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1. Introduction

A non-linear theory of thin shell-like structures with irregularities of geometry, material
properties and deformation along singular curves was developed in Makowski et al.
[1,2]. In these papers an irregular structure was modelled by a reference network being a
union of piecewise smooth surfaces and surface curves resisting only the stretching and
bending. The resulting boundary value problem was expressed through displacement
vector as the only independent field variable.

In the general approach to the non-linear theory of shells presented in the book of
Libai and Simmonds [3] the finite rotation field appears naturally as one of primary
variables of the boundary value problem. This statically and geometrically exact
formulation of shell theory, which grew from early ideas of Reissner [4] and Simmonds
[5]. allowed one to develop effective computational procedures based on the finite
element method for both the regular shells [6] and the irregular shell-like structures [7].
The classical thin shell theory was defined in [3] with the help of the Kirchhoff
hypothesis regarded as a constitutive hypothesis and not as a kinematic one. It was
confirmed in [3] that in the classical theory the rotations become expressible through
displacements and are no longer independent field variables. Thus, in order to regard
them again as primary variables some additional constraint conditions with Lagrange
multipliers should be imposed.

The rotation angle as one of primary variables of thin shell theory was first
introduced by Reissner [8] to describe a one-dimensional axisymmetric deformation
state of a thin shell of revolution. Simmonds and Danielson [9,10] formulated two-
dimensional thin shell relations in terms of the finite rotation and stress function
vectors, and derived an appropriate variational principle. Several alternative forms of
relations for thin shells expressed in terms of rotations were developed by
Pietraszkiewicz [11-14], Shkutin [15], Valid [16,17], Atluri [18], and Libai and
Simmonds [19]. In particular, within the geometrically non-linear theory of thin,
regular, isotropic, elastic shells many such relations were summarised in Chapter 5 of
[14], where references to earlier papers can be found.
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The aim of this report is to extend the results presented in Chapter 5 of [14] in three
directions:

a) In place of the reference surface we introduce the reference network defined in [1,2].
This allows one, also within the rotational formulation, to take into account various
irregularities of shell geometry, deformation and mechanical properties along
singular curves.

b) In all shell relations large surface strains are admitted. This allows one to discuss
within the same formulation also large strain problems of irregular shells made, for
example, of a rubber-like material with constitutive equations proposed in {3,20].

¢) The boundary terms for each regular surface element are discussed in more detail,
which allows one to derive an appropriate form of jump conditions at singular curves
and points representing the irregularities.

The deformation of the reference network models entirely the deformation of a thin
irregular shell-like structure. The network consists of a finite number of regular surface
elements connected together along singular spatial curves. The equilibrium conditions
of the entire structure are given in Chapter 3 by the postulated principle of virtual work
(PVW) in which the internal surface stress and strain fields are associated only with
stretching and bending of the reference network. Then appropriate constraints with
Lagrange multipliers are introduced into the PVW in order to regard also the rotations
as primary variables. Transforming the so modified PVW we obtain the known, [14],
local forms of equilibrium equations and boundary conditions. We also derive the local
forms of jump conditions at the singular curves (45) and at the singular points (43) and
(46). The jump conditions seem to be new in the literature.

2. Geometry and deformation of a regular surface element

In this report we shall apply primarily the system of notation used in [14] and remind
here only basic relations.

Let ~#*) be a connected, oriented and regular surface element of class C”,n > 2,
in the three-dimensional Euclidean point space # whose translation (three-dimensional
vector) space is E. The position vector of a point M € o#*) is given by

r=0M =r(6%), (1)

where O €& is a reference origin and 0% ,a=1,2, are surface co-ordinates. At
M e~#® we have the natural base vectors a, =0r/00% =r,,, the dual base vectors
a’ such that a’.a, =57, where 6% is the Kronecker symbol, the components

a,, =a,a; and a” =a“«a” of the surface metric tensor a with a = det(a,,;)>0, the

unit normal vector n=(1/ Ja )a, xa, orienting ~#*), the components b, =-n,,a,
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of the surface curvature tensor b, and the components £,, =(a, xa,)sn of the surface
permutation tensor such that &, = —&;, = Ja ,En=&n=0.

