions, we need only to require that all fields appearing
in (3.13) and (3.16) be regular enough for the integrals to be meaningfully defined.
Thus the fields need not be even continuous. However, stronger assumptions will
be needed in order to ensure the existence of field equations and side conditions. In
addition we must require that every paft® of M be regular enough in the sense
that the generalized surface divergence theorem should be applicable. In particular,
this is assured if the boundas/® consists of a finite number of closed Jordan
curves consistently oriented wifid ©.

4. Equilibrium Equations and Boundary Conditions

Derivation of the Lagrangian local equilibrium equations and boundary conditions
for thin smooth shells may be found in several papers [13, 14], but performed with
the explicit use of convected coordinate system and components of various vector
and tensor fields. Here we present such a derivation in coordinate-free notation and
for the whole thin irregular shell-like structure.

Let us introduce (3.12) into (3.13and use the symmetry &F and M, which
yields

W, = I(GN — B(y)GM) - F + (FM) - Grad n. (4.1)

From F'n = 0 it follows that (F'n) = F'n + FTa = 0, which multiplied
from the left byG " gives Pi = —G~" F n. But the relatiom - n = 1 leads to
n - n = 0 which means that(y) € TyN and, thereforePrn = n. Taking this into
account, we transform the last term in (4.1) into

(FM) -Gradn = (GM) -Grad n
= Div,((GM)Tr) — Div,(GM)) - i (4.2)
= Div,((GM)" ) + [(n ® Div,(GM))G™"] - F.
As a result, the internal virtual work density (3.18pan be represented by
W, =T - F +Div,(H 1), (4.3)
where

T = I(GN — B(y)H)+n® Div, G ', H=GM. (4.4)
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The tensor fieldd'(x) € £ ® TyM and H(x) € TyN ® TyM are assumed
to be of clasxC? in the interior of each smooth surface elemaff’ and to have
extensions of the same class to the boundary with finite lififtyx) and H® (x)
at anyx € aM®, respectively. Then applying the surface divergence theorems
(2.2) and (2.3) on each smooth surface elendéfit, we obtain

/ Widaz—// (Divy T) - vda
M® M®

S RGO LRV TR LY (4.5)
aM®

where at eacty € aM®
(0 = TOy®, h® = g0 y®. (4.6)

The external surface virtual work densi®y, can be rewritten with the help of
(2.3) in the form

W, =1-v+Divy((n-v)G  h), I = p+Div,(n ® G h). (4.7)

Assuming again that is of classC! inint M® and has a finite extension of the
same class to the boundary with a finite liralf’ (x) at anyx € aM®, we apply
(2.2) to transform (4.7) into

/ Weda=// l-vda—/ k© . v ds,
M® M® oM (4_8)

k(k) — {(G(—kg-h(k)) k v(k)}n(k)‘

At each regular boundary poirte M ® of any smooth surface elememt®
the surface gradient Grad of the displacement field can be decomposed into
tangential and normal derivatives (under the assumption that,@radmits a
continuous extension to the boundarys ©):

Gradu =u,, Qv+u 1,

4.9
u,,= (Grad u)v, u' = (Grad u)t,

wherert is the unit tangent vector &M ®. From (4.9) it follows that the field of
unit normal vectors: alongdN® = x(dM®) can be regarded as a function of
u,,andu’,i.e.n = n(u,,,u’), and is subject to two independent constraints

y-n=(+u) n=0, n-n=1 (4.10)

As a result, along the boundary = n(u,,, u’) is expressible through’ and a
scalar functionp = ¢ (u,, , u’) describing the rotational deformation of the shell
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lateral boundary surface. The structure of the functicm, , u/) was discussed in
[27], where the general expression for= 7 in terms ofp = ¢ andv’ = &’ was
derived in the form

w=gqep+ LV, q(¢p,u’) = d4n, L(¢,u') = dyn. (4.11)

Explicit expressions for the vector-valued functigr= ¢ (u,, , ') and the tensor-
valued functionL = L(u,, ,u’) depend on the particular definition of the scalar-
valued functiomp = ¢ (u,, , u’) employed. Three particular casesfofdenoted by
n,, ¥, andw,, were discussed in the literature [13, 24—28]. For the present general
considerations no particular choice @heed to be made, and we shall derive the
relevant local equilibrium equations as well as boundary and jump conditions for
any such a choice.

