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Non-linear relations for thin shell structures with irregularities of geometry, material properties and deformation are
discussed. All the relations are formulated relative to an intermediate non-holonomic surface base. From the modified 2D
principle of virtual work the local known equilibrium equations and boundary conditions, as well as the corresponding new
Jjump conditions at singular curves and points are derived. The consistently simplified strain energy density for rubber-like
shells undergoing large elastic strains is constructed. Within each regular shell element, the resulting BVP is expressed in
terms of displacements, rotations and Lagrange multipliers as the primary field variables.

1. Introduction

An overwhelming majority of non-linear problems
of thin regular shells are analysed using either the
Lagrangian or the mixed formulation of shell relations,
or a variety of their simplified and/or modified versions,
[1]. In the Lagrangian boundary value problem (BVP)
the only independent field variable is the displacement
vector of the shell reference surface, while in the mixed
approach the surface deformation and stress measures
are‘the primary independent variables.

Alumaée [2,3] proposed an original set of equilibrium
equations and compatibility conditions for thin shells
written relative to the intermediate non-holonomic
surface base vectors, which are obtained by a rigid-
body rotation of the base vectors associated with
the undeformed reference surface. The corresponding
rotation tensor can be defined from the polar
decomposition of the surface deformation gradient, [1].
The same approach was applied by Simmonds and
Danielson [4,5] to formulate the BVP for thin elastic

- shellsin terms of the finite rotation and stress function
vectors, and to construct an appropriate variational
principle in these variables. Several alternative
forms of thin shell relations and corresponding
BVPs expressed in terms of rotations and other
fields as independent variables were discussed by
Pietraszkiewicz [6-8], Shkutin [9], Zubov [10], Atluri
(11], Badur and Pietraszkiewicz [12], Kayuk [13], Valid
(14], and Libai and Simmonds [15,16]. In particular,
within the geometrically non-linear theory of thin
regular 1sotropic elastic shells many such relations were
summarised in Chapter 5 of [1].

Real shell structures are usually irregular ones and
may contain folds, stiffeners, branches, parts made
of different materials or thicknesses, technological
junctions, plastic hinges developing at some level
of bending, etc. This causes some fields to be
discontinuous or not differentiable along specified
curves on the reference surface. The general non-linear
theory of thin shell-like structures with irregularities

of geometry, material properties and deformation was
developed in the Lagrangian description by Makowski
et al. [17,18], where the resulting BVP was formulated
through the displacement vector as the primary field
variable.

The alm of this paper is to extend the Alumae
type geometrically non-linear theory of thin regular
shells summarised in Chapter 5 of [1] into the domain
of the irregular thin shell-like structures undergoing
large strains. As in [17], we represent the irregular 3D
shell-like structure by a 2D reference network being
a union of piecewise smooth surfaces joined together
along parts of their boundaries. The junction curves
constitute the singular spatial curves at which some
fields may not be continuous or differentiable. The
equilibrium conditions are given in Chapter 3 by the
postulated principle of virtual work (PVW) of [17],
where additional constraints with Lagrange multipliers
are introduced in order to regard also the rotation
tensor as the primary fleld variable. ~ Transforming
in Chapter 4 the so modified PVW we obtain the
known, [1-5], local forms of equilibrium equations and
boundary conditions. Additionally, we derive new local
relations: the jump conditions at singular curves and
points. In Chapter 5 we discuss the 2D strain energy
density for a homogeneous isotropic rubber-like shell
undergoing large elastic strains. By modifying the
corresponding 2D density of the first-approximation
theory derived in [19], we construct a consistently
reduced simplest approximation to the strain energy
density appropriate for the Alumae type large-strain
theory of shells. The resulting BVP is expressed in
terms of displacements, rotations and some Lagrange
multipliers as the primary field variables.

2. Geometry and deformation of a regular
surface element

In this report we shall apply primarily the system
of notation used in [1] and remind here only basic
relations. .
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Let M) be a connected, oriented and regular
surface element of class C™, n > 2, in the three-
dimensional Euclidean point space & whose translation
(three-dimensional vector) space is E. The position
vector of a point M € M) is given by

r = OM = r(6%), (1)

where O € £ is a reference origin and 8%, o = 1,2, are
surface co-ordinates. At M € M) we have the natural
base vectors ay = dr/00% = r 4, the dual base vectors
a? such that af - a, = 62 where.6% is the Kronecker
symbol, the components an3 = aq - ag of the surface
metric tensor a with a = det(aqg) > 0, the unit
normal vector n = (1/\/a)a, x a; orienting M*) the
components byg = —n o - ag of the surface curvature
tensor b, and the components eog = (ax X ag)-n of the
surface permutation tensor such that €15 = —£4, = 1/a,
€11 = €22 =0.