The boundary 8~#*) of ~#® consists of a finite number of closed piecewise
smooth curves that do not meet in cusps, each described parametrically by
r(s)=r[0%(s)], where s is the arc length along any regular part of 8-#®. At each

regular point M € d~#'*) we have the unit tangent vector z=dr/ds =r'=7“a_ and the
outward unit normal vector v=r, =txn=v“a_ , where (-),, is the external surface

derivative normal to 0~#©.

The deformed regular surface element ~#™® with the boundary 8-#“ is described
relative to the same origin O €& by the relations

T(O%) = x[r(6")]=r(6%) +u(0%), ¥(s)= ylr(s)]=r(s)+u(s), 2

where 6% and s are convected surface co-ordinates, y:o#® —oA/® is the
deformation function, and u € £ is the displacement vector.

In the convected surface co-ordinates all geometric relations at any regular

M e84 are now analogous to those given at M ed->4'¥, and are expressed by

quantities marked by a dash: a,,a’ ,Eaﬂ,a“ﬁ,ﬁ,ﬁ,gaﬂ,gaﬂj,?, etc. The dashed

quantities can be expressed through analogous quantities defined on ~#’ and the
displacement field u with the help of formulae given in [14,21].

Components of the Green type surface deformation measures are defined by
1, —
¥ ap (W) =5(aaﬁ ~a,;), Kop(W)==(b, —b,), 3)

where y_,(u) are quadratic polynomials of w,u,,, and x,,(u) are non-rational

functions of u,u,,,u,,,.

In the neighbourhood of the regular surface elements ~#* and ~#* the space &
can be parameterised by the normal system of convected co-ordinates (6“,¢), where ¢
is the distance from ~#® and ~#" along n and T, respectively. Extending the
domain of x to the neighbourhood of ~#®, the spatial deformation gradient
F: E — E taken at the surface element ~#* has the form

F=Vyx(r+¢n)| _,=2a,®a"+n®n, detF=\ﬁ>O,
a4 4

=1+2y2 +2(r2ys - v5rl),

Q| %
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where ® is the tensor product.

The left polar decomposition of F gives
F=VR, r,=Ra,=V'a,. 5)

a

Here R € SO(3) is the rotation tensor, V is the left spatial stretch tensor at »#*), and
r, are the rotated surface non-holonomic base vectors. These fields satisfy the relations

R=r, ®a*+n®n, R'=R", detR=+],

a (6)
V=a,®r*+a®n, V' =V, detV:\/E>1.
a

The modified surface deformation measures associated with r, are introduced
through the following formulae, [14}:
n=V-1=n,8r", 1,=7,",
yz(ﬁ,ﬂ—Rn,ﬂ)(@rﬂ =yﬂ®rﬂ, Hp= Mot N
Nop = Mpa>  Hap 7 Hpa-
Here 1=a,®a” +n®n=r, ®r” +n®n is the spatial identity tensor. The surface

measures 77,, and yu,, satisty useful kinematic relations given in [14].

k
Along the boundary do#*) we have
S T4 F 3 —a xteay To %%
a=r=qa7, a, =axn=ag¥V, D= gr,vxr,

a, =|v=J1+2y, , v.= yaﬂf"‘rﬂ.

The transformation of (v,z,n) during deformation into (@ ,a_,n) is performed in

®)

two steps: the rotation of (v,z,m) into (¥,7,n) by the total rotation tensor R_ with the

subsequent extension of v,7 into a,,a, by the factor a,:

M

14 T T S

=aR v, a =aR 7, n=Rn

R, = L(EV Qv+a ®7+n® n). ©
aT

Kinematic relations involving the tensors R and R, are given in [14].
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3. Principle of virtual work for thin irregular shells

A consistent formulation of the mechanical boundary value problem for thin irregular
shell-like structures was developed in Makowski et al. [1,2], where the displacements
were taken as the only independent field variables. The mechanical modelling of such
structures was based on two postulates:

o The deformation of the entire shell-like structure is determined by deformation of a
distinguished surface-like continuum, called the shell reference network.

e The equilibrium conditions of the entire structure are determined by a suitable form
of the principle of virtual work involving only the fields associated with the
stretching and bending of the reference network.

