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Abstract

O uściślonych równaniach wewnętrznych powłok
w bazie obróconej

Równania równowagi i warunki ciągłości odkształceń powłok cienkich zostały sfor-
mułowane względem pośredniej bazy nieholonomicznej, określonej przez sztywny
obrót bazy naturalnej powierzchni podstawowej powłoki nieodkształconej. Stosując
oszacowania błędu wprowadzanego do tych równań w ramach pierwszego przybliżenia
do gęstości energii odkształcenia sprężystego powłoki, wyprowadzono konsekwentnie
uproszczony układ sześciu nieliniowych równań typu wewnętrznego. Te równania
wyrażone zostały przez trzy wypadkowe siły membranowe i trzy zmiany krzywizny
powierzchni podstawowej jako jedyne zmienne niezależne. To pozwoliło na uściśle-
nie czterech z sześciu równań, w porównaniu do podobnego układu sześciu równań
wewnętrznych, lecz wyrażonego tylko przez sześć miar odkształceń lub sześć miar
naprężeń powierzchni podstawowej powłoki.

1. Introduction

Geometrically non-linear problems of thin isotropic elastic shells can be formu-
lated and analysed using different fields as independent variables of the bound-
ary value problem (BVP), see Pietraszkiewicz (1989, 2001a). The displacement
form of shell relations is used most often in the literature, but it is very complex
for unrestricted rotations and requires C1 interelement compatibility if the finite
element method is applied in the analysis. Non-linear shell equations expressed
through rotations and other fields can effectively be applied to one-dimensional
shell problems. However, in two-dimensional problems the configuration space of
such a BVP contains the rotation group SO(3) and then a non-standard analysis
on SO(3) is required.
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Displacements and/or rotations may not be needed in some problems of flex-
ible shells. It may be enough to know only the surface strain and/or stress meas-
ures, or even only some global characteristics expressed through these measures
such as, for example, the strain energy corresponding to shell buckling or eigen
frequencies of vibration of a deformed shell. Such an intrinsic formulation of non-
linear shell equations was given first by Chien (1944) through Green type surface
strains and changes of curvatures as independent field variables. The intrinsic shell
equations were then developed, classified and expressed through various modified
surface strain and/or stress measures in several papers reviewed by Pietraszkiewicz
(1989). In such intrinsic BVPs the equilibrium equations and compatibility condi-
tions form together the fundamental system of six non-linear partial differential
equations. In particular, Danielson (1970) proposed to choose membrane stress
resultants and changes of curvatures as primary field variables, which allowed him
to derive a refined set of intrinsic shell equations. Modified sets of refined intrinsic
shell equations were discussed by Koiter and Simmonds (1973), Pietraszkiewicz
(1977, 1979, 1980), Simmonds (1979), and Libai and Simmonds (1983).

In this report an alternative system of refined intrinsic equations for the geo-
metrically non-linear theory of thin isotropic elastic shells is discussed. The shell
equations are written in components relative to the rotated base vectors intro-
duced by Alumäe (1949). The equations are expressed through modified mem-
brane stress resultants and changes of curvatures associated with the rotated basis.
The system was presented concisely already in Pietraszkiewicz (1989), eqs. (6.24),
but the review type style of that paper did not permit to give there many details of
the derivation process itself. Here the alternative refined intrinsic shell equations
(43) are derived in detail, with all necessary intermediate transformations.

The paper is organised as follows. In Section 2 we remind notation and present
basic definitions associated with description of deformation of the surface in the
non-holonomic rotated basis. Equilibrium conditions presented in Section 3 are
derived from the principle of virtual work (10) postulated for the shell reference
surface. Introducing there three constraints (14) with the help of Lagrange multi-
pliers, modified equilibrium conditions associated with the rotated basis are given
in the weak (19) and strong (20)–(23) forms, with six scalar equilibrium equations
in the rotated basis presented in (24). Compatibility conditions for relative sur-
face strain measures are derived in Section 4, and their component form in the
rotated basis is given in (29). In Section 5 we remind constitutive equations of a
homogeneous isotropic elastic shell undergoing small strains, and indicate their
error estimates within the first approximation to the elastic strain energy density.
Finally, in Section 6 the modified refined intrinsic shell equations (43) are derived
and their distinguishing properties are discussed.
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2. Surface Geometry and Deformation

In this report we shall apply primarily the system of notation used in Pietraszkiewicz
(1989) and remind here only basic relations.