The boundary M) of M) consists of a finite
number of closed piecewise smooth curves that do not
meet in cusps, each described parametrically by »(s) =
= r[0%(s)], where s is the arc length along any regular
part of 9M(¥) | At each regular point M € M*) we have
the unit tangent vector 7 = dr/ds = v’ = 7%a, and
the outward unit normal vector v = r, = 7 xn =
v¥as, where (-}, is the external surface derivative
normal to OM().

The deformed regular surface element —W_[(k) with
the boundary aﬁ(") is described relative to the same
origin O € € by the relations

7(6%) = x[r(6%)] = r(6%) + u(6);

7(0%) = x[r(s)] = r(s) + u(s),
where 6% and s are convected surface co-ordinates,

(k) . . .
x : MK M( ) is the deformation function, and
u € F is the displacement vector.
In the convected surface co-ordinates all geometric

relations at any regular M € MY are now
analogous to those given at M € dM®)  and
are expressed by quantities marked by a dash:
Ty, @ Tpp, @ 8, T, bop,Zap, U, T, etc. The dashed
quantities can be expressed = through analogous
quantities defined on M(*) and the displacement field
u with the help of formulae given in [1].

Components of the Green type surface deformation
measures are defined by

(2)

Yap(t) = 5(@ap—aap), Kap(t) = ~(bap—bap), (3)

[NFa]

where v,5(u) are quadratic polynomials of u,u , and
Kop(u) are non-rational functions of u, u o, u op.
In the neighbourhood of the regular surface

elements M) and ﬁ(k) the space £ can be

parameterised by the normal system of convected co-
ordinates (0%, ¢), where ¢ is the distance from M)

and M along n and 7, respectively. Extending the
domain of x to the neighbourhood of M*) | the spatial
deformation gradient F : £ — .E taken at the surface
element M(*) has the form

]

=a,®a“+nQn;
¢=0

detF:\/§>0;

=1+2v5 + 204575 — ¥57%),

F =9Vx(r +C’n)l

SIS

where @ is the tensor product.
The left polar decomposition of F gives

F=VR, rq=Ra,=V la,. (5)

Here R € SO(3) is the rotation tensor, V is the
left spatial stretch tensor at M®*) and r, are the
rotated surface non-holonomic base vectors. These
fields satisfy the relations

R=r,®@a*+nQ®n, RT:R'I;

det R=+1, V =0,9r"+7mQn, (6)
VIi=Vv, detV = \/§> 1.
a
The modified surface deformation measures

assoclated with 7, introduced through the

following formulae, [1]:

alre

n=V-1=(ag+us—r5)@r’ =

=n;@7°, mg=napr;

m= (ﬁ’ﬁ - Rn'ﬁ) & rf = R”@n & rf =

(7)

=ps @78, pg = papr®;

Bap F oo

Here l = g, ®@a*4+n@n=7r,Q97*+MT Q7 is the
spatial identity tensor. The surface measures satisfy
useful kinematic relations given in [1}.

Along the boundary OM®*) we have

Naf = Npa,

n
3]

: L, =0r X0 = a,U;

—
¥ =a, ;

-_— -— 4
n:,\/"ryuxr;

ar = IF’[ =1+ 2Yrr, Yrr = 7ozﬁTaTﬁ.

a,

{H

SRR
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The transformation of (v, 7, ) during deformation
into (@,,a,, ) is performed in two steps: the rotation
of (v, r,n) into (v, 7,7) by the total rotation tensor
R, with the subsequent extension of U, ¥ into a,, a-
by the factor a, :

a, =a-Rv, a,=a,R.7, nn=R;n;

) (9)
—(@, @r+a, @7 +ne@n).

ar

R, =

Kinematic relations involving the tensors R and R,
are given in [1].

3. Principle of virtual work for thin irregular
shells

A consistent formulation of the mechanical
boundary value problern for thin irregular shell-like
structures in the Lagrangian description was developed
by Makowski et al. [17,18], where the displacements
were taken as the only independent field variables. The
mechanical modelling of such structures was based on
two postulates:

o The deformation of the entire shell-like structure
15 determined by deformation of a distinguished
surface-like called the shell reference
network.

o The equilibrium conditions of the entire structure
are determined by a suitable form of the principle of
virtual work involving only the fields associated with
the stretching and bending of the reference network.

continuum,

The undeformed reference network M C €& was
defined in {17,18] as the union of all the closed elements
ME U oMHE) and the singular curve T' € M as
the union of all the junctions of different elements
MHB) k=12, K:

K A
M= [ JMBuom*), =[],
k=1 a=l
OMED  OMED .. 1 BN,

if ky 2 kg # o k.