The undeformed reference network ~# <€ introduced in [1] consists of a finite
number of regular surface elements ~#*) k =1,2,..., K, with the following properties:

a) No two distinct elements ~#*) have common interior points.

b) Two or more distinct elements may have a smooth spatial curve I''“) as a common
part of the boundaries, which is defined by

T =0 Nt N NOo ™ ik 2k, 2. %k, (10)

¢) Two or more distinct curves I'“) may have in common only single isolated points.

Each ~# %) represents a reference surface of a regular shell part. Each ['“) can be a
surface curve across which some fields fail to be smooth. Examples of geometric
irregularities along T'“) are surface folds or intersections of two or more regular
surfaces. Shell parts can be made of different materials, or there may be stepwise
thickness changes at T'(“), However, ['“) can also represent a reference axis of a rod-
like element, a technological junction, a plastic hinge developing during deformation
process, etc.

The network ~# is then regarded as the union of all the closed elements
WO JO~4® | and the singular curve [ e~# is regarded as the union of all the
curves ['@):

K A
oM =\ (" Yoon®), T =T an
= a=1

k

From (11) it is apparent that T' =~/ . The boundary 0~# of the entire network o#
defined by

K
o~ = LU awﬂ“)\r (12)
k=1

consists of a finite number of spatial curves. Several examples of such networks are
given in [2].
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Deformation of »# can be described by two deformation functions: y: ~>#\I' - &
and y.:I'—> ¢, since the singular curve may be admitted to follow its own
deformation, in general. In many cases the deformation y may be defined on the entire
4/ ,and then y is arestriction of y at I': y.=yx|.. However, we do not assume such
a restricted shell deformation at the moment.

The principle of virtual work compatible with the two postulates given above can be
taken in the form

G =Gy —Gex —Gr =0, (13)

where Gy, = Gi,(u;0u) represents the internal virtual work, G, = G.«(u;du) is the
external virtual work, and G, =G (u;;0u;) is the additional virtual work of the

generalised forces acting along I". Here we have explicitly indicated that all the virtual
works are functionals of the displacements as the only independent field variables. The
individual parts of (13) are defined by

G, = i [[ (N5, + MP 5k, JaA,
k=1 o)
G = i [] (pesu+hesm)dd+ [ (N%Su+H*sn)ds, (14)
k=l g0 ety
G, = Icrrds + z o,
r Fell

Here N*? and M% are components of the symmetric stress resultant and stress
couple tensors of the Piola-Kirchhoff type, ¢ is the symbol of variation, dy s and Ok 44
are virtual changes of the surface deformation measures (3), p and h are the external
surface force and moment resultant vectors, N*and H* are the external boundary force
and moment resultant vectors, whereas o and o, are the external virtual work
densities along regular parts of I" and at any singular point P, €I", respectively. The
explicit forms of or and o, depend on the type of irregularity assumed along I", [2].
Note that since nedn =0, only the surface components of h and H* can explicitly be
taken into account in the non-linear theory of thin irregular shells discussed here.
Transforming (13) and (14) with the help of Stokes’ theorem, the local equilibrium

equations, boundary conditions and jump conditions at singular curves were derived,
[1,2].

If the rotation tensor R is supposed to be an independent field variable of the
boundary value problem, some constraint conditions have to be introduced into the
relations (14) and the virtual densities should be expressed in terms of modified surface
deformation and stress measures.