Let M be a connected, oriented and regular surface of class Cn; n ½ 2, in the
three-dimensional Euclidean point space E whose translation (three-dimensional
vector) space is E. The position vector of a point M 2 M is given by

r D ��!
OM D r.�Þ/; (1)

where O 2 E is a reference origin and �Þ; Þ D 1; 2, are surface co-ordinates. At
M 2 M we have the natural base vectors aÞ D @r=@�Þ � r;Þ , the dual base vectors
aþ such that aþ Ð aÞ D Ž

þ
Þ , where Ž

þ
Þ is the Kronecker symbol, the components aÞþ D

aÞ Ð aþ and aÞþ D aÞ Ð aþ of the surface metric tensor a with a D det.aÞþ/ > 0,
the unit normal vector n D .1=

p
a/a1 ð a2 orienting M, the components bÞþ D

�n;Þ Ðaþ of the surface curvature tensor b, and the components "Þþ D .aÞ ð aþ/ Ð n
of the surface permutation tensor such that "12 D �"21 D p

a, "11 D "22 D 0.
The boundary @M of M consists of a finite number of closed, piecewise smooth

curves that do not meet in cusps, each described parametrically by r.s/ D r[�Þ.s/],
where s is the arc length along any regular part of @M. At each regular point
M 2 @M we have the unit tangent vector − D dr=ds � r0 D −ÞaÞ and the outward
unit normal vector ¹ D r;¹ D − ð n D ¹ÞaÞ , where .Ð/;¹ is the external surface
derivative normal to @M.

The deformed surface M with boundary @M is described relative to the same
origin O 2 E by the relations

Nr.�Þ/ D �[r.�Þ/] D r.�Þ/ C u.�Þ/; Nr.s/ D �[r.s/] D r.s/ C u.s/; (2)

where �Þ and s are convected surface co-ordinates, � : M ! M is the deforma-
tion function, and u 2 E is the displacement vector.

In the convected surface co-ordinates all geometric relations at any regu-
lar M 2 @M are now analogous to those given at M 2 @M, and are expressed
by quantities marked by a dash: NaÞ; Naþ; NaÞþ; NaÞþ; Na; Na; NbÞþ; N"Þþ; N¹; N− etc. The
dashed quantities can be expressed through analogous quantities defined on M
and the displacement field u with the help of formulae given in Pietraszkiewicz
(1989).

Components of the Green type surface deformation measures are defined by

�Þþ.u/ D 1
2

� NaÞþ � aÞþ

Ð
; �Þþ.u/ D � �NbÞþ � bÞþ

Ð
; (3)

where �Þþ.u/ are quadratic polynomials of u; u;Þ , and �Þþ.u/ are non-rational
functions of u; u;Þ ; u;Þþ .

In the neighbourhood of regular surfaces M and M the space E can be para-
meterised by the normal system of convected co-ordinates .�Þ; &/, where & is the
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distance from M and M along n and Nn, respectively. Extending the domain of �

to the neighbourhood of M, the spatial deformation gradient F : E ! E taken at
the surface M has the form

F D r�.r C &n/j&D0 D NaÞ � aÞ C Nn � n; detF D
r

Na
a

> 0;

Na
a

D 1 C 2� Þ
Þ C 2

�
� Þ

Þ �
þ
þ � � Þ

þ � þ
Þ

�
;

(4)

where � is the tensor product.
The left polar decomposition of F gives

F D VR; rÞ D RaÞ D V�1 NaÞ: (5)

Here R 2 SO.3/ is the rotation tensor, V is the left spatial stretch tensor at M,
and rÞ are the rotated surface non-holonomic base vectors. These fields satisfy
the relations

R D rÞ � aÞ C Nn � n; RT D R�1; detR D C1;