As a result, the boundary M of the entire network
M defined by

10
rla) — (10)

K
OM = <U (‘3M(’°)> \[ (11)

k=1

consists of a finite number of spatial curves. Several
examples of such networks are given in [18].

Each M%) represents a reference surface of a regular
shell part. Each T'¥) can be a surface curve across
which some fields fail to be smooth. Examples of
geometric irregularities along T4 are surface folds,
branches and intersections of two or more regular
surfaces. Shell parts can be made of different materials,
or there may be stepwise thickness changes at I'(%).
However, T'(®) can also represent a reference axis of
a rod-like element, a technological junction, a plastic
hinge developing during deformation process, etc.

Deformation of M can be described by two
deformation functions: x : M\ — &£ and xp : [ = €&,
for the singular curve may be admitted to follow its own
deformation, in general. [n many cases the deformation
x may be defined on the entire M, and then xp is a

restriction of x at [' : xp = x However, we do

r
not assume such a restricted shell deformation at the

morment. .
The principle of virtual work compatible with the
two postulates given above can be taken in the forin,

{17]
G =G ~ Gext —Gr = 0;

where Gint = Gine(u;du) represents the internal
virtual work, Gext = Gext(u;du) is the external
virtual work, and Gpr = Gr(ur;dur) is the additional
virtual work of the generalised forces acting along I'.
Here we have explicitly indicated that all the virtual
works are functionals of the displacements as the only
independent, field variables. The individual parts of
(12) are defined by

K
Gine = Z //(Nuﬂa‘h/j + Maﬂd.fcag) dA;

k

(12)

=lte)

K
Z//(])-5u~i~h-5ﬁ) dA+

k:lM(k)

Gext -
(13)

+ [ (N -du+ H" 67)ds;
ai,

GF‘—'—‘-/O’rdb‘—f—ZO’i.

r Pel

Here N and M are components of the
symmetric stress resultant and stress couple tensors of
the Piola-Kirchhoff type, d is the symbol of variation,
8vap and drng are virtual changes of the surface
deformation measures (3), p and h are the external
surface force and moment resultant vectors, N and
H* are the external boundary force and moment
resultant vectors, whereas or and o; are the external
virtual work densities along regular parts of I' and at
any singular point P; € T, respectively. The explicit
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forms of or and o; depend on the type of irregularity
assumed along I', [18]. Note that since 7 -dn =
0, only the surface components of h and H™ can
explicitly be taken into account in the non-linear theory
of thin irregular shells discussed here. Transforming
(12) and (13) with the help of Stokes’ theorem, the
corresponding local equilibrium equations, boundary
conditions and jump conditions at singular curves can
be derived, {17].

If the rotation tensor R is supposed to be an
independent field variable of the boundary value
problem, some constraint conditions have to be
introduced into the relations (13) and the virtual
densities should be expressed in terms of the modified
surface deformation and stress measures.

Let us remind that the components y44, Kop and
Mg, bap Of the surface deformation measures are
related by (see [1], formula (5.11))

Yaf = Nap T %Uﬁﬂxﬁ;

(63 +na)ias + (O + m3)paa] = (14)

Kag =

oo —

—5(b3mn. + 03ma,).

As a result, the internal surface virtual work density
appearing in (13); can be presented in an alternative
form

NQ'B(S‘fa,@ +M°‘ﬁ(5}caﬁ =

= S 6nap + H*dprap;

1 [a 4 e 4
§o% = NP 4 (nEN + 0 N )~ (15)

(b = p3) M+ (8] - W) M

H*P = (8¢ + n¥)MP,

where now S*¥ = 5P« but H*f # HP in general.

In the non-linear theory of thin shells the rotation
tensor R is a non-rational function of u,u o (explicit
formulae are given in {6,7]). This dependence of R
upon u can also be expressed implicitly through three
constraint conditions {1, 12]

? (16)

These constraints express the known property of
the relative surface strain tensor n, which in thin shell
theory is symmetric and does not have out-of-surface
components. The property was also confirmed by Libai
and Simmonds [15] who used the constitutive Kirchhoff
hypothesis to define the classical theory of thin shells
as a special case of the general shell theory. For a

e Ta'T}/\,BT/\ :O) ﬁ.n/\ﬁ'r)‘ = 0.

virtual deformation the relations (16) put the following
constraints on the virtual changes d7ap of 7ag:

(17)

Inside of each M) the constraints (17) can be
introduced into the surface integral of (13); with the
help of the respective Lagrange multipliers S and Q8.
It was shown in [1] that in order to express also
the boundary terms at each dM(*) explicitly through
independent rotations it is necessary to introduce into
(13), a line integral over OM®*) with the constraints
(17); multiplied by Br#. Additionally, in (13); the
external virtual work done by the moments A and
H" should be expressed directly in terms of now
independent virtual rotations. As a result, (13); » can
be modified to the form

Ea'e’l'a . 57’}>‘,31'>‘ =0, mn- 57’},\,31')‘ = 0.

