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Direct determination of the rotation in the polar decomposition
of the deformation gradient by maximizing a Rayleigh quotient
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We develop a new effective method of determining the rotdRoend the stretched and'V in the polar decompositioR =

RU = VR of the deformation gradient. The method is based on a minimum propeRytothave the smallest "distance”

from F in the Euclidean norm. The proposed method does not require to perform any square root and/or inverse operations.
With eachF having nine independent components we associ&tedssymmetric traceless matry. The rotation is described

by quaternion parameters from which a quadriveéfds formed. It is shown thak corresponding tR maximizesX 7 QX

over all X satisfyingX”X = 1. We prefer to equivalently maximize the Rayleigh quoti#ftQY/Y”Y over all non-
vanishingY” and to deduceX by subsequent normalizatiosi = Y/vYTY. The maximization of the Rayleigh quotient is
performed by a conjugate gradient algorithm with all iterative steps carried out by explicit closed formulae. Efficiency and
accuracy of the method is illustrated by a numerical example.
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1 Introduction

Within classical continuum mechanics (see [1], for example, also for notptimlocal deformation is described by the
deformation gradienF € Lin™. According to the polar decomposition theorem, there exist unique, symmetric, positive
definite stretch tensofd, V € Psymand a rotatioR € Orth™ such that

F=RU=VR 1)

The rotationR. can be found from (1) by first calculatidg = (F7F)z or V = (FFT)z, and therR = FU™! = V~!F.

Such a direct analysis requires to perform square root and inverse operations on symmetric tensors, and this may bring
computational difficulties. Alternative procedures for calculathgrom F without using the square root operation were
worked out by Hoger and Carlson [2], Zubov and Rudev [3], Lu and Papadopoulos [4], and Dui [5], where references to other
papers are given.

Over sixty years ago Grioli [6] pointed out an interesting minimum property: the rot&idallowing from the polar
decomposition (1) has the smallest “distance” frhwithin Lin equipped with an Euclidean norm. Martin and Podio-
Guidugli [7] generalized this result to any linear transformation of a finite-dimensional Euclidean real vector space into itself,
and provided in [8] a new proof of the theorem (1). The minimum properfR afas also used in discussing various local
measures of mean rotation [9, 10], and in the analysis of fitting a rotation to given data [11].

In this paper the minimum property of the rotation in (1) is used to deterRideectly fromF by maximizing a Rayleigh
quotient. In Section 2 we provide an alternative concise proof of the minimum propdriyrofl). Then an arbitrary rotation
Q € Orth™ is parametrized in Section 3 by four quaternion parametgrsns, ms, m, [12-17], from which a quadrivector
(column matrix) X satisfying the conditionX” X = 1 is formed. In Section 4 we introducedax 4 symmetric traceless
matrix @ with nine independent components established linearly and uniquely from nine independent compdreiftseof
quadrivectorX corresponding t®. in (1) is then shown to follow from maximization of the Rayleigh quotiEdiQY /YTy
over all non-vanishing quadrivecto¥s, with normalization of the result t& = Y/vYTY. The maximum of the Rayleigh
guotient is attained wheyi becomes an eigenvector @fcorresponding to its greatest eigenvalue known te-bé& (or trV).

The characteristic polynomial @ is revealed in Section 5 to coincide with the fourth-degree polynomial derived by Hoger
and Carlson [2] to extraetU as a root.

* Corresponding author: e-mapietrasz@imp.gda.pl, Phone: +004858 346 08 81, ext.263, Fax: +004858 3416144

1 Lin = the set of all tensors (of the second order, which transform vectors into vediérsh, = the set of all tensors with positive determinasitym

= the set of all symmetric tensorBsym = the set of all symmetric, positive definite tensaps;th™ = the set of all rotations.
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Finally, the effective determination & by maximizing the Rayleigh quotient is performed numerically in Section 6 on an

example with the help of a conjugate gradient algorithm.

2 Minimum property of the rotation in the polar decomposition

Property: LetF € Lin*. Then among all rotation§2 € Orth™, the rotationR in the polar decomposition df is the
closest toF: R minimizes inLin the distanctr[(F — Q)7 (F — Q)]}=.