V D NaÞ � rÞ C Nn � n̄; VT D V; detV D
r

Na
a

> 1:
(6)

The relative surface strain measures associated with the basis rÞ; Nn are intro-
duced through the following formulae:

� D V � 1 D �
aþ C u;þ �rþ

Ð� rþ D �þ � rþ; �þ D �ÞþrÞ;

¼ D � Nn;þ �Rn;þ

Ð� rþ D R;þ n � rþ D ¼þ � rþ; ¼þ D ¼ÞþrÞ;

�Þþ D �þÞ; ¼Þþ 6D ¼þÞ:

(7)

Here 1 D aÞ � aÞ C n � n D rÞ � rÞ C Nn � Nn is the spatial identity tensor.
Along the boundary @M we have

Na− � Nr0 D a− N−; Na¹ D Na− ð Nn D a− N¹; Nn D
r

a
Na Nr;¹ ðNr0;

a− D jNr0j D p
1 C 2�−− ; �−− D �Þþ−Þ−þ:

(8)

During shell deformation the transformation of .¹; −; n/ into .Na¹; Na− ; Nn/ is per-
formed in two steps: the rotation of .¹; −; n/ into .¹; −; n/ by the total rotation
tensor R− with the subsequent extension of N¹; N− into Na¹; Na− by the factor a− :

Na¹ D a− R− ¹; Na− D a− R− −; Nn D R− n;

R− D 1
a−

.Na¹ � ¹ C Na− � −/ C Nn � n:
(9)

Kinematic relations involving the tensors �; ¼, R and R− are given in Pietraszkiewicz
(1989).
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3. Equilibrium Conditions

Let M be the reference surface of a thin shell in an equilibrium state under the
action of the resultant surface force p.�Þ/ and static moment h.�Þ/ vectors, both
measured per unit area of the undeformed surface M, and the resultant boundary
force NŁ.s/ and static moment HŁ.s/ vectors, both measured per unit length of
the undeformed boundary @M. We postulate that for all kinematically admissible
virtual displacements Žu : M ! E the following principle of virtual work (PVW)
is satisfied: RR

M
�
NÞþŽ�Þþ C MÞþŽ�Þþ

Ð
dA D RR

M
.p Ð Žu C h Ð Žn/ dA

C R
@M f

.NŁ Ð Žu C HŁ Ð Žn/ds: (10)

Here NÞþ and MÞþ are components of the symmetric stress resultant and stress
couple tensors of the Piola-Kirchhoff type, Ž is the symbol of variation, while Ž�Þþ

and Ž�Þþ are virtual changes of the surface strain measures (3). Since n Ð Žn D 0,
only the surface components of h and HŁ can explicitly be taken into account in
the non-linear theory of thin shells discussed here. With u as the only independent
field variable we can transform (10) with the help of Stokes’ theorem and derive
the corresponding three local equilibrium equations in M, four natural boundary
conditions on @M f and three jump conditions at each corner point Mi 2 @M f ,
see Pietraszkiewicz (1989), Chapter 1.

In this report we are interested in deriving non-linear shell relations expressed
through modified surface strain and/or stress measures, associated with the rotated
basis rÞ; n, as independent field variables. This can be done by allowing first
the rotation tensor R to be an additional independent field variable of the BVP.
According to Pietraszkiewicz (1989), eqn. (5.11), the surface strain measures (3)
and (7) are related by

�Þþ D �Þþ C 1
2

�½
Þ�½þ;

�Þþ D 1
2

ð�
Ž½

Þ C �½
Þ

Ð
¼½þ C �

Ž½
þ C �½

þ

Ð
¼½Þ

Ł� 1
2

�
b½

Þ�½þ C b½
þ�½Þ

Ð
:

(11)

As a result, the internal virtual work density appearing in the left hand side of
(10) can be presented in an alternative form

NÞþŽ�Þþ C MÞþŽ�Þþ D SÞþŽ�Þþ C HÞþŽ¼Þþ;

SÞþ D NÞþ C 1
2

�
�Þ

½ N½þ C �
þ
½ NÞ½

�
�1

2

h�
bÞ

½ � ¼Þ
:½

Ð
M½þ C

�
bþ

½ � ¼
þ
:½

�
MÞ½

i
;