K
G = Y //(Nﬁ LTSS

k=1 Mk

+ Hp, -5p>\[3r>‘) dA+

+ / BrP@ - dnpprt ds ) ;

aM(k)

-

Gextzi//(P'(SU'Fm'w)dA'i'

k=lM(k)
+ / (N ~5'u.+M* ‘wz) ds,
aM,

where now Gine = Gipe{u, R; (5'u.,‘w) and Goyxy =
= Gext(u, R;du,w, ), while other fields are defined by

N’ = (899 4 0 S)r o + QP

MP =7 x Hp,: (19)
M'=7Ax H, m=m%xh;
1 T
wzﬁ(lxl)-(éRR )=
1 e
= -2—(7'0‘ X 01y + 7 X 0T);
(20)
1
wr=s(1x 1) (bR-RY) =
1_
=§(ux6y+-rx6-r+nx6n).
Here w and w, are the virtual rotation vectors

in the interior of each M®*) and along each M),
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respectively. Please note that all the couple vectors
MP M® and m in (19) do not have normal
components, that is M? .7 = M* 7 = m-n=0. This
1s the fundamental property of the theory of thin shells
resulting from the two basic postulates given above.

4. Local field equations

Let us transform the virtual work principle (12)
with ((?3) keeping in mind that both R and w are now
the independent field variables subject to variation.

According to [1], the virtual deformation measures
dnap and dpuep are expressible through du and w by
the relations

(57])\57')\ =dupg+ag X w, (5;1)‘57')\ =wgxn (21)

Introducing (21) into (18)1, the virtual work

principle (12) takes the form

K

2.

k=1

{Nﬁ . (5u,ﬁ -}-ag X w)+
M k)

+ M7 | dAt

+ / Bn - (6u' + @, x w) ds—
M (k)

_//(p.5u+m.w) da b —

M (k)

(22)

—/(N*-5u+M*.w,)ds—
My

—/apds—zagzo.

r Pel

The fields V? and M? are assumed to be of class
C!' in the interior of each regular surface element
M) and to have extensions of the same class to the
boundary with finite limits at any M € M), Then
the Stokes theorem allows one to transform the first
two surface integrals of (22) for each M(*) into

//{Nﬁlﬁ Hdudt

Mk

+(M?|; + @ x N?) - w} dA+ (23)

+ / (T, 6u+ K, w+ (BR-su)'} ds,

M k)

where

T, = NPvs - (BR), K,=M"vs-Ba, (24

Along each OM() there may be singular points
P, ¢ = 1,2,...,C, described by s = s;, at which
the field Bm - Ju is not differentiable. Such singular
points are, for example, corners of the closed curves
composing M) or points of singularities of B, 7 and
Ju. At such singular points we assume the existence of
finite limits of B - du defined by

= &%{B(SC th)n(sc £ h) du(sc £ h)}.

(25)

Then, the last term in the boundary line integral of
(23) can be transformed further to give

/ (Bm - du) ds = (26)
aM()
=— Y  (Bfmf-éul-Brm; -dul).
P.eaMk)

The second term of the boundary line integral in
(23) contains the virtual rotation w, which should still
be expressed through the virtual rotation w, of the
boundary. Let us remind that along each M®*) the
total rotation tensor R, is defined as the superposition
of two finite rotations, {1}

R, =QyR, Qy=0Q®7,+TQr,+nQn, (27)
where

¥~ Ry =

Ty =TqV

1
= .a—{(l + 07 )T+ s T}

T

Tr = naﬂl’arﬁ, Nrr = naﬁ'ra'rﬁ~

Therefore, taking variations of R, defined either by
(9)2 or by (27); we obtain

(5RTR3‘ : w; X 1=
=(6QyQT)QyRRTQT+
+Qy (SRRT)QY =

= w 1,
(g +Qyw) x 393
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where
1 - T
a=1(1x1)- (6@, QF) (30)
From (30), 2 it follows that
wr=g+Qyw, w=Qp(wr—q).  (31)

Let us evaluate more explicitly the formula (31);

for w at the boundary 6ﬁ(k). Keeping in mind that
T4+ TR FLAT DT wFk) A
1= +7TQRT+n®n along M ', and taking

variation of (27), we establish the relations

IQvQT =IDeT+ITRT+man+  (32)

+v@T(r, -r.)+U® ﬁ(dru ST+

+FQD(dr, ry) + FW(Ir, M)+

+TRQT(0T T, + R T (67 - 77 ).

