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Abstract. We develop the general nonlinear theory of elastic shells with an account of phase tran-
sitions in the shell material. Our formulation is based on the dynamically and kinematically exact
through-the-thickness reduction of three-dimensional description of the phenomenon to the two-
dimensional form written on the shell base surface. In this model shell displacements are expressed
by work-averaged translations and rotations of the shell cross-sections. All shell relations are then
found from the variational principle of the stationary total potential energy. In particular, we derive
the new global dynamic continuity condition at the singular surface curve modelling the phase
interface. We also discuss particular forms of the local dynamic continuity conditions at coherent
and incoherent interface curves. The results are illustrated by an example of a phase transition in an
infinite plate with a circular hole.
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1. Introduction

Since the pioneering paper by Gibbs [1], phase transformation phenomena in three-
dimensional (3D) continua have been described by introducing into the body a
movable singular surface separating two different material phases in thermody-
namic equilibrium state. The main results are summarised in several books, for
example [2–6], where many references to original papers are given.

The phase transformation phenomenon manifests itself best in thin layers of
matter: films, membranes, plates, and shells. For example, thin films made of
shape-memory alloys like NiTi, NiMnGa, NiTiCu, or NiAl can considerably alter
their shapes under appropriate stress and/or temperature changes. Full analysis of
the phenomenon in such thin-walled structures is often infeasible if one wants to
apply the 3D continuum model. The mechanical description of behaviour of such
structures can conveniently be based on various 2D shell models consisting of a
base surface endowed with various fields modelling an additional microstructure.
Then the notion of a movable surface curve separating shell regions with differ-
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ent material phases is an appropriate and convenient tool for modelling the phase
interface in thin-walled shell structures. It is surprising, however, that we are not
aware of any complete theoretical model of phase transitions in shells proposed in
the literature. A Cosserat-type membrane with one director was proposed in [7, 8]
to model single crystal thin films of martensitic materials. However, neither the
rotation about the director was included nor dynamic continuity conditions at the
curvilinear phase interface were discused in [7, 8].

The aim of this paper is to formulate the general nonlinear theory of shells with
an account of occurence of phase transformation in the shell material. One might
approach this problem by analysing first some test examples with various simpli-
fied shell models. Among such shell models let us mention as examples the linear,
the geometrically nonlinear, or the fully nonlinear theories of shells based on the
membrane model, the Kirchhoff–Love type model, or the Timoshenko–Reissner
type model. However, we want here to forego all possible simplified 2D models
of thin-walled shell structures and apply at once the most general approach based
on the dynamically and kinematically exact shell model. The model is based on an
exact through-the-thickness reduction of the 3D formulation of the problem to the
2D one, and is expressed through stress resultants and work-averaged deformation
fields defined on the shell base surface.

In Section 2 we recall basic nonlinear relations of regular shell structures. The
local equilibrium equations and dynamic boundary conditions (5) are derived in the
most general form in terms of stress and couple resultants using an exact through-
the-thickness integration of 3D balance laws of the linear and angular momentum
of continuum mechanics [9–15]. The corresponding shell kinematics is then estab-
lished as an energetically exact dual structure from the virtual work identity (8).
As a result, the shell displacements are expressed by a work-averaged translation
vector and a work-averaged rotation tensor (9) as two independent field variables
describing the gross deformation of the shell cross-sections. The shell strain and
bending measures (11) and their virtual changes (12) are energetically exact conse-
quences of the exact local equilibrium equations (5)1. Approximations of the shell
model are included only in the constitutive equations of the elastic material (15),
which are approximate experimental physical laws anyway. Such a general shell
model having the structure of the classical Cosserat surface [16–21] comprises
all other simplified shell models as special cases. For this general nonlinear shell
model efficient finite element algorithms and computer programs were developed
and several test examples of equilibrium, stability and dynamics of complex shell
structures were solved [15, 22–25].

The nonlinear equilibrium problem of elastic shells with phase transitions is
formulated in Section 3 as the stationary problem for the functional (22) of total po-
tential energy. In the functional the position of the singular surface curve modelling
the phase interface is not known in advance. Stationary conditions of the functional
lead to the local equilibrium conditions given in Section 2, but additionally give us
the global continuity condition (27) at the interface.
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We discuss in more detail coherent and incoherent curvilinear phase interfaces.
At the coherent interface both translations and rotations are assumed to be continu-
ous, while at the incoherent interface the continuity of rotations can be violated. For
both cases we derive special forms (37) and (42) of the local dynamic continuity
conditions. In particular, one of each of the conditions (37) and (42) represents
an additional relation allowing one to establish the position of the interface in the
thermomechanic equilibrium state of phase transition in shells.

The results obtained here are illustrated by an example of phase transition in an
infinite plate with a circular hole.