HÞþ D �
ŽÞ

½ C �Þ
½

Ð
M½þ;

(12)
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where now SÞþ D SþÞ , but HÞþ 6D HþÞ, in general.
The dependence of R upon u; u;Þ can also be expressed implicitly through

three constraint conditions, see Badur and Pietraszkiewicz (1986),

"ÞþrÞ Ð �½þr½ D 0; n Ð �½þr½ D 0: (13)

These constraints express the known property of the relative surface strain
tensor �, which in thin shell theory is symmetric and does not have out-of-surface
components. The property was also confirmed by Libai and Simmonds (1998) who
used the constitutive Kirchhoff hypothesis to define the classical theory of thin
shells as a special case of the general shell theory. The relations (13) put the
following constraints on the virtual changes Ž�Þþ of �Þþ :

"ÞþrÞ Ð Ž�½þr½ D 0; n Ð Ž�½þr½ D 0: (14)

The constraints (14) can be introduced into the surface integral of (10) with
the help of respective Lagrange multipliers S and Qþ . In order to express also
boundary terms at each @M explicitly through independent rotations, it is neces-
sary to introduce into (10) an additional line integral over @M with the constraints
(14)2 multiplied by B−þ , (Pietraszkiewicz 1989). The external virtual work done
by the moments h and HŁ should be expressed in (10) directly in terms of now
independent virtual rotations. As a result, (10) can be modified into the formRR

M
�
Nþ Ð Ž�½þr½ C HÞþrÞ Ð Ž¼½þr½

Ð
dA C R

@M
B−þn Ð Ž�½þr½ds

D RR
M

.p Ð Žu C m Ð !/ dA C R
@M f

.NŁ Ð Žu C MŁ Ð !− /ds; (15)

where now

Nþ D RÞþrÞ C Qþn; Mþ D n ð HÞþrÞ;

MŁ D n ð HŁ; m D n ð h; RÞþ D SÞþ C "Þþ S;
(16)

! D 1
2

.1 ð 1/ Ð �ŽRRTÐ D 1
2

�
rÞ ð ŽrÞ C Nn ð Ž NnÐ ;

!− D 1
2

.1 ð 1/ Ð �ŽR− RT
−

Ð D 1
2

. N¹ ð Ž N¹ C N− ð Ž N− C Nn ð Ž Nn/:

(17)

Here ! and !− are virtual rotation vectors in the interior of M and along @M,
respectively.

Please note that all couple vectors Mþ , MŁ and m in (15) do not have normal
components, that is Mþ Ð n D MŁ Ð n D m Ð n � 0. This is the fundamental property
of the theory of thin shells resulting from the postulated PVW, (10) or (15).

Let us transform the virtual work principle (15) taking into account that the
virtual surface strain measures Ž�Þþ and Ž¼Þþ are expressible through Žu and !

by the relations

Ž�½þr½ D Žu;þ Caþ ð !; Ž¼½þr½ D !;þ ðn: (18)
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Introducing (18) into (15) the PVW can be transformed into the form (see
Pietraszkiewicz 2001b for an additional transformation at the boundary @M)

� RR
M

ý�
Nþ jþ C p

Ð Ð Žu C �
Mþ jþ C aþ ð Nþ C m

Ð Ð !
�

dA

C R
@M f

ý�
Nþ¹þ � .B Nn/0 � NŁÐ Ð Žu C �

Mþ¹þ C BNa¹ � MŁÐ Ð !−

�
ds

� P
Mi 2@M f

[B Nn]i Ð Žui

C R
@Md

ý�
Nþ¹þ � .B Nn/0Ð Ð Žu C �

Mþ¹þ C BNa¹

Ð Ð !−

�
ds D 0:

(19)