Proof. By setting| A ||= [tr(ATA)]%, for any A € Lin we equip the vector spadein by the Euclidean norm. Let

Q € Orth* be arotation. Then the square of the distance betd#eand$2 in the norm|| . || is

[F-Q|?* = tr[(F-Q)TF - Q) =tr(FTF) +tr(Q7Q) — tr(FTQ) — tr(QTF)
| F|? +3 - 2tr(FTQ) )

The problem of minimization of (2) can then be equivalently stated as follows:

GivenF ¢ Lin™, find max 2tr(FTQ) (3)
QeOrtht

The necessary condition for (3) to attain a maximum is

2tr(F16Q) = 0 (4)

for any variationdQ2 € Lin satisfying the constraint

QT+ a7 =0 (5)

Due to linearity of both (4) and (5) relative @2 there exists a tensaex € Sym - a Lagrange multiplier [18] - such that

2tr(F16Q) = tr[A(027Q + Q75Q)] = 2tr(AQT5Q)

tr[(FT — AQT)6Q] =0  foranydéQ € Lin (6)

Relation (6) holds only iF”T = AQT, or F = QA, which gives

F'F = A2, tr(FTQ) =trA 7)

By det F > 0 and from(7); it follows that

det(FTF) = (det F)? = det(A?) = (det A)? >0

Therefore A is invertible. Among two\’s satisfying(7); only A = (FTF)z allowstrA = tr(F7Q) to attain the maximum.

SuchA € Psym coincides with the square rotf of C = FTF. Therefore,

Q=FA '=FU '=R 8)

and among alf2 € Orth™ the rotationR defined by (1) is the closest foin the sense of the norip. ||. |

3 Representation of a rotation

Property: For any rotation§2 € Orth™ there exist a 3-dimensional vectat and a scalarm satisfying the constraint

m - m + m2 = 1 such that

Q=(m>-m -mI+2m®@m+2m(m xI) 9)

wherel is the identity tensor irl.in, - is the scalar producty is the tensor product, and is the cross product.

Proof. LetQ2 be represented by the Gibbs formula [19]
Q = (cosO)I + (sinf)n x I+ (1 — cosf)n @ n (10)

where the unit vecton directed along the axis of rotation satisf@sn = n and@ is the angle of rotation about Let us
introduce the Euler-Rodrigues parametarandm defined by [17]

m = (sin—)n, m = cos—
2 2

which satisfy the conditiom - m + m? = 1 Thensinf andcosf can be expressed througf2 by elementary trigonometric
identities, and the rotation (10) can be directly transformed into (9). |
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4 Maximization of the Rayleigh quotient

Choosing an orthonormal basis, ¢ = 1,2,3, in the 3-dimensional vector space, in this Section we show how the
quadrivector (column matrixX = (m; mo mg m)T, built from three components;; = e; - m of the vectorm and the
scalarm associated with the rotatidR in the polar decomposition (1), can be determined by maximizing a Rayleigh quotient.

Property: LetF € Lint,S = %(F +FT) € Sym andw be the axial vector of the skew-symmetric tefd8er F7' given
byF — F” = w x I. For any orthonormal basie; the components of the quadrivect§rassociated with the rotatioR. in
the polar decomposition & maximize the quadratic foro¥ ” QX associated with the x 4 symmetric traceless matrix

Q= (25 —Vé?S)I t%) (11)

built from the matricessS and W associated witt8 andw, respectively.
Proof. With the representation (9) &, tr(FT R) becomes
tr(FTR) = (m? — m-m)tr(F7) + 2m - Fm + 2m tr[F7 (m x T)]
Splitting the deformation gradieft into its symmetric and skew-symmetric parts, we obtain
m-Fm=m-Sm, trF7 =trS, tr[F'(m x1I)] = —%tr[(w xD(mxI)]=w-m
Then
tr(FTR) = (m? — m-m)trS + 2m - Sm + 2mw - m (12)

In the orthonormal basis; the vectoran, w and the tensorS, I, m x I are represented by the corresponding matrices

my w1
M = ma |, W = Wo (13)
ms3 w3
511 512 513 1 0 0 0 —ms mo
S = 512 522 523 s I=10 1 0 y M x 1= ms 0 —ma
513 523 533 0 0 1 —Ma mi 0

Introducing thet x 4 matrix @ by (11) it is seen thatr@ = 0. With the quadrivectoX defined above (11), the expression
(12) becomesr(FT'R) = X7QX. Now the minimum property oR. in terms of M andm reads