Introducing (32) into (30) and taking into account that

wy = D(w, - T) + Flw, - T) + A(w,

-7, (33)

after some transformations from (31); we obtain

w=ry(wr )+ (weorr) =TT, - 7,).  (34)

The relation (34) means that the virtual rotations
w and w, differ only by their normal components. But
K, in (24) does not have a normal component at all.
Thus, using (8)1, (19)1, (24); and (34) we are able to
show that at the boundary

K, w=K, w,. (35)

The simple relation (35) just confirms that the
theory of thin shells discussed here is insensitive to the
virtual works done on the normal drilling components
of w and w,, for the corresponding drilling components
of the couples are indefinite in this shell model. The
virtual works done by the drilling couples can be taken
into account only in the general theory of shells, [10,16].

With the help of (23), (26) and (35) the internal
virtual work for the entire reference network M can be
put in the form

Gim:-—//{Nﬁ(ﬁ-&ﬁ

M\T

+ (M|, + a3 x N?) -} da+

+/(TU-5u+KL,-wT)ds+
oM

+ [T, 5+ (K, - r]) s+
r

+> [Bn

Pel

uli+ Y [BA-duls.
P),E@M

In (36) the jumps at each regular point P € ['(¢) of
the common curve [(® = oM N oM N .. Nom)

for n > 2 adjacent surface elements are defined by

([T, - §u)] = +TWE  §u(VE 1

+TO% su0F 3 7ME gy,
(37)
(K, w,]] = £K0F . GE

K@% L% 4 4 gE 00

T v T

The numerical superscripts (n) introduced into the
right hand sides of (37) indicate explicitly that those
functions are defined only along the particular M),

The signs in the definitions (37) must be chosen
consistently with a fixed orientation of the curve (%)
If the orientation of ['(*) coincides with the orientation
of OM{™ that is when the unit tangent vector rr
specifying the orientation of ['(%) is related to v(") of
oM™ by (™ = 471 x n(™ the minus sign must be
chosen in front of the corresponding term in (38), and
the plus sign otherwise.

The jumps at all singular points of M have been
divided in (36) into the jumps [B7-duj; at the internal
points P; € T and the jumps [B7 - du]s at the boundary
points Py € M. At each internal point P; being the
common point of m > 2 adjacent branches T(™), as
well as at each boundary point P, being the common
point of t > 2 adjacent parts OM®*) and g adjacent
branches I'(@) approaching P, from inside of M , the
jumps are defined by
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s BOEROE 0

Here the numerical superscripts indicate that these
functions are defined only either on a particular
internal branches '™ and I'?, or on a particular
OM©®) composing a part of the boundary oM.

Introducing (36) with (37) and (38) into (22) we

obtain i
[]{avel, ) sus
M\T
+(MP|, +35 x N +m) -w)} ds+
+ / {{T, - N*) 6u+
My

+ (K, — M) w.} ds+

+ > [BR-dul,+
PredM;

+/(TV-5u+K,,~wT)ds+
aM;y

P,e My

+ [0, ol + (K or])} ds+

r
+ Z[Bﬁ-(Su].;—/ons»— Z o = 0.
PIEF r PiEF

For an arbitrary, but kinematically admissible,
virtual deformation the fields §u and w, vanish
identically along 0Mg, and the third line of (39)

vanishes as well. Then the virtual work principle (39)
requires the following local relations to be satisfied:
the local equilibrium equations

Nl +p=0, M’ +3;x N°+m=0 (0)

at each regular M € M\T;
the static boundary conditions

T,~-N"=0, K,—-M"=0 (41)
along regular parts of OMy;

the jump conditions

[Bm-6ul, =0 at each singular point P, € OM;y;
(42)
the jump conditions:
(T - du]l + [[Ky - wr]] —or =0 (43)
at regular points of T';
[B'ﬁ . Ju].; - =0 (44)
at each internal singular point P; € T.
The corresponding work-conjugate geometric
boundary conditions are:
u—u"=0, Rn—-Rn=0 (45)

along regular parts of OMjy.

