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FEM and Time Stepping Procedures
in Non-Linear Dynamics
of Flexible Branched Shell Structures

J. Chroscielewski!, 1. Lubowiecka! and W. Pietraszkiewicz?

" Gdansk University of Technology, Poland
" Institute of Fluid-Flow Machinery, PASci., Gdansk, Poland

1 Introduction

Non-linear dynamic behaviour of flexible irregular shell structures was discussed
recently by Chréscielewski et al. [3,4], Lubowiecka [7], and Lubowiecka and
Chroscielewski [8], where references to other related papers are given. The shell
evolution in time was described by two fields: the vector u of the translatory mo-
tion of the shell base surface, and the proper orthogonal tensor @ of the mean ro-

tation of the shell cross sections. As a result, the rotation group SO(3) entered the

definition of the configuration space. In such problems of structural mechanics fi-
nite-dimensional approximations, like the finite element method or the time-
stepping algorithm, require non-standard approaches.

We worked out in [3,4,7,8] the extended time-stepping algorithm for the non-
linear dynamic analysis on the configuration space containing the rotation
group SO(3). Applying the algorithm, several FE numerical simulations of 3D

large overall motion of flexible elastic shell structures have been performed. In
particular, we have successfully simulated the dynamic behaviour of branched
shell structures forced to free flight in space by the pair of forces initially applied
during a short time period. The structures perform many turns in space, exhibiting
large relative deformations as well.

In this report we want to draw attention to two critical aspects of the numerical
analyses performed in [3,4,7,8] which can considerably influence the conservation
of total potential energy of the system. These are: a) the influence of the time step
size, and b) the influence of the FE mesh condensation.

For any time step size below a critical one, the numerical tests show that values
of potential and kinetic energies may oscillate in time, but the total energy remains
conserved in a considered time period. The rapid increase of the total energy indi-
cates the appearance of numerical instability of the solution. It has been noted that
the numerical instability in the analysis of shell structures undergoing free motion
in space is preceded by a rising trend of the potential energy. This fact makes it
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possible to predict the moment of numerical instability and to appropriately reduce
in advance the time step size. This allows one to prolong considerably the time du-
ration of stable numerical simulations without any special procedures.

By refining the FE mesh, or by using more complex elements, we increase the
number of degrees of freedom (dof), which dramatically raises the highest eigen-
frequency of the discrete system. This, in turn, makes the system more sensitive to
the time step size as well.

2 Weak formulation of non-linear shell dynamics

Motion of the irregular shell structure can in general be described by the dis-
placement vector field u(x,?)=y(x,t)—x, where xe M and y(x,t) are position

vectors of the undeformed shell base surface and the base surface at time ¢, re-
spectively, together with the independent proper orthogonal tensor field Q(x,?)

representing the mean rotary motion of the shell cross sections. The fields y(x,¢)
and Q(x,?) are assumed to be continuous during the motion, and on any station-
ary singular curve /" M determining an irregularity (fold, intersection, branch-
ing, etc., see [5,6]),i.e. y-(x,,0)=y(x,t)|-, Or(x,,1)=0(x,1)| .

For the translational p(x,t) and rotational m(x,?) momentum surface vectors
we take simple kinetic constitutive relations p(x,t)=myw =ph,0 and
m(x,t)=1,0=(p,h; /12)® (see Libai and Simmonds [7]), where p,(x) is the
initial  shell ~mass density, hy(x) the initial shell thickness,
v(x,t) = y(x,t) = u(x,t) the linear velocity vector, and w(x,?) the angular veloc-
ity vector in the spatial representation, with adew =QQ" , ad: E* — so(3) .

We confine our considerations to hyper-elastic shells for which there exists a
2D strain energy density W (g, k,;x) of the shell strain vectors &, =y, ,—0x,,
and K, = ad™(Q, s Q"). Then the constitutive relations of the shell material are
given by nﬁ:E)W/aaﬂ , m’ =0W /0K ; , where n’(x,t) and m”(x,t) are the in-

ternal stress and couple resultant vectors, respectively.