2. Notation and Exact Relations for Regular Shells

The shell is the three-dimensional (3D) solid body which in a reference (unde-
formed) configuration is identified with a region B of the physical space E with
the translation vector space E. It is assumed that geometry of B can be uniquely
described in the normal coordinates (θα , ζ ), α = 1, 2, where ζ = 0 defines the
regular shell base surface M ⊂ B, and −h− � ζ � h+ is the distance from M,
with h = h− + h+ the shell thickness. Relative to an inertial frame (o, ik), where
o ∈ E , and ik ∈ E, k = 1, 2, 3, are orthonormal 3D vectors, the position vector p
of an arbitrary point p ∈ B is given by

p(θα, ζ ) = x(θα) + ζn(θα), (1)

where x(θα) = p(θα, 0) is the position vector of a point x ∈ M, and n(θα) is
the unit normal vector orienting M. The surface covariant and contravariant base
vectors aα and aβ are defined by

aα = ∂x

∂θα
≡ x,α, aβ · aα = δβ

α , n = 1

2
εαβaα × aβ, (2)

where εαβ are components of the surface permutation tensor ε ∈ TxM ⊗ TxM, ⊗
is the tensor product, and TxM is the tangent space to M at x ∈ M.

During shell deformation χ , assumed to be continuous and one-to-one, the
undeformed base surface M is transformed into the deformed one N = χ(M)

with the position vector y = χ(x) parametrised again by the surface convected
coordinates, y = y(θα).

Equilibrium equations and dynamic boundary conditions of the general nonlin-
ear theory of shells can be derived exactly [9–15] by direct through-the-thickness
integration of 3D balance laws of linear and angular momentum of continuum
mechanics [26]. In solid mechanics it is usual to apply the Lagrangian descrip-
tion relative to the undeformed base surface M. In the equilibrium shell problem
discussed here the global equilibrium conditions require the total force and total
torque of all loads acting upon any part � ⊂ M to vanish (see [14], (2.200))∫∫

�

f da +
∫

∂�\∂Mf

nν ds +
∫

∂�∩∂Mf

n∗ ds = 0,
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Figure 1. Shell kinematics.

∫∫
�

(c + y × f ) da +
∫

∂�\∂Mf

(mν + y × nν) ds

+
∫

∂�∩∂Mf

(m∗ + y × n∗) ds = 0. (3)

In (3), see Figure 1, f and c are the external surface resultant force and couple
vectors applied at any point y ∈ N , but measured per unit area of M. Similarly,
nν and mν are the internal contact stress and couple resultant vectors defined at an
arbitrary boundary ∂R of R = χ(�), while n∗ and m∗ are the external boundary
resultant force and couple vectors applied along the part ∂Nf of N = χ(M),
respectively. The latter four vectors are measured per unit length of the undeformed
boundaries ∂� or ∂Mf , respectively, with the unit external normal vector ν ∈
TxM.

According to the Cauchy postulate, the contact vectors nν and mν can be rep-
resented through the respective internal surface stress and couple resultant tensors
N and M by

nν = Nν = nανα, mν = Mν = mανα, (4)

where να = ν · aα, while N = nα ⊗ aα and M = mα ⊗ aα . The tensors N ∈
E ⊗ TxM and M ∈ E ⊗ TxM defined on M are some analogues in shell theory of
the first Piola–Kirchhoff stress tensor TR ∈ E ⊗ E defined on B in 3D continuum
mechanics [26].

Applying the Stokes theorem to the second terms of (3) and using the represen-
tations (4) we obtain the usual local equilibrium equations and dynamic boundary
conditions [9, 10]

nα
∣∣
α

+ f = 0, mα|α + y ,α × nα + c = 0 in M,

nανα − n∗ = 0, mανα − m∗ = 0 along ∂Mf ,
(5)

where (·)|α is the covariant derivative in the undeformed surface metric Aαβ =
aα · aβ .
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In the coordinate-free notation the local equilibrium conditions (5) take the
form [15, 27]

DivsN + f = 0, DivsM + ax
(
NF T − FNT

) + c = 0 in M,

Nν − n∗ = 0, Mν − m∗ = 0 along ∂Mf ,
(6)

where F = Gradsy = y,α ⊗ aα ∈ E ⊗ TxM is the surface gradient of defor-
mation χ(x), ax(NF T − FNT) denotes the axial vector associated with the skew
tensor NF T − FNT ∈ E ⊗ E, while Grads and Divs are the surface gradient and
divergence operators on M, respectively, defined intrinsically in [28–30].

The equilibrium conditions (5) or (6) are exact consequences of 3D balance of
forces acting on any part of the shell-like body B.