As 1t has been expected, the local equilibrium
equations (40) as well as the boundary conditions (41)
and (45) for thin irregular shell-like structures coincide
with those derived within the same formulation for thin
regular shells (see [1], Section 5.2). The equilibrium
equations (40) were derived first by Alumade [2,3] and
rederived by Simmonds and Danielson [4,5]. The
boundary conditions (41) and (45) were proposed first
in [1]. :

Please note that in our jump conditions (42) the
virtual displacements still remain coupled with the
generalised forces, for in case of the general 1rregularity
of deformation we may not be able to define a common
dup associated with a singular boundary point Py €
OM¢. The jump conditions (44) and (45) constitute the
additional set of basic relations that should be satisfied
at the singular curves representing the irregularities of
shell geometry, deformation, material properties and
loading. All the conditions (40)-(45) are valid for
unrestricted displacements, rotations, strains and/or
bendings of the reference network M.

The singular curves I'®) embedded into the shell
reference network M may be of either geometric or
physical type, in general. At the geometric curve some .
fields in the relations (44) or (45) fail to be continuous
or smooth of the required class. With the physical

curve we can additionally associate some mechanical
properties by prescribing appropriate functions op =
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= dr(m*' Rp;dur,wr) and o; = o (u;; du;) along re),
For special types of irregularities the jump conditions
{44) and (45) can be simplified or presented in a
more explicit uncoupled form along the lines suggested
in [18] for the Lagrangian non-linear theory of thin
irregular shells.

5. Constitutive equations of thin elastic shells

For each regular thin shell element made of an
elastic material the surface virtual work density (15),
requires the existence of a surface strain energy density
E(nag, Hap; 7) defined on M) such that

5T = S §nag + H*PSptap;

46
w_ O jap_ OF (46)

- 57}051 - a/.Lap.

If the shell element is made of a homogeneous
isotropic elastic material and maximal strains in the
shell space are small everywhere, the corresponding
linear constitutive equations were given already by
Alumie [2], eqs (3.1), see also [1], egs (5.78).

If large elastic strains are admitted, the density
Y(Nap, tag; 7) can be derived by a consistent reduction
to the reference surface M*) of the known 3D strain
energy density W(E;;;x) . Alternatively, the suitable
form of E(nas,pap;r) can be established directly
from 2D symmetry and invariance requirements.
The necessary material functions and constants
should then be found from appropriate experiments.
Using different methodologies and various surface
deformation measures several such 2D strain energy
densities were proposed, for example, by Chernykh
(20,21], Zubov [10,22], Simmonds [23], Libai and
Simmonds [15,16] and Schieck et al. [19].

Let us now briefly discuss a possible form of the
strain energy density for a thin shell element made of a
homogeneous isotropic rubber-like material undergoing
large elastic strains. Such a density ®(vag, kas;7)
expressed through the classical Green type surface
deformation measures was constructed in [19] under
the assumptions of a 3D material incompressibility, a
relaxed normality hypothesis, a moderate undeformed
thickness A/ R = O(8), moderate bending strains hx <
O(8) and large membrane strains not exceeding the
unity v < O(1). Here R is the smallest principal
radius of curvature of M), v and « are the greatest
eigenvalues of the surface deformation measures yop
and Kqg, respectively, and 8 is a small parameter such
that 1+ 6% ~ 1. Under these mild assumptions, with
an additional requirement used here that each shell
element is thin, h/R = O(4?), the 3D strain energy
density W(E;;; ) can be reduced, to within the first
approximation, to the following 2D form defined on
ME) (see [19], £.(40)):

h3 o
&~ AWy (1xp) + o7 {W(lf(vnp)(fcifcm ~ KAKap)+
(47)

af
+WG) ”(Vnp)xaﬂxxy} :

In the expression (47) the functions W{g), VV(OI? and

W(‘;l;’\” are the modified 3D strain energy density, its
first and second derivatives relative to tangent strains,
respectively, all taken at the reference surface M),
and xapg = —(1/a/T bap — bap).

It was shown [19] that the contribution of the
terms underlined in (47) is relatively small and can
be neglected within an engineering accuracy. It should
also be noted that for a thin shell element the estimated
mermbrane and bending energies can be of a comparable
order if the greatest eigenvalue vy of v.p Is at most
moderate, so that the approximation 1 4+ +% & 1 holds.
Otherwise, ® can be approximated by only the first
term of (47) describing the membrane theory of rubber-
like shells. Within the moderate membrane strains xqp
can be approximated by

Xap ® Kap(l —75)- (48)

In this case the simplest approximation to the
elastic strain energy density of the rubber-like shell
element takes the reduced form

& ~ AW(o) (1) +
h BA (49)
+§LIW(2) #(‘Y’CP){’COB”CA;‘(l—Q-Y:)})

where the symmetry of W((;l)”\“ relative to the change
of indices a > b, A & p and (af) & (Au) has been
taken into account.