With the help of (4.11) the second term in the line integral of (4.5) can be
transformed further into

/ R - w® ds :/ (=P @®Y +hPe®) ds, (4.12)
M & PYYEG)

where the supplementary internal for¢&€” (x) and the moment® (x) resulting
from the internal moment vectdX acting along the boundagM ® are defined

by
fO =—LTh®, Ko =g .- h®. (4.13)

Along eachd M ® there may be singular poin®,,a =1, ..., A, described by
s = s,, at which the fieldf ® - v® is not differentiable. Such singular points are,
for example, corners of the closed Jordan curves comp@sii§y) or points with
singularities of the field&, ¢, h® andv®. At such singular points we assume the
existence of finite limits off © andv® defined by

FEE=lm fO, £, v = lim v s, £ h). (4.14)

Then the line integral (4.5) can be transformed by applying integration by parts
which leads to

/ W,»da:—// (Divy T) - vda
M® M®
+/ (p® - v ® 4 D) dg
aM®©

DD P ) (4.15)

PeaM®
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r
aM(Q) _________________
M(S)
am©
Figure 4.
where
p® = ¢® 4 (F®Y (4.16)

is the effective internal stress resultant alerg® .
By virtue of (4.5) and (4.15) the internal virtual work (3.6) for the entire refer-
ence network can now be written in two forms

G, = —// (Divy T) - vda
M\T

(t -v+h, w)ds—i—/([[t -v] + [k, - w])ds

= // (Divy T) - vda
M\T

(py - v + hg) ds + / ([p, - v] + [hel) ds
M r

+Y L vli+ DL vl (4.17)

P;el PyeoM

Here the jumps at each regular paine I'® = oMY N oM@ N...NIM™ of
the common curve fot > 2 adjacent surface elements are defined by

[t, - v] =2t - 0D £ 2. @ L. LWy

4.18
[h, - w] = :I:hl()l) w4+ hsz) w4+ h]()ﬂ) cw™, ( )
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[p, vl =+p®. v® £ p@ . y@ £ ...+ pi .y,

(4.19)
[hell = £hPe® £ 1@ @ £ ... £ My,

The signs in the definitions (4.18) and (4.19) of the jumps must be chosen
consistently with a fixed orientation of the cur?&”. If the orientation ofl"®
coincides with the orientation of the boundary cudvé®, then the sign-’ must
be chosen for the corresponding term and the sighotherwise. If we denote
by 1 the unit tangent vector specifying the orientation of the curfg, then
v = 47 x m®, and the sign must be chosen in such a way that the boundary
aM® be consistently oriented withf ®©),

The jumps at all singular points &f have been divided in (4.17) into the jumps
[f - v]; at the internal point, € T",i = 1, ..., I, and the jump$f - v], at the
boundary points?, € dM (Figure 4). At each mternal poir®; being the common
point of m > 2 adjacent branche3™ of I, and at each boundary poiRf being
the common point of > 2 adjacent parts M of 9M andg adjacent branches
'@ of I approachingP, from insideM, the jumps are defined by

D+ D+ 2)+ 2)+ £ +
[f'v]i j:fl() () :tf() () j:"'j:fl('m) .vl(m)’

1+ 1+ 2+ Zi + +
[f vl = :I:f,(]) ( ) 4+ f( ) ( ) 4+ f(t) (t) (4.20)
1)+ 1 i PAE 2)¢ (C)E ( JE=
j:fl( e 1(7 ) fz( ( f q bq )

Similar transformations can be applied to the external virtual work (3.15) with
(4.8), (3.16) and (4.11), which gives

G, = // l-vda—/[[k-v]]ds
M\T r

+/ {(t*—k)-v—i—h*-w}ds—/ k-vds
IMy My

=// l-vda—/[[k-v]]ds+/ {(p* —k) -v+h*p}ds
M\T r aM;

—/ k-vds+ Y [f* vl (4.21)
IMy

P,edMy

wheredoM,; = aM\dM is the complementary part 6f\/, and
k={((G'h) vn, *=—LTh*,
{ i} } 4 i} (4.22)
h*=q-h*,  p*=t"+(f").