Let v and w be two arbitrary smooth vector fields on M. We can set the integral
identity ∫∫

M

{(
nα|α + f

) · v + (
mα|α + y,α × nα + c

) · w}
da

−
∫

∂Mf

{(
nανα − n∗) · v + (

mανα − m∗) · w}
ds = 0. (7)

The identity can be transformed with the help of the Stokes theorem to the form∫∫
M

{
nα · (v,α + y,α × w) + mα · w,α

}
da

=
∫∫

M

(f · v + c · w) da +
∫

∂Mf

(
n∗ · v + m∗ · w

)
ds

+
∫

∂Md

(
nανα · v + mανα · w

)
ds, (8)

where ∂Md = ∂M\∂Mf .
If v and w are interpreted as kinematically admissible virtual translation and

rotation vectors such that v = w = 0 along ∂Md , then the last line integral
identically vanishes. Two integrals in the second row of (8) can be interpreted
as the external virtual work performed by the given surface f , c and boundary
n∗, m∗ loads, respectively. In this context the first surface integral of (8) has the
meaning of the internal virtual work, where the expressions v,α + y,α × w and w,α

are just virtual changes of appropriately defined shell strain and bending vectors,
respectively. Then the formula (8) takes the meaning of the principle of virtual
work for the shell.

Let the vector field u(x) represent the work-averaged translations and the proper
orthogonal tensor field Q(x) the work-averaged rotations of the shell cross sec-
tions [9, 10, 12]. The deformed shell configuration can then be described by the
relations

y = χ(x) = x + u, d i = ϕ(x) = Qai , (9)
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where a3 ≡ n, and d i = (dα, d) are three directors attached to any point of the
deformed base surface N = χ(M).

Let us consider a one-parametric family of shell deformations described by
χ(x, t) = x+u(x, t) and Q(x, t) = d i(x, t)⊗ai(x), where t is a scalar (time-like)
parameter such that t = 0 corresponds to the undeformed shell configuration and t

to the deformed one. Then the vectors v and w in (7) can be interpreted as virtual
changes of u and Q (linear and angular velocities in a real motion) according to

v = ∂χ(x, t)

∂t
= u̇(x, t) ≡ δu = vαd

α + vd,

w = ax
(
Q̇(x, t)QT(x, t)

) ≡ ax
(
δQQT) = wαd

α + wd,

(10)

where δ is the symbol of variation.
The shell strain εα and bending �α vectors corresponding to the kinematics (9)

and their virtual changes can be defined by [12, 14]

εα = y,α − dα = u,α +(1 − Q)aα = Eαβdβ + Eαd,

�α = ax
(
Q,αQ

T) = 1

2
d i × Q,αQ

Td i = d × Kαβdβ + Kαd,
(11)

δcεα = v,α + y,α × w = δEαβdβ + δEαd,

δc�α = w,α = d × δKαβdβ + δKαd,
(12)

where δc(·) = Q{δ(QT(·))} is the co-rotational variation (the co-rotational time
derivative in a real motion), and 1 ∈ E ⊗ E is the metric tensor of the 3D vector
space.

It follows from (12) and (8) that the surface vector strain measures εα , �α are
work-conjugate to the respective exact shell vector stress measures nα , mα . As
a result, the shell kinematics consisting of the displacements u, Q satisfying (9)
and of the strain measures εα , �α satisfying (12) is again an energetically exact
consequence of the exact local equilibrium equations (5)1. The shell kinematics is
valid for unrestricted translations, rotations, strains, and/or bendings of the shell
material elements, and does not depend on the shell thickness, internal through-
the-thickness structure, and/or material properties.

The kinematic structure (9)–(12) of the general shell theory is identical with that
of the classical version of the Cosserat surface [16–21]. The kinematic structure
(9)–(12) differs from kinematics of the surface with one or more attached de-
formable directors, often also called the Cosserat surface, see, for example, [31–33].
Moreover, the kinematic structure following from (9)–(12) is also different from
kinematics of the nonlinear theory of shells based on the Kirchhoff–Love [14, 30,
34–37] or Timoshenko–Reissner-type [32, 38, 39] constraints.

For a shell made of an elastic material there should exist a strain energy density
W(εα,�α) such that

nα · δcεα + mα · δc�α = δW. (13)
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Representing nα and mα naturally though their components along d i we obtain

nα = Nαβdβ + Nαd, mα = d × Mαβdβ + Mαd. (14)

From the principle of material frame-indifference we can find that, in fact, W =
W(Eαβ,Eα,Kαβ,Kα), from which we obtain the following constitutive equations:

Nαβ = ∂W

∂Eαβ

, Nα = ∂W

∂Eα

, Mαβ = ∂W

∂Kαβ

, Mα = ∂W

∂Kα

. (15)

Some possible quadratic forms of the strain energy density W were briefly
discussed by Libai and Simmonds [10]. In the case of an unsymmetric through-
the-thickness laminate the generally anisotropic and algebraically homogeneous
expression for W contains many terms and requires more than one hundred mater-
ial constants to be known. If W is assumed not to depend on curvature of M, for a
symmetric laminate we can apply the theory of invariants [40] and show [21] that
W can be simplified to the form