For an arbitrary, but kinematically admissible, virtual deformation the fields
Žu and !− vanish identically along @Md , and the fourth line of (19) vanishes as
well. Then the principle of virtual work (19) requires the following local relations
to be satisfied:

the local equilibrium equations

Nþ jþ C p D 0; Mþ jþ C Naþ ð Nþ C m D 0 at each regular M 2 MI (20)

the static boundary conditions

Nþ¹þ � .B Nn/0 � NŁ D 0; Mþ¹þ C BNa¹ � MŁ D 0

along regular parts of @M f I
(21)

the jump conditions

[Bn]i Ð Žui D 0 at each singular point Pi 2 @M f I (22)

The corresponding work-conjugate geometric boundary conditions are

u � uŁ D 0; R− n � RŁ
− n D 0 along @Md: (23)

The relations (20)–(23) extend a similar set of shell relations (5.57)–(5.60)
of Pietraszkiewicz (1989) derived for the geometrically non-linear theory of thin
elastic shells. Only symmetric parts of ¼Þþ and HÞþ were present in the equilibrium
conditions of that paper, for the contribution of the skew-symmetric part of ¼Þþ in
the elastic strain energy density was found to be negligible within the error of the
first-approximation theory. The relations (20)–(23) are derived here without using
any constitutive equations yet. Therefore, they have a wider range of applicability.

The equilibrium equations (20) seem to be formally identical with those
already used by Alumäe (1949, 1956) and Simmonds and Danielson (1970, 1972)
in their approach to thin shell theory formulated in the rotated basis. However,
the physical meaning of similar symbols in (20) and in those papers is different.
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The shell equilibrium equations given in those papers as well as the ones given
earlier by Chien (1944) were derived by through-the-thickness integration of 3D
equilibrium equations of continuum mechanics. According to Libai and Simmonds
(1983, 1998) the work-conjugate shell kinematics associated with such shell equi-
librium equations consists of the displacement vector u and the rotation tensor Q
as two independent field variables. In such a general shell theory 2D constitutive
equations should be provided for all six components of Nþ and Mþ . Our equilib-
rium equations (20) have been generated by the 2D principle of virtual work (10)
of thin shell theory, where the displacement vector u is the only independent field
variable, and R D R.u; u;Þ /. In order to treat also R as an additional independent
field variable, the set of Lagrange multipliers S; Qþ; B had to be introduced which
are additional independent field variables. In our formulation of thin shell theory
2D constitutive equations should be provided only for three SÞþ and four HÞþ .

When expressed by components in the rotated basis rÞ; n the vector relations
(20) lead to six scalar local equilibrium equations

HÞþjþ � "Þ½ H:þ
½ kþ � Qþ

�
ŽÞ

þ C �Þ
þ

�
C OmÞ D 0;

"Þ½ HÞþ
�
b½

þ � ¼½
:þ

�
� "Þ½ RÞþ

�
Ž½

þ C �½
þ

�
D 0;

RÞþjþ � Qþ
�
bÞ

þ � ¼Þ
:þ

�
� "Þ½ R:þ

½ kþ C OpÞ D 0;

Qþjþ C RÞþ
�
bÞþ � ¼Þþ

ÐC p D 0;

(24)

where now p D OpÞrÞ C pn; m D n ð OmÞrÞ.
The set of equations (24) contains only the surface strain measures �Þþ; ¼Þþ; kÞ ,

stress measures RÞþ; HÞþ; QÞ and components of p, m in the rotated basis.

4. Compatibility Conditions

It follows from
�
RRTÐ ;þ D 0 that R;þ RT is the skew-symmetric tensor expressible

through the axial bending vector lþ :

R;þ RT D lþ ð 1; lþ D "Þ½¼Þþr½ C kþn: (25)

Let us introduce the finite rotation vector � D 2 tan !=2e, where the unit vector
e describes the direction of the axis of rotation of R and ! is the angle of rotation
about e. Then in terms of � we have

rþ D Raþ D aþ C 1
t
� ð

�
aþ C 1

2
� ð aþ

�
; t D 1 C 1

4
� Ð �

Nn D Rn D n C 1
t
� ð

�
n C 1

2
� ð n

�
; lþ D 1

t

�
�;þ �1

2
�;þ ð�

�
:

(26)
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Since NaÞ D aÞ C u;Þ, we can solve (7)1 and (26) for u;Þ and �;Þ , which yields

u;Þ D �Þ C 1
t
� ð

�
rÞ � 1

2
� ð rÞ

�
; �;Þ D lÞ � 1

2
� ð lÞ C 1

4
.� Ð lÞ/ �: (27)

The integrability conditions "Þþu;Þþ D 0 and "Þþ�;Þþ D 0 of (27) take the forms

"Þþ
�
�Þjþ C lþ ð rÞ

Ð D 0; "Þþ

�
lÞjþ C 1

2
lÞ ð lþ

�
D 0: (28)

These are vector forms of compatibility conditions for the non-linear deforma-
tion of the shell reference surface. They were derived first by Alumäe (1949, 1956)
and independently by Simmonds and Danielson (1970) in components relative to
the rotated basis rÞ; Nn in the form equivalent to

"Þþ�½Þjþ C "Þþ
�
Ž�

Þ C ��
Þ

Ð
"�½kþ D 0;

"Þþ�½
Þ

�
b½þ � ¼½þ

Ð� "Þþ¼Þþ D 0;

"Þþ"½�¼½Þjþ � "ÞþkÞ

�
b�

þ � ¼�
:þ

�
D 0;

"Þþ"½�¼½Þ

�
b�þ � 1

2
¼�þ

�
C "ÞþkÞjþ D 0:

(29)

The relations (29) assure that nine functions �Þþ; ¼Þþ; kÞ of class C1 define
the regular reference surface M of the deformed shell with accuracy up to its
rigid motion in space E .

5. Constitutive Equations

Let us discuss in more detail thin shells made of a homogeneous, isotropic elastic
material undergoing small strains. In such a case the strain energy density of
the shell, within the consistent first approximation, is the sum of two quadratic
functions describing stretching and bending energy densities of the shell reference
surface. When expressed by relative surface strain measures, the strain energy
density takes the form (Pietraszkiewicz 1989)

W D h
2

HÞþ½¼

�
�Þþ�½¼ C h2

12
²Þþ²½¼

�
C O

�
Eh�2�2

�
;

HÞþ½¼ D E
2.1 C ¹/

�
aÞ½aþ¼ C aÞ¼aþ½ C 2¹

1 � ¹
aÞþa½¼

�
:

(30)

Here E is the Young modulus, ¹ is the Poisson ratio, and ²Þþ are symmetric parts
of ¼Þþ defined by

¼Þþ D ²Þþ C "Þþ²; ²Þþ D 1
2

�
¼Þþ C ¼þÞ

Ð
; ² D 1

2
"Þþ¼Þþ: (31)
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The error of W at any point of the shell is indicated in (30) in terms of the
small parameter � defined by Koiter (1980)

� D max

 
h
b

;
h
L

;
h
l

;

r
h
R

;
p

�

!
; (32)

where

� – the largest strain in the shell space,
h – the constant shell thickness,
R – the smallest radius of curvature of M,
l – the smallest wavelength of geometric patterns of M,
L – the smallest wavelength of deformation patterns of M,
b – the distance from the lateral shell boundary.

Differentiating (30)1 we obtain corresponding constitutive equations

SÞþ D @ W
@�Þþ

D C
ð
.1 � ¹/ �Þþ C ¹aÞþ��

�

ŁC O
�

Eh��2
�

;

GÞþ D @ W
@²Þþ

D D
ð
.1 � ¹/ ²Þþ C ¹aÞþ²�

�

ŁC O
�

Eh2��2
�

;

C D Eh
1 � ¹2 ; D D Eh3

12.1 � ¹2/
:

(33)

where GÞþ are symmetric parts of HÞþ defined by

HÞþ D GÞþ C "Þþ G; GÞþD1
2

�
HÞþCHþÞ

Ð
; G D1

2
"Þþ HÞþ: (34)

It follows from (30)1 that G D O
�
Eh2��2

Ð
.