The jumps[k - v] along the common cunE™ for n > 2 adjacent surface ele-
ments are defined analogously to (4.1&)d (4.19). However, the jumpgf ™ - v],
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in (4.21) take into account only those limiting values which are obtained approach-
ing P, along branches of the boundaiy/ ;. If the boundary poin#, is a common
point of ¢ > 2 adjacent part8 M® of M andq adjacent branches@ of I, then

vl =205 0T 707 0P 2 £ 107 005 (4.29)

Let us now introduce (4.17) and (4.21) into the principle of virtual work (3.1)
leading to

—// (Divy T +1) -vda
M\T

[ v G- b Y I = £ vl
IMy

PyeoMy

[ ot vt d Y (f vl
IMy

P,eoMy
+ [+ vl + Mgl s+ Y1F - v) = Gr =0 (4.24)
r Piel

For arbitrary but kinematically admissible virtual deformations, the fieldad
¢ vanish identically alon@ M,, thus causing the third line of (4.24) to vanish as
well. Then, from (4.24) we obtain:

The local equilibrium equations
DivyT +1 =0 ateachregulax € M. (4.25)
The static boundary and corner conditions
p,—p*+k=0, h —h* =0 along regular parts ob M ¢, (4.26)
f»— f, =0 ateach singular poin, € dM;.

Correspondingly, the work-conjugate geometric boundary and corner conditions
take the form

u—u* =0, ¢ — ¢* = 0 along regular parts ob M. (4.27)

As it has been expected, the local Lagrangian equilibrium equations as well as the
boundary and corner conditions for thin irregular shell-like structures are the same
as in the classical theory of thin smooth shells, [13, 14].

5. Jump Conditions

The principal new element of the theory of thin irregular shells appears in the
concept of jump conditions along a singular cufveSuch conditions are needed,
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besides the constitutive relations, to complete the set of field equations and bound-
ary conditions of this shell theory.

The mathematical structure of thin shell theory imposes definite restrictions
on the possible form of the jump conditions. These restrictions have implicitly
been introduced by assuming expressions (3.6) and (3.13) for the internal virtual
work density. As a result, if the local equilibrium equations (4.25) and boundary
conditions (4.26-7) are satisfied, the transformed PVW (4.24) requires that

/ (L(p, + k) - vl + [heD ds + Y [f v} — Gr =0, (5.1)
r

Piel

where the jumps at regular and singular pointsl'ofre defined by (4.19) and
(4.20), respectively.

Equation (5.1) represents the weak form of the jump conditions compatible
with the basic postulates of the non-linear theory of thin irregular shells. It should
be satisfied for any type of geometric and kinematic irregularities, and for any
mechanical properties prescribed along regular partE ahd at each singular
point P; € I'. From (5.1) it follows that the most general form of the virtual work
expressiorGr allowed within the non-linear theory of thin irregular shells is

Gr = / or(x)ds + Y o3, (5.2)
r

P,-el“

whereor is the virtual work density along regular partsiofando; is the virtual
work expression at any singular poiRt € T'. The functionsor ando; must be
specified in each particular case of the irregularity.

Since (5.1) has to be satisfied for any partigfwe obtain the corresponding
local forms of the jump conditions:

[(p, + k) - v]+ [h¢]l —or =0 atregular points ofl", £ 3
[f-v]; —o; =0 ateach singular poinP; € T. (5:3)

The jump conditions (5.3) constitute the additional set of basic relations which
should be satisfied at various geometric, kinematic and mechanical irregularities of
thin shell structures discussed in this paper.

Effects of geometric, kinematic and mechanical irregularities contained in the
jump conditions (5.3) are mutually coupled. For special types of irregularities the
jump conditions can be considerably simplified and presented in a more explicit
uncoupled form. As examples, we discuss below some simpler forms of the jump
conditions appropriate for particular types of irregularities.

5.1. GEOMETRIC IRREGULARITIES

Let us assume that there are no kinematic and mechanical irregularitiesTalong
and atP; € T", but only geometric ones. This means thats a geometric singular
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curve, and the field: M — E is of classC”,n > 2 not only within eachv®
of M, but also over the entire reference netwafkincluding thel’ . The simplest
example of such an irregularity is the fold shown in Figure 2, and a more complex
example is illustrated in Figure 3.