Let us express the density (49) in terms of the
modified deformation measures 7qg, ftap using the
transformations (14). Decomposing pqp into the
symmetric and skew parts, pag = pag + Eagp, Where
pap = 1/2(pap + Hpa), the relation (14); can be
modified into '

"Kag = Pap—
1 A A
—5[ a(bas — pap) + 15 (bax — par)]+ (50)
4 1 ( A A
5 (magas + N5Era)p-

From the surface compatibility conditions it follows
that (see [1], f. (5.76)2 )
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N

Lo (51)

=TTt Nalbrs = prp).
The relation (51) allows one to estimate p to be
max(n/R, nu), where 77 and g are maximal eigenvalues
of nes and pag, respectively. Therefore, with
the relative error O(6%) the relation (50) can be
approximated by

P

1
Kap N Pap + §(U§PM + 03 pan)- (52)

Introducing (14); and (52) into (49) with the
relative error O(6%) we obtain

¢ = (I’('Yaﬁ (UNp)u Kap (T}nm /in'/))) = E(nfcp; ,U:cp) ~

~ hWioy(1xp)+ (53)

SN 8
+-2—4W(2‘)”“(nmp){pappxu + 2pap (15 Prp — NxPau) }-

The constitutive equations following from (53) and
(46)2 for a thin rubber-like shell element with a
reference surface M) are

5% = hR¥+

h3
+ 55RO (pappr + 2pap (15 pss = o))+

h3 [s 4 ~
5 (B8 + R 0%) pags

o ha a X X
G* = ok PAL(L = 208)pap + M5 pru+

(54)

h3
+§Z(Ran“ﬂf + R0 pa,

where the components of the tangent elasticity tensors
are defined by

RoP — aW(O)(nfcp), ReOA s — 8W(o)(77,cp)’ (55)
Onap OMapOniu
RoPAuoT _ m;V(O)(T’N/)) ,
877aﬁ anAuaﬂor

Please note that only the symmetric part G** of
HeP is given by the constitutive equations (54);. It
means that within the error of (49) the skew part of
H“P becomes indefinite within this version of thin shell
theory.

The structure of our consistently reduced strain
energy density (53) is relatively simple. It is quadratic
in peg, and the type of non-linearity in 7,4 is governed
entirely by the 3D material law. Yet, for rubber-like
thin shells our constitutive equations (54) describe a
broad class of problems in which bending effects may
become important.

6. Conclusions

In this report we have developed the new weak (22)
and strong (40)-(45),(46),(7),(16) forms of the BVP
for the Alumae type non-linear theory of thin shell-
like structures with irregularities of geometry, material
properties and deformation. The formulations are
valid for unrestricted displacements, rotations, strains
and/or bendings of the reference network, and for an
arbitrary external loading. For a rubber-like structure
undergoing large elastic strains we have constructed
a simplest approximation (53) to the surface elastic
strain energy density. Within each surface element
M* this allows one to express the BVPs in terms of
the displacement vector u, the rotation tensor R and
the Lagrange multipliers S, @, B as the primary field
variables. However, we can formulate BVPs in terms
of other fields as primary variables as well proceeding
as in Sections 5.6 and 5.7 of [1]. ‘

In order to analyse irregular shell problems, our
formulation should still be completed by definite
expressions for the external virtual work densities
or(ur, Rr;dur,wr) and oi(u;;du;). A discussion
given in [18] within the Lagrangian formulation
indicates that a large variety of expressions can
be associated with the densitles or and o;.
The expressions depend on the type of geometric
irregularity of the network M , on the mechanical
properties prescribed along T and at F; € T, as
well as on the type of non-smooth deformations y
and xp analysed, which can additionally influence the
continuity properties of the virtual fields du, w, dur,
wr, du;. Possible explicit forms of or and o; will be
discussed separately.

Acknowledgements

This research was supported by the Polish State
Committee for Scientific Research under grant KBN
No 7 TOTA 021 16.

References

1. Pietraszkiewicz W. Geometrically nonlinear theories
of thin elastic shells// Advances in Mechanics. 1989.
Vol. 12. P. 51~130.

2. Alumade N.A. Differential equations of the equilibrium
states of thin-walled elastic shells in the post-
buckling stage (in Russian)// Prikladnaya Matematika
1 Mekhanika. 1949. Vol. 13. P. 95-106.