The inverse constitutive equations are

�Þþ D A
ð
.1 C ¹/ SÞþ � ¹aÞþ S�

�

ŁC O
�
��2

Ð
;

²Þþ D B
ð
.1 C ¹/ GÞþ � ¹aÞþ G�

�

ŁC O
�

��2

h

�
;

A D 1
Eh

; B D 12
Eh3 :

(35)

6. Refined Intrinsic Shell Equations

Let us introduce representations (31) into the compatibility conditions (29). Taking
into account errors of the constitutive equations (35), the compatibility conditions
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can be reduced to

"Þþ�½Þjþ C k½ D O
�

��2

½

�
;

2² � "Þþ�Þ�

�
b�

þ � ²�
þ

Ð D O
�

��4

h

�
;

"Þþ"½�²½Þjþ C "�þ²;þ � "ÞþkÞ

�
b�

þ � ²�
þ

Ð D O
�

��4

h½

�
;

"Þþ"½�

�
b½Þ � 1

2
²½Þ

�
²�þ C "ÞþkÞjþ D O

�
��2

½2

�
:

(36)

Orders of covariant surface derivatives of some fields in (36) are estimated
dividing their maximal values by the large parameter ½ defined by

½ D h
�

D min
�

b; L; l;
p

hR;
1p
�

�
: (37)

It follows from (36)1;2 that k½ D O.�=½/ and ² D O.��=½/.
Let us introduce the representations (16)2 , (31) and (34) into the equilibrium

equations (24) and take into account the error of constitutive equations (33) and
(34) as well as estimates for G; k½ and ² given above. As a result, the equilibrium
equations can be reduced to

GÞþ jþ � QÞ C OmÞ D O
�

Eh2 ��2

½

�
;

2S C "Þ½SÞþ�½
þ � "Þ½GÞþ

�
b½

þ�²½
þ

Ð D O
�

Eh��4
�

;

SÞþ jþ C "Þþ S;þ � Qþ
�
bÞ

þ�²Þ
þ

Ð� "Þ½Sþ
½ kþ C OpÞ D O

�
Eh

��4

½

�
;

SÞþ
�
bÞþ � ²Þþ

ÐC QÞjÞ C p D O
�

Eh2 ��2

½2

�
:

(38)

It is easy to note that the equations (36)1;2 can be solved for k½; ² leading to

k½ D �"Þþ�½Þjþ C O
�

��2

½

�
;

² D 1
2

"Þþ�Þ�

�
b�

þ � ²�
þ

ÐCO
�

��4

h

�
:

(39)

Likewise, the equations (38)1;2 can be solved for Qþ; S which yields

QÞD GÞþ jþ C OmÞCO
�

Eh2 ��2

½

�
;

S D1
2

"Þ½

ð�SÞþ�½
þ C GÞþ

�
b½

þ � ²½
þ

ÐŁ
;

(40)
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Eliminating k½; ²; Qþ; S with the help of (39) and (40) from the remaining equi-
librium equations (38)3;4 and compatibility conditions (36)3;4 we obtain

SÞþ jþ C "Þ½"�² Sþ
½ �þ�j² C 1

2
"Þþ"�²

ð
��

½ S½² C G�½
�
b²

½ � ²
²
½

ÐŁ jþ

� �
Gþ½j½ C Omþ

Ð �
bÞ

þ � ²Þ
þ

ÐC OpÞ D O
�

Eh
��4

½

�
;

SÞþ
�
bÞþ � ²Þþ

ÐC GÞþ jÞþ C OmÞjÞ C p D O
�

Eh2 ��2

½2

�
:

(41)

"Þþ"½�²½Þjþ C 1
2

"�þ"Þ½
ð
�Þ²

�
b²

½ � ²
²
½

ÐŁ jþ C "Þþ"½²�Þ½j²
�
b�

² � ²�
²

Ð
D O

�
��2

h½

�
;

"Þþ"½�

��
b½Þ � 1

2
²½Þ

�
²�þ � �½Þj�þ

½
D O

�
��2

½2

�
:

(42)

The six scalar equations (41) and (42) are now expressed entirely in terms
of twelve components of the surface strain and stress measures related by six
constitutive equations (33) or (35). Using (33) or (35) we can eliminate any six
of the fields to obtain a definite system of six differential equations for the re-
maining six surface measures. However, elimination of SÞþ would introduce the
error O