Let u® denote a finite limit ofu on the boundarp M® of any M®, and let
»® be the corresponding rotational parameter alomg* . Within the non-linear
theory of thin irregular shells discussed here the junction albng: dM® N
aMD N...NIM™ and atP e T is called rigid if the values of fields® and
#»® belonging to all adjacent surface elements are the same and equal to the values
associated with" and P; themselves

u® = yO = ... =™ =y = ulp,
(5.4)
¢O =gV = =9 =¢r.  w=ulp.
Then the corresponding virtual fields satisfy the relations
v® =0 = ... = p™ — vr = vlr,
) 5 (5.5)
(p():(p( =---:(p(")=(pr, vi:v|pl..

The functionsor ando; in (5.3) representing the virtual works alofigand at
P; e " have to be linear with respect to the common virtual deformation parameters
(5.5)

or = fr-vr+hror, o= fi v (5.6)

Here f - andhr can be interpreted as external loads distributed along regular parts
of I', and f,; as external concentrated forces applied at each singular ot .
If (5.5) and (5.6) are introduced into (5.3) then
([p, + kIl — fr)-vr+ (Al — hr)er =0,
(fli— f)-vi=0.

But (5.7) should hold for arbitrary virtual parameters. This is assured if the follow-
ing static jump conditions are satisfied

(5.7)

[p, +k1— fr =0, [A] — hr =0 atregular points of", 5.8)
[f]: — f =0 ateach singular poinf; € T. '

If additionally the external loadg' |-, Ar and f; are not applied, (5.8) can be
reduced further into the form

[p, + k] =0, [A] = O at regular points ofl", (5.9)
[f1: = 0 at each singular poin®; € T. '
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The reduced static jump conditions (5.9) describe just the jumps in static vari-
ables atl’ caused by either the non-smoothness of the reference nefaok
the lack of smoothness of the fields entering definitiong afk, » and f. The
latter ones are, for example, the abrupt changes in shell thickness or in material
properties at the singular curve

The kinematic rigidity conditions (5.4) and the general forms of the static jump
conditions (5.8) have been formulated here without any restrictions on magnitudes
of the displacements, rotations, strains and/or bendings of the shell reference net-
work M. They are valid for multi-fold or multi-intersection junctions alomg
admitting isolated singular point®® € I", and are independent of any constitutive
relations of the material the shell is composed of.

In the literature the rigidity (continuity) and static jump conditions were formu-
lated only within the simplest possible setting — the classical linear theory of thin
isotropic elastic shells — with usually only two smooth shell elements rigidly con-
nected along”, and without admitting singular points @h Within such a setting
the conditions were given first by Byrne [3], and various equivalent formulations
can be found in books by Chernykh [30], Baker et al. [31], Novozhilov et al. [32]
and Bernadou [33], where references to original papers are given.

5.2. BLASTIC JUNCTIONS

In many irregular shell structures some or all of the rigidity (continuity) conditions
(5.4) may not be satisfied, or we would not like them to be satisfied for various
formal (mathematical) or mechanical reasons. In such a case the junction is called
non-rigid or deformable. The formulation of jump conditions for such a junction
needs an additional explicit description of its deformability.

Let us note that the static jump conditions (5.8) express just the equilibrium
conditions alondg” and have to be always satisfied independently of the kinematic
conditions assumed alorig. For a deformable junction we shall always assume
that there are no external loagfs., A and f; acting alongl", so that the static
jump conditions take the reduced form (5.9).

The lack of smoothness of the deformation along a part sfiould necessarily
be associated with a high concentration of energy at the corresponding part of
This energy may be taken into account by introducing suitable forms of the virtual
work densities+ ando; appearing in (5.2) and (5.3).

As a simplest illustration, let us discuss a deformable junction of only two shell
elements modelled by the surface elemets andM @ having the curvé>? as
their common boundary. Let the orientationItf-? coincide with the orientation
of aM, Figure 5. According to (4.19)

(5.10)
(el = [h1{e) + (h)[e],
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Figure 5.

where for any surface field the jump and the mean value are defined by

[o] = 0@ — @@, (@) = 1@ + o®). (5.11)

With the help of (5.10) and (5.11) we can rewrite the general jump conditions
(5.3) in the form

[p, + Kkl (v)+ (p, + k) - [v] + [h]{e) + (h)[¢] — or = 0. (5.12)

Taking into account (5.9)the relation (5.12) can be reduced to

(p, + k) -[v] + hllg] —or =0, (5.13)
where now
PP +kD =p? k@ =p, +k WPV =h®=h (5.14)