Given@, find max  XTQX
X, XTX=1

which is equivalent to

R H T T
Given@Q, find mea;{o Y'QY/Y'Y. (14)

s

O

The expression(Y) = YT QY/YTY, usually called the Rayleigh quotient in the literature [20-22], attains its maximum
for the eigenvectol” associated with the greatest eigenvalu€ofWe already know by (7) and (8) that this eigenvalue is
trU. WhenY is found from (14) we normalize it t&f = Y/VYTY satisfyingX” X = 1. ThenR, U, andV can be found
from algebraic relations

R = (m?*—m-m)I+2m® m + 2m(m x I)
U = R'F=m?-m -m)F+2m® (F'm) - 2m(m x F) (15)
V = FRT"=(m?-m m)F+2(Fm) ® m — 2mF(m x I
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5 Characteristic polynomial of

One root of the characteristic polynomial of thex 4 matrix @ is trU, as it was found by Hoger and Carlson [2] for a
fourth degree polynomial derived for this purpose. In this Section we prove that the two polynomials coincide.
Let us consideC = FTF € Psym Then the Cayley-Hamilton theorem allows one to determine the squar&robC
provided thatrU is known. Indeed,
U?=C, U*=CU, tr(U? =trC, detU=VdetC
and the Cayley-Hamilton theorem appliedUoyields
trC — (trU)?

[C+ 5

I|U = (trU)C + VdetC 1

_ 2
If one knowstrU, thenU can be obtained by inverting the ten€or- MI.

To find trU, Hoger and Carlson [2] succeeded to show that it is the root of a fourth-degree polynomial. Let us summarize
their idea.
If A1, A2, A3 are the eigenvalues bf, then taking the square of the algebraic identity

(M + A2+ 23)% = (AT + A3+ A3) = 2(AM1 A2 + Aads + Ashi)
one can be aware that
[(trU)? — trC]? = 2[(trC)? — tr(C?)] + 8V detC(trU)
from which it follows thattrU is the root of the fourth degree polynomial [2]
M = 2(trC)A? — 8V/detC A + 2tr(C?) — (trC)? (16)

This polynomial has no cubic term, hence the sum of the four roots is zero. We also note that if we xhemge., and )\,
to —\o, the scalargrC, tr(C?), anddet C remain unchanged. Thus the valug— \; — X, is still the root of (16). Therefore,
the four roots of (16) are

At+A2+ A3, A —Aa—A3, A2—A3— A1, A3—A1— Ao (17)
From (17) it is apparent thatU = \; + \s + A3 is the greatest root of (16). This provides an answer to the discussion by
Sawyers [23].

Property: When a rotatiorf2 represented by(9) transforms the deformation gradieRtinto F’ = Q”'F, then the matrix
(Q associated withF is transformed inta)’ = A7 QA associated witlF’, where/ is the quaterniorf12—17]

m —ms mo mq
o (mI+MxI M\ _ ms m —mi Mo (18)
- —-MT m) | -mas m  ms
—m; —mg —Ms3 m
0 0 0 1 0 0 1 0 0 -1 0 0 100 0
0 0 -1 0 0 0 0 1 1 0 0 0 010 0
=™l o 1 0 ol ™21 0 o0 0] T™ o o o 1|T™|0o 01 0
10 0 0 0 -1 0 0 0 0 -1 0 000 1

Proof. LetX’ = (M'" m')T be a quadrivector associated with a quaterniband a rotatiorf?’. Then the quadrivector

M”> _ (mM’+m’M+M><M’>

" r
xr—ax' = (0, M a9)

is associated with the quaternion produét = AA’, as one can easily check. Interpreting (19) in term&pf2’, Q”, one
can also recognize Rodrigues’ rules [17] for calculating the rotation prddiict Q€.
The relationF’ = Q7F implies that

tr(F'TQ) = tr[FT(QQ')] forany Q' € Orth*
or equivalently
XTQ X = (AX"TQ(AX') forany X'
As a consequencé) = ATQA. O
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Remark: The transformation oF into Q7 F is an action ofDrth* on Lin ™. If two rotations€2, and{2, are successively
applied,F is transformed into

Q; (QF) = (2 Q2)'F

which corresponds to the direct action of the compound rot&diaa ©2,€2,.
Likewise, the transformation @ into A7 QA is an action of the quaternion group on the linear space>ofi symmetric
traceless matrices. Therefore, if two quaternidasand A, are successively applie@), is transformed into

A3 (AT QAL Ay = (A1 45)TQ(A145)

which corresponds to the direct action of the compound quaterien A, A,. The property indicates that the action of
rotations oriF is transferred towards the action of quaterniongjon

Property: The characteristic polynomialet(QQ — A1) of the matrix@ coincides with the polynomi#l6).