�
Eh��2=½

Ð
into (41)1, while eliminating ²Þþ we would make the error

O
�
��2=½h

Ð
in (42)1. Both errors are larger than those indicated in (41)1 and

(42)2, respectively, which may lead to some loss of accuracy of the solution. This
was the main reason for Danielson (1970) to choose membrane stress resultants
and changes of curvature as independent field variables of his intrinsic set of six
shell equations. We also leave SÞþ; ²Þþ as independent field variables of (41) and
(42), and eliminate GÞþ and ²Þþ using (33)2 and (35)1, respectively, which leads
to

Sþ
Þ jþ C A

ð
.1 C ¹/ S½

Þ � ¹Ž½
Þ S�

�

Ł jþ Sþ
½ � 1

2
A
h
.1 C ¹/ Sþ

½ S½
þ � ¹S½

½ Sþ
þ

i
jÞ

�1
2

D .1 � ¹/
�
b½

Þ²
þ
½ � bþ

½ ²½
Þ

�
jþ � D

�
bþ

Þ � ²þ
Þ

Ð
²½

½ jþ

C OpÞ � �
bþ

Þ � ²þ
Þ

Ð Omþ D O
�

Eh
��4

½

�
;

D²Þ
Þ jþþ C �

bþ
Þ � ²þ

Þ

Ð
SÞ

þ C p C OmÞjÞ D O
�

Eh2 ��2

½2

�
;
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²þ
Þ jþ � ²

þ
þ ;Þ C1

2
A .1 C ¹/

h�
b½

Þ � ²½
Þ

Ð
Sþ

½ �
�
bþ

½ � ²
þ
½

�
S½

Þ

i
jþ

�A
�
bþ

Þ � ²þ
Þ

Ð
S½

½;þ �A .1 C ¹/
�
bþ
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Þ

Ð Opþ D O
�

��4

h½

�
;

ASÞ
Þjþþ C

�
bþ

Þ � 1
2

²þ
Þ

�
²Þ

þ �
�

bÞ
Þ � 1

2
²Þ

Þ

�
²

þ
þ C A .1 C ¹/ OpÞjÞ

D O
�

��2

½2

�
:

(43)

The set of refined intrinsic shell equations (43) is written in components rel-
ative to the rotated basis rÞ; n. Within the indicated errors, the equations (43) are
equivalent to alternative forms of refined intrinsic shell equations proposed by
Danielson (1970), Koiter and Simmonds (1973) and Pietraszkiewicz (1977, 1979,
1980). However,

a) our system (43) is expressed through fields SÞþ; ²Þþ appearing naturally in
thin shell theory and needing no modifications;

b) when linearised, the system (43) leads to equations of the ‘best’ linear shell
theory according to Budiansky and Sanders (1963), (see also Koiter 1980);

c) our system (43) follows from the equations (36), (38) and (41), (42) which
obey a static-geometric duality in the non-linear range of deformation, (see
Pietraszkiewicz 1989, 2001a);

d) corresponding sets of work-conjugate static and deformational boundary
conditions have been provided in Pietraszkiewicz (2001a).

From (43) it is possible to derive many reduced systems of intrinsic shell
equations valid under additional simplifying assumptions about curvatures and
variability of the reference surface, stretching-to-bending ratio, variability of
stretching and bending deformations etc. Some special cases were discussed in
Pietraszkiewicz (1989, 2001a) and Simmonds (1979). However, in our computer
age it seems more appropriate to apply direct numerical methods to the full sys-
tem (43) which would allow one to analyse all possible cases of the non-linear
behaviour of thin elastic shells.
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Abstract

Equilibrium equations and compatibility conditions of thin shells are formulated relative to a non-
holonomic intermediate basis defined through rigid rotation of the natural undeformed shell basis.
Applying error estimates valid within the first approximation to the elastic strain energy density of
a shell, the consistently reduced system of six intrinsic shell equations is derived. The equations are

expressed through three membrane stress resultants and three changes of curvatures of the shell
reference surface as basic independent field variables. This allows one to refine four of six equations
as compared with intrinsic shell equations expressed entirely through either of six surface strain or
stress measures alone.