ROTATIONS IN THIN IRREGULAR SHELLS 251

Let us remind that the components ¥ 4.k, and 77,4, 1,5 of the surface deformation
measures are related by (see [14], formula (5.11))

Yap =TMap+ % Malaps (15)
Kup = (84472 p + (8 + 1) itz | = 5 (B3 + B0

As a result, the internal surface virtual work density appearing in (14); can be presented
in an alternative form

NP8y o+ M6k, = ST, + H' 81,,
1 1
aff __ af |+ aarAp Baraly _ a . a A B _ B at
SP =N (N N )= (b - ) MP (8] - ph) M ] (16)
H = (85 +115 ) M*,
where now S =S but H¥ # H?*  in general.

In the non-linear theory of thin shells the rotation tensor R is a non-rational function
of u,u,, (explicit formulae are given in [11,13]). This dependence of R upon u can also
be expressed implicitly through three constraint conditions [22,14]

e’r,om,,r" =0, Wen,x* =0. 17

These constraints express the known property of the relative surface strain tensor #,

which in thin shell theory is symmetric and does not have out-of-surface components.
The property was also confirmed by Libai and Simmonds [3] who used the constitutive
Kirchhoff hypothesis to define the classical theory of thin shells as a special case of the
general shell theory.

For a virtual deformation the relations (17) put the following constraints on the
virtual changes 677,, of 77,

£, m,,r" =0, Webn,,r* =0. (18)

Inside of each ~#*) the constraints (18) can be introduced into the surface integral
of (14), with the help of the respective Lagrange multipliers S and Q7. It was shown in
[14] that in order to express also the boundary terms at each d-#*) explicitly through
independent rotations it is necessary to introduce into (14); a line integral over do#/')

with the constraints (18), multiplied by B7#. Additionally, in (14), the external virtual
work done by the moments h and H* should be expressed directly in terms of now

independent virtual rotations. As a result, (14); > can be modified to the form
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kzli:{ ” Nﬂnémﬂr + H%r ~5;twr )dA+ J Br’ nedn, ,r ds}

1 LK) P

B (19)
=D I pedu+mew)dA + I (N*eSu+M*ew_)ds,

k=1 _ (6 ool

where now G,, =G, (4w, R;du,w) and G, =G, (u,R;0u,w), while other fields are

cxt

defined by
=(S7 +&”S)r, +0’n, M’ =axH"r,,
(20)
M*=nxH*, m=nxh,
1 1/, e
:5(1x1)-(5RRT)=5(r x5ra+nx5n), o

= %(1 x1)(SRR] )= %(Vxé'v+?x§?+ﬁ x 51).

Here @ and @, are the virtual rotation vectors in the interior of each ~#* and along
each -4, respectively. Please note that all the couple vectors M”, M* and m in

(20) do not have normal components, that is M”+i=M*n=m-n=0. This is the

fundamental property of the theory of thin shells resulting from the two basic postulates
given above.

4. Local field equations

Let us transform the virtual work principle (13) with (19) keeping in mind that both R
and u are now the independent field variables subject to variation.

According to [14], the virtual deformation measures 67, and Ju,, are expressible
through du and @ by the relations

S1r =80, +8, X0, S =0, ,x1. (22)

Introducing (22) into (19),, the virtual work principle (13) takes the form

i{ ”[ {Su,,+a, xw)+ M’ .w,ﬂJdA+ J Biie(Su' +3, xo)ds

k=1 Wi ER 0]

23)

- ” (p~5u+m.w)dA}— I (N*eSu + M*ew_ )ds — Iards— Za 0.