W = C1EαβEαβ + C2EαβEβα + C3E
α
αE

β

β + C4EαE
α

+D1KαβKαβ + D2KαβKβα + D3K
α
α K

β

β + D4KαK
α, (16)

where Cn, Dn, n = 1, 2, 3, 4, are material constants to be found by experiments.
When strains in the shell space are small, then we can apply the linear constitu-

tive equations proposed in [22, 23] which are extensions of the classical constitutive
equations based on the consistent first approximation theory:

Nαβ = C
[
(1 − ν)Eαβ + νAαβE





]
, Nα = 1

2
αsC(1 − ν)Eα,

Mαβ = D
[
(1 − ν)Kαβ + νAαβK





]
, Mα = αtD(1 − ν)Kα, (17)

C = Eh

1 − ν2
, D = Eh3

12(1 − ν2)
, Nαβ �= Nβα, Kαβ �= Kβα, etc.

Here E is the Young modulus and ν the Poisson ratio of the material, while αs and
αt are shear and torsional coefficients, respectively. It is seen that (17) would follow
from differentiation of (16) if C1 = C(1−ν), C2 = 0, C3 = Cν, C4 = 1

2αsC(1−ν),
D1 = D(1 − ν), D2 = 0, D3 = Dν, D4 = αtD(1 − ν).

More accurate constitutive equations than (17) for shells undergoing small elas-
tic strains can be found reformulating and extending the consistent second approx-
imation to the strain energy density [38, 41].

Let the external surface and boundary loads have a potential A: Sa → R such
that

δA =
∫∫

M

(f · v + c · w) da +
∫

∂Mf

(
n∗ · v + m∗ · w

)
ds, (18)

where Sa is the configuration space of admissible fields u, Q satisfying

u − u∗ = 0, Q − Q∗ = 0 along ∂Md. (19)
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The functions u∗(s) and Q∗(s) in (19) should be found from kinematic bound-
ary conditions u(p) − u∗(p) = 0 of the 3D shell-like body prescribed at any point
p(s, ζ ) of the lateral shell boundary surface ∂Bd . The functions u∗(s) and Q∗(s)
should be such that the work done along ∂Md by the resultant stress and couple
vectors nν , mν on the respective u∗, Q∗ be the same as the work done at ∂Bd by the
nominal 3D stress vector tn(p) on the translation u∗(p) prescribed at p(s, ζ ) ∈ ∂Bd .

In various shell problems a mixed form of boundary conditions can be applied
along ∂M by prescribing six pairwise work-conjugate load or displacement com-
ponents in the basis ν, τ ,n. In such a case division of ∂M into disjoint parts ∂Mf

and ∂Md is understood to be made separately for each of the six components of
boundary conditions.

Expressing (11) through u, Q by (9) we can introduce the functional

I (u,Q) =
∫∫

M

W(u,Q) da − A(u,Q) (20)

such that the variational principle of the stationary total potential energy takes the
form

δI (u,Q) = 0, ∀(u,Q) ∈ Sa. (21)

The principle states that among all (u, Q)∈ Sa only those render the functional
I (u,Q) stationary which satisfy the local equilibrium conditions (5).

3. Singular Curve in the Two-Phase Elastic Shell

Some fields on M defined in Section 2 or their surface gradients may suffer jump
discontinuities at a surface curve C ⊂ M called a singular curve. The curve C can
be defined parametrically by the position vector xc(s) = xc{θα(s)}, where s is the
arc length along C. The curve C divides the surface M into two parts, MA and MB ,
such that M = MA ∪ MB and C = MA ∩ MB , Figure 2.

At each regular point xc ∈ C we can introduce the unit tangent vector τ =
dxc/ds ≡ x′

c, the unit normal vector n following from orientation of M, and the
external unit normal vector ν = τ × n. When the orientation of C is assumed to
coincide with that of ∂MA, for which τA and νA are respective unit tangent and
outward normal vectors, then τ = τA, and ν = νA points outward from MA.

From a continuum physics point of view, an important example of a shell with a
singular curve is a shell undergoing a stress-induced phase transition possible, for
example, in thin films made of martensitic materials. Consider a two-phase elastic
shell such that in the deformed equilibrium state the material phases are assumed
to appear separately in two closed complementary subregions NA and NB with the
curvilinear phase interface D, Figure 2. The position of D in the deformed configu-
ration is given by the position vector yc(s). Within the Lagrangian description and
for the continuous one-to-one deformation χ we can introduce the singular curve C

in M with the position vector xc(s) being an image of yc(s) under χ−1 such that
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Figure 2. Two-phase shell kinematics.

xc(s) = χ−1(yc(s)). Then the corresponding closed complementary subregions
of M are defined by MA = χ−1(NA) and MB = χ−1(NB).