From (5.13) it is apparent that the virtual work densityhas to be linear with
respect to the jumps of virtual displacemgnt] and virtual rotation paramet§p]

or =b-[v]+blel. (5.15)

The junction.is called locally elastic if there exists a function = Zr ([u], [¢1)
such thabr = Xr. Then the variation ok yields

or = Opup2r) - [vl + Opgp Zr) Lell, (5.16)
which substituted into (5.13) gives

{(p, + k) — dqu=r} - [v] + {h — Oy Zr el = O. (5.17)
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In the case of a deformable junction the valuegiof and[¢] are arbitrary,
in general. Therefore, (5.17) is satisfied if the following static jump conditions are
satisfied along™*2

(Pv + k) — 8|[u]]2r =0, h— 8[[¢]] >r=0. (518)

In particular,Xr can be assumed to be a symmetric quadratic function with respect
to the jumpdu] and[[¢]

Tr = 3HC - ([ul ® [ul) + clel?}, (5.19)

whereC is a tensor of material constants anid a material scalar. In this case we
can call the junction linearly elastic. With (5.19) the static jump conditions (5.17)
take the explicit form

(p,+k) —Clul =0,  h—cl¢] =0. (5.20)

If, in addition, the deformation is continuous ovEf-2, [u] = 0, but the
deformation gradient is not, then the jump condition reduce further to

p,+k=0 h—cl¢]=0. (5.21)

Upon linearization relative to displacements the conditions (5.21) reduce to
those discussed in [8] and [33] for the junction of two plates and shells, respect-
ively.

The coefficientd andb in (5.15) may depend not only die ] and[[¢] but also
on their first[u'] and [¢'], second[«”] and[¢"] and higher derivatives. This
allows to discuss junctions non-locally elastic of the first-, second- and higher-
order, respectively.

5.3. UNELASTIC JUNCTIONS

Let us again discuss the same deformable junction of only two shell elements,
Figure 5, for which the virtual work density- takes the general form (5.15). The
coefficientsh andb in (5.15) may be allowed to depend not only [an], [¢] and

their spatial derivatives, as in Section 5.2. They may additionally be allowed to
depend on time-like derivatives of those variables, which allows one to account for
unelastic properties of junctions such as viscoelastic effects. In the simplest case
we can take

b = b([ul, [¢], [&], [¢1), b = b(lul, [o]1, [, [1). (5.22)

The junction may be called locally linearly viscoelastichifand b are linear
forms with respect to the jumps and their first time-like derivatives:

b=Clul + Dlal, b=cl¢l+dlel, (5.23)
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whereC andD are tensors of material constants, whikndd are material scalars.
With (5.23) the static jump conditions (5.20) are generalized into

p,+k— (Clul + D[al) =0, & — (cl¢] +dIéI) =O. (5.24)

In analogy to Section 5.2, we can still reduce (5.24) in the case of continuous
deformation,Ju] = 0. We may also discuss various non-locally viscoelastic junc-
tions, by allowingb andb to depend on higher-order spatial derivatives and their
time-like derivatives.

In Sections 5.2 and 5.3 we have discussed a deformable junction of only two
shell elements. When more than two shell elements meet at the common junc-
tion, different expressions afr can be prescribed for any adjacent pair of the
surface element8/® and M© connected with the common singular cuiveln
such a case, a variety of forms of the jump conditions, suitable to model complex
behaviour of such a junction, may be discussed.

Finally, we also observe that the additional deformation mappipgl’ — &
introduced in Chapter 3 has not appeared explicitly in the three classes of junctions
considered above. It is then apparent that a more general class of junctions may be
considered in whicty: T' — & plays a role of an additional kinematic variable.

6. Conclusions

In this paper we have given the mathematical structure of the general jump condi-
tions along singular geometric and physical curves, which are compatible with the
two basic postulates of the theory of thin irregular shells. The derived local forms of
the jump conditions are quite complex due to the appearance of the second-order
displacement derivatives in the definition of the effective internal stress resultant
along the boundary of smooth surface elements. This is an unavoidable feature of
the class of thin shell theories, in which the displacements are the only independent
field variables. We have also discussed in more detail some simple forms and
their simplified versions of the jump conditions appropriate for rigid, elastic and
viscoelastic shell junctions. The general approach developed in this report also
suggests how the jump conditions for other special kinds of geometric, kinematic
and mechanical irregularities can be derived within the class of thin shell theories.
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