When expressed in the weak form, the initial-boundary value problem for the
branched shell-like structure can be formulated as follows. Given the external re-
sultant force and couple vector fields f(x,#) and c(x,f) on xe M\ I, n*(x,t)

and m*(x,r) along oM ,, f.(x,,t) and ¢ (x,,t) along the singular curve
I"c M, and the initial values u,(x), Q,(x), u,(x), Qo(x) at t=0, find a
curve u(x,?)=(u(x,t),Q(x,t)) on the configuration space C(M,E’xSO(3))

such that for any continuous kinematically admissible virtual vector field
w(x) = (v(x),w(x)) the following principle of virtual work is satisfied:
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Glu; w] = j j [m,pev + I, crow]da
M\I"
+ ” (1’ o0,y +y.5xw) +m” ew, , 1da - H (fev+cew)da (1)
M\I" M\I"
- J (n*-v+m*-w)ds—'|.(frovr +c ow)ds =0.
oM, r
In (1) it is implicitly assumed that the kinematic boundary conditions
u(x,t)=u*(x,t) and Q(x,t)=0%(x,t) are satisfied along the complementary

part OM,=0M\OM , of the shell boundary, and the virtual vector fields are
kinematically admissible if v(x)=0 and w(x)=0 along oM, .

3 Temporal and spatial discretisation in SO(3)

The solution of (1) is achieved by an iterative procedure which reduces the
problem to a sequence of solutions of linearised problems. Each linearised
problem is formulated at discrete values of both temporal and spatial variables.
The main difficulty of the solution procedure is associated with the structure of the
configuration space involving the rotation group SO(3).

The Newmark type algorithm extended to the rotation group was developed in
[3,4,7,8]. It is based on ideas suggested among others by Simo and Vu-Quoc [10],
and Cardona and Geradin [1]. In the algorithm the linearised equations of shell
dynamics are written in the spatial representation relative to the last instantaneous
configuration, while the angular velocity and acceleration vectors are
approximated in time in the material representation.

With the time-stepping algorithm, the solution of the non-linear problem (1)
is constructed by the incremental-iterative procedure based on the Newton-

Kantorovich method applied in the configuration space C(M,E’xSO(3)). Let an

i-th approximation u'”’, to the solution u_,, has been found. In order to calculate

n+l n+l
()

n+l >

the correction ou,;,, which would allow us to find the successive approximation

we linearise G

u'*" to an unknown solution w ., at the approximation u'”, :

n+l >

Glu?, ¢, :w]+oG[u?,,¢ . ;w,ou’, 1=0 )

n+1°"n+1> n+1°"n+1> n+l

The second term in (2) denotes directional derivative of the functional G,

n+l >

taken at the point u'”’, € C in the direction ou'”

n+l n+l

€T, C. This term yields the so-

called tangent operator of the non-linear problem, calculated at the approximation
u'”, . The first term in (2) represents unbalanced forces at the approximation point

n+l *
(i)

n+l

u,”, . For spatial discretisation the finite element method is applied, [2].
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Stability of the solution is verified by the energy criterion given by inequality
U _Un + Kn+l _Kn < AGaxt (3)
where U, =U(t,,,) and U, =U(t,) are values of the strain energy U(7) numeri-

cally calculated at the beginning 7, and at the end ¢, of the time step Ar, re-
spectively, K, and K, are the corresponding values of the kinetic energy K (),

n+l

and AG,, denotes an increment of the work done by external loads within the

time step.