In order to account for a possible phase transition of the material at the singular
curve C, let us write the functional of the total potentional energy (20) in the form

I =
∫∫

MA

W da +
∫∫

MB

W da − A, (22)

with possibly different expressions given in MA and MB for the shell strain energy
density W(εα,�α) describing material properties of different elastic phases in the
shell.

The form (22) of the functional used here is the simplest one. It does not take
into account some physical effects associated with properties of the interface itself.
In the 3D case these are, for example, the interface surface tension, or other effects
described by scalar, vector, or tensor fields prescribed on the surface interface,
see [6, 42, 43]. In the shell theory discussed here such effects can be modelled by
adding to (22) an integral along C of some scalar, vector, or tensor fields. We might
also allow I to depend upon the fields depending explicitly on time and temperature
in order to discuss problems of phase transition in shells within the thermodynamic
setting. Many such possible extensions of (22) should be discussed separately.

In problems of phase transition the position vector xc of the curve C within the
surface M is not known in advance, in general, and should be found in the process
of solution of the boundary value problem.

In analogy to the problem of thermodynamic equilibrium of 3D elastic bodies
undergoing a phase transition [2, 3], the position of the phase interface C within
M can be established from the variational principle δI = 0. The principle states
that among all possible values of translations, rotations, and positions of the phase
interface curve C the actual solution renders the functional (22) stationary.

To deduce the variation δI of (22) let us consider a one-parameter family of
shell deformations y(x, t), Q(x, t), and position vectors of surface curves C(t)

described within M by xc(t) = ψ(s, t), where t is again a scalar (time-like)
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parameter. The value t = 0 corresponds to an initial position of C (if it exists)
before deformation, and the value t describes the position of C in M corresponding
to its position in N(t) in the final equilibrium state of phase transition such that
xc(s, t) = χ−1(yc(s, t), t).

If the curve C(t) transverses an arbitrary part � ⊂ M with the relative velocity
vc(s, t) = ẋc(s, t) ∈ TxM then by the transport theorem [3, 27]

d

dt

∫∫
�\C(t)

W da =
∫∫

�\C(t)

Ẇ da +
∫

�∩C(t)

[(vc · ν)W ] ds,

[(vc · ν)W ] = (vc · ν−)W− + (vc · ν+)W+,

(23)

where W− and W+ are one-sided finite limits of W when the respective boundary
∂MA or ∂MB coinciding with C is approached.

From assumed orientations of ∂MA, ∂MB , and C (Figure 2) we have νA = ν,
νB = −ν. In quasi-static problems discussed here the virtual translation of C in
TxM (analogous to velocity vc in (23) in a real motion) is δxc, and V = δxc · ν is
its component along ν. Then the variation of (22) with (23) leads to

δI =
∫∫

M\C
δW da −

∫
M∩C

V [W ] ds − δA, (24)

where [W ] = W+ − W− is the jump of W at the singular curve C.
The first term in (24) can be transformed with the help of (13), (12), and the

Stokes theorem into∫∫
M\C

δW da =
∫∫

MA

δW da +
∫∫

MB

δW da

= −
∫∫

M\C

{
nα

∣∣
α

· v + (
mα

∣∣
α

+ y ,α × nα
) · w}

da

+
∫

∂Mf

(nν · v + mν · w) ds

+
∫

∂Md

(nν · v + mν · w) ds

−
∫

C

{
[nν · v] + [mν · w]

}
ds. (25)

Therefore, it follows from (22), (25), and (18) that the principle δI = 0 is
represented by

δI = −
∫∫

M\C

{(
nα

∣∣
α

+ f
) · v + (

mα
∣∣
α

+ y ,α × nα + c
) · w

}
da

+
∫

∂Mf

{(
nν − n∗) · v + (

mν − m∗) · w}
ds

+
∫

∂Md

(nν · v + mν · w) ds

−
∫

C

{
V [W ] + [nν · v] + [mν · w]

}
ds = 0. (26)
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Vanishing of the first two rows of (26) is assured by the local equilibrium
equations (5)1. Vanishing of the line integral over ∂Mf in (26) follows from the
dynamic boundary conditions (5)2. The line integral over ∂Md vanishes identically
if the kinematic boundary conditions (19) are satisfied, since then v = w = 0 along
∂Md .

4. Dynamic Continuity Conditions at the Phase Interface

Vanishing of (26) also requires the following global dynamic continuity condition
to be satisfied at the curvilinear phase interface C ⊂ M:∫

C

{
V [W ] + [nν · v] + [mν · w]

}
ds = 0. (27)

The virtual fields v±, w±, and V present in (27) are not all independent at C,
in general. Performing the more detailed analysis of (27) we can obtain additional
information about the behaviour of virtual displacements in the neighbourhood of
C following from assumed smoothness of the fields y(x) and Q(x).