3. Alumde N.A. On the expression of basic relations of the
non-linear theory of shells (in Russian) // Prikladnaya
Matematika 1 Mekhanika. 1956. Vol. 20. P. 136-139.

135




ISSN 0321-3005 H3BECTHA BY30B. CEBEPO-KABKA3CKHH PETHOH. ECTECTBEHHBIE HAYKH. 2000. CIIELBBINYCK.

10.

11.

Polish Academy of Sciences, Institute of Fluid-Flow Machinery, Gdarisk, Poland

Simmonds J.G., Danielson D.A. Nonlinear shell theory
with a finite rotation vector// Proc. Koninkl. Nederl.
Akademie van Wetenschappen. Amsterdam, 1970.
Series B. Vol. 73. P. 460-478.

Simmonds J.G., Danitelson D.A. Nonlinear shell theory
with finite rotation and stress function vectors// Trans.
ASME. J. Applied Mechanics. 1972. Vol. 39. P. 1085~
1090. '

Pietraszkiewicz W. Introduction to the Non-linear
Theory of Shells// Ruhr-Universitat, Mitt. [fMech.
Ne 10. Bochum, 1977.

Pietraszkiewicz W. Finite Rotations and Lagrangean
Description in the Non-linear Theory of Shells. Polish
Sci. Publ., Warszawa - Poznan, 1979.

Pietraszkiewicz W. Finite rotations in the non-linear
theory of thin shells/In Thin Shell Theory. New Trends
and Applications. Ed. W. Olszak. Springer-Verlag,
Wien, New York, 1980. P. 151-208.

Shkutin L.[. Exact formulation of equations for non-
linear defermability of thin shells// Applied Problems
of Strength and Plasticity (in Russian). 1977. Vol. 7.
P. 3-9; 1978. Vol. 8. P. 38-43; 1978. Vol. 9. P. 19-25.
Gorkii University Press.

Zubov L.M. Methods of Non-linear Elasticity in
Theory of Shells (in Russian). Rostov-on-Don, 1982.

Atluri S.N. Alternate stress and conjugate strain
measures, and mixed variational formulations involving
rigid rotations, for computational analyses of finitely
deformed solids, with applications to plates and shells.
[. Theory // Computers and Structures. 1984. Vol. 18.
P. 93-1186.

. Badur J., Pietraszkiewicz W. On geometrically non-

linear theory of elastic shells derived from pseudo-
Cosserat continuum with constrained micro-rotations
/ In Finite Rotations in Structural Mechanics. Ed. W.
Pietraszkiewicz. Springer-Verlag. Berlin, 1986. P. 19—
32.

13.

14.

15.

16.

17.

18.

15.

20.

21.

22.

23.

Kayuk Ya.F. Geometrically Non-linear Problems of
the Theory of Plates and Shells (in Russian). Kiev,
1987.

Valid R. The Nonlinear Theory of Shells through
Variational Principles. Chichester et al., John Wiley
and Sons, 1995.

Libai A., Simmonds J.G. Nonlinear elastic shell
theory/ In Advances in Applied Mechanics 23. Eds
J.W. Hutchinson and T.Y. Wu. Academic Press. 1983.
P. 271-371.

Libai A., Simmonds J.G. The Non-linear Theory of
Elastic Shells, 2nd ed. Cambridge University Press,
Cambridge, 1998.

Makowski J., Pietraszkiewicz W., Stumpf H. On the
general form of jump conditions for thin irregular
shells// Archives of Mechanics. 1998. Vol. 50. P. 483~
495.

Makowski J., Pietraszkiewicz W., Stumpf H Jump
conditions in the non-linear theory of thin irregular
shells// J. Elasticity. 1999. Vol. 54. P. 1-26.

Schieck B., Pietraszkiewicz W., Stumpf H. Theory and

numerical analysis of shells undergoing large elastic
strains// Int. J. Solids Struct. 1992. Vol. 29. P. 689-
709.

Chernykh K.F. Nonlinear theory of isotropically elastic
thin shells// Mechanics of Solids (Izv. AN SSSR,
IVITT). 1980. Vol. 15. P. 118-127.

Chernykh K.F. Theory of thin shells made of
elastomers (rubber-like materials) (in Russian)//
Advances in Mechanics. 1983. Vol. 6. P. 111-147.

Zubov L.M. Description of finite deformations of
thin shells through co-ordinates of the reference and
actual configurations (in Russian)// [zv. AN SSSR.
Mekhanika Tverdogo Tela. 1983. P. 128-135.

Simmonds J.G. The strain-energy density of rubber-
like shells// Int. J. Solids Struct. 1985. Vel. 21. P. 67~
77.

1 oxTAlOpA 2000 r.