4 Influence of time step size

The twisted T-shaped shell (Fig. 1) exhibits the complex 3D motion comprising
large elastic relative deformation and multiple global turns. Two concentrated
forces of the ramp function type (from 0 to 10* in 1s and back down to 0 in an-
other 1s) are applied at the points (a) and (b). After 2s the shell is free from exter-
nal loading and moves freely in the space undergoing also large local deforma-
tions.
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Fig. 1. T-shaped shell structure: L=50, H=10, B=14.0112, a=90°, h=025,
E=2x10", v=0.3, p,h,=1; discretisation (2+242)x10=60el6 FI (16-nodes elements
with full integration); external load function; some configurations in time; energy history

The dynamic analysis is performed for three time steps: Ar=0.ls,
Ar=0.025s, and Ar=0.005s . During simulations with the largest time step an
instability is noticed after about first 10s of the motion (see Fig. 2). The reduction
of the step size allows one to extend duration of the stable simulation provided
that the reduction is executed at an appropriate moment. Although the simulation
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becomes stable again during the analysis with the smaller time steps, visible dif-
ferences appear in the potential energy values (see Fig. 3).
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Fig. 3. Magnified potential energy history of twisted T-shaped shell structure for three dit-
ferent time steps At

5 Influence of FE mesh refinement

Large overall motion of a flexible cylindrical panel with change of the curvature
sign, reinforced by a plate rib (Fig. 4), is analysed. The structure is loaded as in the
previous example, but the load function rises here from 0 to 10. The structure, as
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in the first example, moves freely in the space undergoing multiple turns and large
relative deformations.

T

Potential, Kinetic, Total Energy U, K, E

Fig. 4. Wavy cylindrical branched panel: L=2, a=04, R=1, H=04, k=001,
E=10". v=025, p,h,=1: discretisation; external load function; some configurations
in ttme: energy history
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Fig. 5. Variations of potential energy of the cylindrical panel for different meshes, ele-
ments. and time steps

The panel is analysed with different discretisations: by (5+2+5)x6=72¢9 FI
(9-nodes elements) with totally 1950 dof, by (5+245)x6=72¢l6 FI with totally
4218 dof, and by (10+4+10)x12=288¢l6 FI with totally 7350 dof. The analysis is
performed for two different time steps Af =0.01s and Ar = 0.0025s .
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The energy histories given in Fig. 5 indicate that there are visible difterences in
the total energy values, both for different time steps with the same elements and
for one time step with different elements. We observed that with the growth of
number of dof the numerical problem becomes very fast unstable and requires
shortening of the time step size already at the early simulation stage. Moreover.
unfortunately, Fig.5 indicates that by using the same shorter time step
A = 0.0025s different discretisations lead to different plots of the potential en-
ergy, and thus to different time changes of stresses in the panel. More information
about these examples is included in [7,8].

6 Conclusions

From our experience it follows that the 6-parameter shell theory (with 6 dof in
each node of FE mesh) is appropriate to analyse branched shell structures of any
shape. The large overall motion of the structures can be analysed without any lim-
its in translation and rotation. When external forces are removed, the convergence
of simulated dynamic behaviour is confirmed by two facts: a) the global centre of
mass moves along the straight line, and b) the total energy of the system is con-
served.

Under considered external loads, as long as they are applied, the total energy
initially increases. After removing the loads small oscillations of kinetic and po-
tential energies can still be observed, but the sum of both energy components re-
mains constant. The numerical instability of the solution demonstrates itself after
some period of simulation as an explosive increase of the total energy. In these
simulations we have noted that the instability is preceded by the rising trend in the
potential energy growth (Fig. 2). This observation allows one to choose an appro-
priate time instant to shorten the size of the time step (point B in Fig. 2) and to
proceed with further stable dynamic analysis. However, too late reduction of size
of the integration step, already in the rising trend phase of the potential energy
growth (point A in Fig. 2), does not assure correct results. By condensing the FE
mesh, or using more complex elements, we increase the number of dof, which
makes the system more sensitive to the step size (the highest eigenfrequency of
the discrete system raises dramatically). As a result, the dynamic analysis with
longer time steps is practically impossible without applying special methods. The
instability appears here already at a very early stage of numerical simulation.

Significant differences in time changes of potential energy (and thus also in the
stresses) obtained for different FE mesh and time step sizes in Fig. 3 and Fig. 5 al-
low one to question the correctness of the typical results obtained for longer inte-
gration steps and coarse mesh, even if the usual stability criteria are satisfied.
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