Let us assume that y(x) and Q(x) are smooth fields in the interiors of both
subregions MA and MB of M. Then approaching the interface C the fields have
one-sided finite limits

y−, F−, Q−, Grad−
s Q, for x → xc, x ∈ MA,

y+, F+, Q+, Grad+
s Q, for x → xc, x ∈ MB.

(28)

Additionally, y−(s), Q−(s), y+(s), Q+(s) are continuous and continuously differ-
entiable functions of s along C.

The singular curve C is called coherent if both y(x) and Q(x) are continuous
at C, and incoherent if continuity of Q(x) is violated at C. Thus, the coherent
phase interface C is singular with regard to F and GradsQ, but not with regard
to y and Q themselves. The incoherent interface C is a singular curve also with
regard to Q.

For the coherent curvilinear phase interface C we have

[y] = 0, [y ′] = 0, [Q] = 0, [Q′] = 0. (29)

Applying the Maxwell theorem [44, 45] to the fields δy and F at C we obtain

[v] ≡ [δy] = −V a, [F ] = a ⊗ ν, (30)

where the vector a is an amplitude of the position gradient singularity. But from
(30)2 it follows that a = [y,αν

α], so that

[v] + V [y,αν
α] = 0 along C. (31)

Similarly, applying the Maxwell theorem to the fields δQ and GradsQ at C we
obtain

[δQ] = −V D, [GradsQ] = D ⊗ ν, (32)
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where the tensor amplitude D of the rotation gradient singularity can again be
found from (32)2 to be D = [Q,αν

α], so that

[δQ] + V [Q,αν
α] = 0 along C. (33)

Multiplying (33) by QT on the right, taking into account that QT is continuous at
C, and then using Q,αQ

T = �α ×1, we obtain that (33) can equivalently be written
as

[w] + V [� ,αν
α] = 0 along C. (34)

The relations (31) and (34) are the local kinematic compatibility conditions that
should be satisfied at the coherent phase interface C. As a result, in this case only
three of five virtual fields in (27) are independent. If we represent the jumps of
products in (27) by the identities

[nν · v] = 〈nν〉 · [v] + [nν] · 〈v〉,
[mν · w] = 〈mν〉 · [w] + [mν] · 〈w〉,
〈nν〉 = 1

2

(
n−

ν + n+
ν

)
, etc.,

(35)

where 〈·〉 is the mean value of the limits at C, then the integrand of (27) with (31)
and (34) can be transformed into

V
(
[W ] − 〈nν〉 · [y,αν

α] − 〈mν〉 · [�,αν
α]

)
+ [nν] · 〈v〉 + [mν] · 〈w〉 = 0.

(36)

Since V , 〈v〉, and 〈w〉 are now the independent virtual fields, (36) is equiva-
lent to the following set of independent local dynamic continuity conditions at the
coherent phase interface C:

[N]ν = 0, [M]ν = 0,

[W ] − [(Nν) · y,αν
α] − [(Mν) · � ,αν

α] = 0,
(37)

where (4) has been used.
Let us take into account the relations

y,αν
α = Fν, � ,αν

α = (�,α ⊗ aα)ν = Kν,

A = 1 − n ⊗ n, ν · Aν = 1,
(38)

where A ∈ TxM ⊗TxM is the metric tensor of M. Then we are able to present also
(37)2 in the coordinate-free form

ν · [Cc]ν = 0, (39)

where

Cc = WA − NTF − MTK ∈ TxM ⊗ TxM (40)
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is an analog in shell theory of the Eshelby tensor used in 3D continuum mechan-
ics [2, 6].

The local dynamic continuity conditions (37)1 and (37)2 or (39) at the coherent
curvilinear interface of the two-phase elastic shell are analogous to the thermody-
namic continuity conditions at the coherent surface interface of the 3D micropolar
two-phase elastic body derived in [46].

For the incoherent curvilinear phase interface C the relations (29)1,2,4 and (31)
still hold, but (29)3, (33), and (34) are not true any more. As a result, w+ and
w− should now be treated as independent virtual rotation vectors. In this case the
integrand of the global continuity condition (27) can be reduced to

V
(
[W ] − 〈nν〉 · [y,αν

α]
) + [nν] · 〈v〉 + m+

ν · w+ − m−
ν · w− = 0, (41)

which is equivalent to the set of independent local dynamic continuity conditions
along C

[N]ν = 0, M±ν = 0,

[W ] − [(Nν) · Fν] = 0.
(42)

The relation (42)2 is equivalent to

ν · [Ci]ν = 0, (43)

where

Ci = WA − NTF . (44)

The tensor Ci ∈ TxM ⊗ TxM has no counterpart in continuum mechanics.
The first two local continuity conditions (37)1,2 and (42)1,2 express just the bal-

ance of forces and couples at the curvilinear phase interface C. For the incoherent
interface the local condition (42)2 indicates that the singular curve C becomes
here the kind of a hinge at which the resultant surface couples should vanish. The
dynamic continuity conditions (39) and (43) are the additional relations which are
necessary and sufficient for establishing the position of the singular curve C in M

in the thermodynamic equilibrium state. The conditions appear here as a result of
additional degrees of freedom allowed for the movable phase interface C in the
variational principle of stationary total potential energy.