I 0

Proof. Letl, = (0 1

) be the unit 4x 4 matrix. For any quaternioff as a matrix of SO(4) we have

det[ITT(Q — A1) IT] = det(Q — \Iy)

In particular, if X is the quadrivector representing the rotatilBnin the polar decomposition (1) (see Section 2), then the
quaternion/ defined by (18) is such that

(22U (U) 0
ATQA = ( 0 trU)

whereU = (U;;) is the symmetric positive definite matrix with; = e; - Ue;. Therefore

B 2U — (trU)I — A1 0
det(Q — A\1y) = det ( 0 ol — )\>

Moreover, there exists a rotation mati#ixe SO(3) which make#” U P diagonal

A0 0
PTUP=10 X 0
0 0 s
with A1, A2, A3 to be the eigenvalues &f. Introducing thet x 4 matrix [T = (5 (1)) € SO(4) we can show that
T 2U — (trU)I 0 7 - 2PTUP — (trU)I 0
0 trU o 0 trU
A — Ao — A3 0 0 0
_ 0 A2 — A3 — A\ 0 0
a 0 0 Az — A1 — Ao 0
0 0 0 A1+ A2+ A3

Therefore, the characteristic polynomial@fequal todet(Q — A1) = det[IIT AT(Q — \1,) AII] can be written in the explicit
form

det(Q — /\14) = ()\1 — Ao — A3 — )\)(/\2 — A3 — A\ — )\)()\3 — A — Ay — )\)()\1 + Ao+ A3 — )\)

This polynomial has the same roots and the same highest term as the polynomial (16). Therefore, both polynomials coincide.
O

Remark: Although the matri>x@ has been built linearly and uniquely from components of the teFistite invariants of)
depend solely on the invariants 6f = F7'F and remain unchanged whéhis changed int€2” F by any rotatior§2. From
the point of view of the principle of material frame-indifference, for example, the m@tideems to be better suited thBn
to describe the deformation in continuum mechanics.
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6 Maximization of the Rayleigh quotient by the conjugate gradient algorithm

To apply the method of Section 4, we have to maximize numerically the Rayleigh quétiEnton all non-vanishing
quadrivectors” and then to normalize the resultant quadrivectokte= Y/vYTY. This procedure can be performed by a
conjugate gradient algorithm. We have used here the PolakefRibnplementation [24] with the following steps:

Step 1: initializeYy, Zy = Gy = grad ¢(Yp)

Step 2: start iterations

Step 3: search fan; maximizinge(Y; 4+ ©Z;) with regard tou
Step 4: comput®’; 1 =Y, + w: Z;

Step 5: computé’; 1 = grad ¢(Yiq1)

Step 6: compute; 11 = G1 (Gt — G;)/GTG;

Step 7: determine the new search directiin, = G;11 + v;117;
Step 8: stop iterations wheiﬁ;ﬂlGiH is small enough

At the very beginning, an initial valu&; of the maximization problem is improved in the ascent direction of the gra-
dientG, by choosingug which maximizess (Y, + uGo). Thus, following a straight line, one arrives¥ét = Yy + poGop as
close to the maximum as possible. Then, an ascent diregtioa G; + v1 Gy, expected to be better th&,, is chosen in
the plane determined b§; andZ, = G,. An optimal direction corresponds to the choige= GT (G, — Go)/GE Gy as
proposed by Polak and Réie [24]. Theru, is chosen by maximizing(Y; + pZ1) andYs = Y; + p1 Z; is determined. Now
Gy = grad ¢(Yz), vo = GY(Go — G1)/GTG1, Zy = G + 1177, andpus can be calculated, which allows one to compute
Ys =Ys + uoZs. Andsoon ...