't a=tly Pel

The fields N” and M” are assumed to be of class C' in the interior of each regular
surface element ~#© and to have extensions of the same class to the boundary with
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finite limits at any M €8~#4/®). Then the Stokes theorem allows one to transform the
first two surface integrals of (23) for each ~#® into

- H {Nﬂ |peou+(M” |, +a, XNﬂ)"”}dA
)

+ I {T,*6u+K, +w+(Bn:Su)'lds,

Dottt

(24)

where

T, =N’v,-(Bn), K, =M’v,-Ba,. (25)

v

Along each 0~#* there may be singular points P,c=1,2,..,C, described by
s =s., at which the field Bnsdu is not differentiable. Such singular points are, for

example, corners of the closed curves composing d=#4® or points of singularities of
B, m and ou. At such singular points we assume the existence of finite limits of
Bnedu defined by

Binl«Su; = lim {B(s, 2 h)B(s, £ h)sSu(s, £h)}. (26)

4

Then, the last term in the boundary line integral of (24) can be transformed further to
give
[ (Buesuyds=- 3 (B/nlSu} - B +5u;) 27
et Fedon™
The second term of the boundary line integral in (24) contains the virtual rotation @,
which should still be expressed through the virtual rotation @_ of the boundary. Let us

remind that along each 0-#® the total rotation tensor R, is defined as the
superposition of two finite rotations, [14]:

R =QR, Q, =V®r, +7®r, +n®n, (28)
where
r,=rv’=Ry= L{(1 +n, )$+77VT?},
aT
r,=r,7" =Rz= L{—nw F+(1 +7., )?}, (29)
a

T

V= = — a, p — a,p
v= QVrv’ = Ql"rr’ nvr - naﬂv (2 772'2' - 770437 .

Therefore, taking variations of R, defined either by (9); or by (28); we obtain
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SRR/ =w x1

=(5Q,Q/)Q,RR'Q; +Q, (SRR Q] (30)
=(q+Q,w)x1,
where
a=>(1x1{5Q,Q}). (31)
From (30),» it follows that
0.=q+Q,0, o=Q)(v,—q). (32)

Let us evaluate more explicitly the formula (32), for @ at the boundary ot ™

Keeping in mind that 1 =vy®v+7®7T+n ®n along oo/, and taking variation of (28),
we establish the relations

1x1=-7®(7®n-n1®7)-7® (1 ®V-v®n)-n® (v®T-T®V),
5Q,Q) = 5V®V+STOT + SN @ N +VRT (ST, r, ) +vRN(Sr,N) (33)
+T®V(ST,or, )+ T @ N(Sr,+n) + AOV(STer, ) + DR 7 (STer, ).
Introducing (33) into (31) and taking into account that
0, =V(w,V)+T(w,7)+0(w, D), (34)
after some transformations from (32), we obtain
w=r,(w.r,)+r (0, 1, )-0(dr.r,). (35)

The relation (35) means that the virtual rotations @ and w_ differ only by their

normal components. But K, in (25) does not have a normal component at all. Thus,
using (8)1, (20)1, (25), and (35) we are able to show that at the boundary

K o=K, o (36)

The simple relation (36) just confirms that the theory of thin shells discussed here is
insensitive to the virtual works done on the normal, drilling components of ® and w.,
for the corresponding drilling components of the couples are indefinite in this shell
model. The virtual works done by the drilling couples can be taken into account only in
the general theory of shells, [3.6,7].

With the help of (24), (27) and (36) the internal virtual work for the entire reference
network ~# can be put in the form
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Gy == [[{N|,-0u+ (M |, +3,xN’ }oo}dd+ [ (T, -0u+K, w,)s

N\ St (37)
+ j([[TV-5u]]+[[KV-wT]])ds+Z[Bﬁ-ﬁu], + > [Bnedul,.
r Pell Bedatl

In (37) the jumps at each regular point P el® of the common curve
D =00V No2 PN...N\02# "™ for n>2 adjacent surface elements are defined by

[T, +su]l= T esu"” £ TP esu®* £  + T 50",

(38)
[K, o = K"K e 1 £ K e,

The numerical superscripts (#) introduced into the right hand sides of (38) indicate
explicitly that those functions are defined only along the particular d~#" .

The signs in the definitions (38) must be chosen consistently with a fixed orientation
of the curve T'®@. If the orientation of I'“> coincides with the orientation of d~#",
that is when the unit tangent vector 7. specifying the orientation of I''“) is related to
v of do# by v=+r xn"’, the minus sign must be chosen in front of the
corresponding term in (38), and the plus sign otherwise.