The variational principle for the functional (22) of total potential energy as
well as the dynamic continuity conditions (27), (37), and (42) for elastic shells
undergoing phase transitions seem to be new in the literature.

Summarising, the equlibrium boundary value problem of the general nonlinear
theory of elastic shells with phase transitions consists of the local equilibrium
equations (5)1, the dynamic boundary conditions (5)2, the kinematic boundary
conditions (19), the kinematic relations (11), and the constitutive equations (15)
supplemented by the local continuity conditions (37)1 and (39) at the coherent
interface or (42)1 and (43) at the incoherent interface, respectively.



80 V. EREMEYEV AND W. PIETRASZKIEWICZ

Figure 3. Two-phase plate with a hole.

5. Example

Let us solve a simple axisymmetric plane problem of phase transition in an infinite
plate with a central hole of radius a, Figure 3. It is assumed that in the undeformed
state the whole plate consists of one material phase marked by “B”. Then to the
hole boundary the radial translation u∗ = u∗er with a constant magnitude u∗ is
prescribed. As a result, in the deformed equilibrium state of phase transition there
may appear a new material phase marked by “A” in the region a < r < b. Our
goal is to find the radius b of the interface circle C.

In the polar coordinate system θ1 = r, θ2 = ϕ the axisymmetric plane defor-
mation can be described by

y = y(r)er , u = u(r)er = (y(r) − 1)er , Q = 1,

er = cos ϕi1 + sin ϕi2, eϕ = − sin ϕi1 + cos ϕi2,
(45)

where er and eϕ are the unit base vectors, and y(r) or u(r) are unknown, Figure 3.
The strain and bending measures corresponding to (45) are

εr = du

dr
er ≡ u′er , εϕ = ueϕ, �r = �ϕ ≡ 0,

Err = u′, Eϕϕ = u, Erϕ = Eϕr = 0,

Krr = Kϕϕ = Krϕ = Kϕr = 0,

(46)

so that the quadratic strain energy density (16) takes the form

W = (C1 + C2)

(
E2

rr + E2
ϕϕ

r2

)
+ C3

(
Err + Eϕϕ

r

)2

= (C1 + C2)

(
u′2 + u2

r2

)
+ C3

(
u′ + u

r

)2

. (47)



ELASTIC SHELLS WITH PHASE TRANSITIONS 81

Within the axisymmetric deformation state described by (45) other material con-
stants C4 and Dn present in (16) are not required.

Differentiating (47) we obtain the constitutive equations M ≡ 0 and

N = Nrer ⊗ er + Nϕeϕ ⊗ eϕ, (48)

Nr = ∂W

∂Err

= 2(C1 + C2)u
′ + 2C3

(
u′ + u

r

)
,

Nϕ = ∂W

∂Eϕϕ

= 2(C1 + C2)
u

r
+ 2C3

(
u′ + u

r

)
.

(49)

With no external resultant surface forces and couples, the equilibrium equations
(6) reduce here to only one ordinary differential equation

N ′
r + 1

r
(Nr − Nϕ) = 0,

which with the help of (49) can be transformed into

(C1 + C2)u
′′ + C3

(
u′′ + u′

r
− u

r2

)
+ 1

r
(C1 + C2)

(
u′ − u

r

)
= 0,

and after further transformation into

(C1 + C2 + C3)

(
u′ + u

r

)′
= 0. (50)

The solution of (50) takes the form

u = u0r + u1

r
, (51)

where u0 and u1 are integration constants.
Let us assume that the strain energy densities in the two material phases differ

only by values of the elastic constants in (47)

WA,B = (
C

A,B
1 + C

A,B
2

)(
u′2 + u2

r2

)
+ C

A,B
3

(
u′ + u

r

)2

.