In the particular case of the quotient of two quadratic forms discussed here we are able to perform steps 3 and 5 by
explicit formulae.
In the fifth step the gradient of the Rayleigh quotient is given by the closed formula

2
T YTY
Therefore, there is no need to calculate the gradigni atY;., by numerical derivative.

In the third step we should find requiring¢(Y + pZ) to attain a maximum. Therefore, we have to fulfill the condition

grad ¢(Y) QY —¢(Y)Y] (20)

O 4 02) = lgrad o (V +u2)|'Z =0 (21)

Thanks to the closed formula (20), the condition (21) leads to
2

27 + g Tt e =0 22
with the trinomial coefficients

a = (Y'2)(Z"Qz)— (2" 2)(Z"QY)

b= (YTY)(27Q2) - (2T Z2)(YTQY) (23)

c = (Y'V)(Z"QY)-(YTZ)(Y"QY)

Taking into account the identity 7 Z)b = (Y1Y)a + (ZT Z)e, the discriminant\ = b2 — 4ac of the trinomial in (22) can
be expressed as

(YTY) (2T Z)— (YT Z)2 )0 + [(YTY)a — (ZT Z)c)?

A= YTY)(Z72Z)

(24)

Due to the Cauchy-Schwarz-Buniakowski inequality’ Y)(Z1 Z) — (YT Z)? is positive, thereforé\ is always positive. In
computingA according to (24) we need to divide By Y andZ” Z. This is not allowed whel” or Z vanishes. But in such
singular cases the coefficientsb, andc vanish by definitions (23) as well and then the valué\dfecomes zero.

SinceA is positive, the trinomial in (22) has two real roofs:b + v/A)/2a and(—b — v/A) /2a. One of them leads to the
maximum value of the Rayleigh quotient, the other one to its minimum value. To identify the root leading to the maximum,
we should identify the sign of the second derivative)¢¥ + pZ) with regard tou, when (21) holds. Taking derivative of the
left-hand side of (22) we find

2(2ap + b)
(Y +p2)"(Y + n2))?

(25)

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 9

In order to maximize the Rayleigh quotietitY” + 1:.Z) the expression (25) must be negative. Therefore, we should choose
the rooty = (—b — V/A)/2a for whichb + 2apu = —V/A.

To validate the proposed algorithm, we analyse again the example studied by Dui and Zhuo [25], where the deforma-
tion gradientF in the basis:; was defined by the matrix

2 11
F=11 3 0
0 2 1

After performing the polar decomposition Bf the following results were obtained in [25] for the corresponding rotation and
right stretch matrices:

0.8795 0.0005 0.4760 2.0147 0.8438 0.4781
R= | 0.2557 0.8429 —0.4735|, U=R"F = {0.8439 3.6054 0.5386
—-0.4014 0.5381 0.7412 0.4785 0.5383 1.2172

Please note that the matiiXis symmetric here with accuracy up16—3.
With the method proposed in this paper, after 13 iterations the conjugate gradient algorithm has given the following rotation
and right stretch matrices:

0.879553  0.000445 0.475801 2.014739 0.843859 0.478257
R = 0.255633 0.842968 —0.473345 |, U = | 0.843859 3.605276 0.538408
—0.401296 0.537963  0.741321 0.478257 0.538408 1.217122

We have printed the values & andU with accuracy up ta0~5. In fact, our numerical results are accurate up@o'.

7 Conclusions

We have used the minimum propertyRfin the polar decomposition (1) to develop a new effective method of determining
R from the givenF' without necessity to perform any square root and/or inverse operations on tensors.

In our approach the rotation is replaced by an equivalent quadriv&ctmmposed of four quaternion parameters, and the
deformation gradienkF is replaced by an equivaletx 4 symmetric traceless matrig. The characteristic polynomial ¢j
has been shown to coincide with the one derived by Hoger and Carlson [2] and its greatestradt be

It has been proved that the quadriveciorcorresponding tdR. in (1) can be found by maximizing the Rayleigh quotient
#(Y) = YTQY/YTY over all non-vanishing”, with subsequent normalization of the resultiigo X = Y/vYTY. The
maximization ofp(Y") has been performed with the help of a conjugate gradient algorithm. The efficiency and accuracy of the
algorithm has been tested on the example discussed by Dui and Zhuo [25]. Our algorithm has been shown to be very efficient
with accuracy of the results up 10~'# obtained after 13 iterations.

The algorithm is applicable not only to tHex 4 symmetric traceless matrices discussed here. It can be used to determine
the greatest and/or the smallest eigenvalue of a symmetric matrix of any size, for example in determining eigenfrequencies of
mechanical vibrations. It is also useful in calculating the square root of any symmetric positive definite tensor, [26].
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