The jumps at all singular points of ~# have been divided in (37) into the jumps
[Bn«du], at the internal points P, €I’ and the jumps [Bn«du), at the boundary points
B, €0~/ . At each internal point F, being the common point of m>2 adjacent
branches '™, as well as at each boundary point P, being the common point of ¢ >2

adjacent parts 0~#" and g adjacent branches ' approaching P, from inside of ~# ,
the jumps are defined by

[BueSu], =B 5ul £ BT SulPt £+ BRI S
[BheSu], = B0 «5ul"* £ BP0V e 50" £ ...+ B oSul (39)

a5 (0 | pERE | o ()% (@@=, suE
BT eou, T £ BN 0w, £ £ BIYTR 0w,

3

Here the numerical superscripts indicate that these functions are defined only either on a

particular internal branches I and T"“’, or on a particular d~#" composing a part
of the boundary 0~# .

Introducing (37) with (38) and (39) into (23) we obtain
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_ ” {(Nﬁ’ s +p).§u+(Mﬂ 5+, x N? +m)-w}ds
- [ (T, ~N*)du+(K,-M)ew Jds+ > [Busu],

oo Pycdetl,

+ I(TV-§u+KV-w,)ds+ Y. [Budu],

B4 Pyedety

+ I{[[Tl}é‘l]]-i— [K, . T}ds+ D [Busdul, - Iards -Y o,=0.

Fell Pell

(40)

For an arbitrary, but kinematically admissible, virtual deformation the fields du and
o, vanish identically along 0-#, and the third line of (40) vanishes as well. Then the

virtual work principle (40) requires the following local relations to be satisfied:

the local equilibrium equations
N/, +p=0, M’ | +a,xN’+m=0 ateachregular M eo/\T';  (41)
the static boundary conditions
T, -N*=0, K, —M*=0 along regular parts of 024 ; (42)
the jump conditions
[Bnedu], =0 at each singular boundary point P, € 0-4. (43)

The corresponding work-conjugate geometric boundary conditions are:
u-uw*=0, Rn-R*n=0 along regular parts of 0o7;. (44)

As it has been expected, the local equilibrium equations (41) as well as the boundary
conditions (42) and (44) for thin irregular shell-like structures coincide with those
derived within the theory of thin regular shells expressed in terms of displacements and
rotations as the primary variables (see [14], Section 5.2). However, in the jump
conditions (43) the virtual displacements still remain coupled with the generalised
forces, for in case of the general irregularity of deformation we may not be able to
define a common Ju, associated with a singular boundary point £, € 0o#,.

5. Jump conditions along singular curves

If the local relations (41)-(44) are satisfied, the principle of virtual work still requires
the last line of (40) to be satisfied identically for any part of I'. This leads to the
following local forms of the jump conditions:

[T Sufl+[K,+w_ J]-o. =0 atregular points of I'; (45)

[Bnedu],—o, =0 at each internal singular point P, €I". (46)
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The jump conditions (45) and (46) constitute the additional set of basic relations that
should be satisfied at the singular curves representing the irregularities of shell
geometry, deformation, material properties and loading. The conditions are valid for
unrestricted displacements, rotations, strains and/or bendings of the reference network

A .

The singular curves I''“> embedded into the shell reference network ~# may be of
either geometric or physical type, in general. At the geometric curve some fields in the
relations (45) or (46) fail to be continuous or smooth of the required class. With the
physical curve we can additionally associate some mechanical properties by prescribing
appropriate functions o, = o (u.,R;8u ,w.) and o, =0,(u,;8u,) along T'“’. For
special types of irregularities the jump conditions (45) and (46) can be simplified or
presented in a more explicit uncoupled form along the lines suggested in [2] for the
displacement formulation of the non-linear theory of thin irregular shells. Such
particular forms of the functions o and o, as well as special cases of the jump

conditions will be discussed separately.
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