Kinematic boundary conditions are given by

uA(a) = u∗ and uB(r) → 0 for r → ∞. (52)

Continuity conditions of the type (37)2 and (42)2 for the resultant couples are
identically satisfied at C, while the continuity conditions for translations (29)1 and
stress resultants (37)1 are given by

u−(b) = u+(b), N−
r (b) = N+

r (b). (53)
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Introducing (51) into (52) and (53) we obtain the following algebraic system of
equations for the integration constants u±

0 and u±
1 :

u−
0 + u−

1

a2
= u∗

a
, u−

0 + u−
1

b2
= u+

0 + u+
1

a2
,

(
CA

1 + CA
2

)(
u−

0 − u−
1

b2

)
+ 2CA

3 u−
0 = (

CB
1 + CB

2

)(
u+

0 − u+
1

b2

)
+ 2CB

3 u+
0 ,

u+
1 = 0. (54)

Solution of (54) allows one to express these constants through u∗ and b.
The radius b can now be found from the continuity conditions (39) or (43) which

in this case coincide. Condition (39) can be reduced to

W+ − (u′+ + 1)Nr = W− − (u′− + 1)Nr

or, after introducing the solution (51), to

(
CB

1 + CB
2

)[(
u+

0 − u+
1

b2

)2

+
(

u+
0 + u+

1

b2

)2]
+ 4CB

3 (u+
0 )2

−
[

2
(
CB

1 + CB
2

)(
u+

0 − u+
1

b2

)
+ 4CB

3 u+
0

](
u+

0 − u+
1

b2
+ 1

)

= (
CA

1 + CA
2

)[(
u−

0 − u−
1

b2

)2

+
(

u−
0 − u−

1

b2

)2]
+ 4CA

3 (u−
0 )2

−
[

2
(
CA

1 + CA
2

)(
u−

0 − u−
1

b2

)
+ 4CA

3 u−
0

](
u−

0 − u−
1

b2
+ 1

)
. (55)

Solving (54) and (55) we obtain b as a function of u∗.
Let us discuss a particular case of the plate material for which C

A,B
2 = C

A,B
3 = 0.

Then equation (55) for b can be considerably simplified to

u∗x(k − 1)(k + 1)((u∗ + a)/axk − k − x − 1)

a(xk − x − k − 1)2
= 0, (56)

where x = a2/b2, k = CB
1 /CA

1 .
Equation (56) is identically satisfied by k = 1, that is in the case of equal elastic

constants CA
1 and CB

1 . In such a case there is no phase transition in the plate at all.
If k �= 1, then b is given by the relation

b = a

√
(u∗/a + 1)k − 1

k + 1
. (57)

The real solution of (57) exists only if u∗ > u∗
0 ≡ 2a/k. The solution indicates

that within 0 < u∗ < u∗
0 there is in the plate only one material phase “B”. When

the assumed boundary translation reaches the critical value u∗ = u∗
0 the second
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Figure 4. Phase diagram for two-phase plate.

Figure 5. Total energies for two-phase solution I2 and for one-phase solution I1.

more “soft” material phase “A” is created with smaller modulus of elasticity than
that of the phase “B”. Finally, when u∗ > u∗

0 the plate consists of two regions
with two different material phases separated by the circular interface C of radius
b. The value of b depends upon the ratio k between the material constants CB

1
and CA

2 , Figure 4, where u∗
0(k)/a are dimensionless values corresponding to the

respective k.
It is easy to see that the solution corresponding to the two-phase equilibrium

state is energetically consistent. Let us calculate the value of the functional I on
the two-phase solution (51) and (57) as well as on the corresponding one-phase
solution for two values of k = 10, and k = 1.1. Then the total potential en-
ergy I2 corresponding to the two-phase equilibrium state is always lower than I1

corresponding to the one-phase state, see Figure 5.



84 V. EREMEYEV AND W. PIETRASZKIEWICZ

6. Conclusions

In this paper a boundary value problem has been proposed for the mechanical
description of the phase transformation phenomena in elastic shells. The nonlinear
shell model has been based on the exact trough-the-thickness integration of 3D
global equilibrium conditions for the total force and total torque, with an ener-
getically exact shell kinematics established by the virtual work identity. The phase
transition has been assumed to occur at the singular surface curve; its position is not
known in advance. The equilibrium problem of elastic shells with phase transitions
has been stated in the weak form as the stationary problem for the functional of
total potential energy. Stationary conditions of the functional give us known local
equilibrium conditions everywhere outside the interface, together with additional
new local dynamic continuity conditions to be satisfied at the interface. The con-
tinuity conditions result from additional degrees of freedom associated with the
unknown position of the interface.

The shell model used here is the most general one available. Therefore, all
possible simplified versions of shell theory with phase transitions can now be
derived as special cases of our results. One has only to introduce appropriate geo-
metric and/or physical constraints and to omit some terms assumed to be small.
Among such simplified versions let us mention, for example, the fully nonlinear,
only the geometrically nonlinear, or the entirely linearised theories based on the
Timoshenko-Reissner type, the Kirchhoff–Love type, or the membrane type shell
model.

The functional (22) of total potential energy does not take into account some
physical effects of phase transition in shells associated with properties of the curvi-
linear interface itself. Besides, by (22) we can model only quasi-static shell prob-
lems with phase transitions not depending upon temperature. The phase transitions
in shells based on various appropriate generalisations of (22) should be discussed
separately.
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