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We develop a new effective method of determining the rotationR and the stretchesU andV in the polar decompositionF =
RU = VR of the deformation gradient. The method is based on a minimum property ofR to have the smallest ”distance”
from F in the Euclidean norm. The proposed method does not require to perform any square root and/or inverse operations.
With eachF having nine independent components we associate a4×4 symmetric traceless matrixQ. The rotation is described
by quaternion parameters from which a quadrivectorX is formed. It is shown thatX corresponding toR maximizesXTQX
over allX satisfyingXTX = 1. We prefer to equivalently maximize the Rayleigh quotientY TQY/Y TY over all non-
vanishingY and to deduceX by subsequent normalizationX = Y/

√
Y TY . The maximization of the Rayleigh quotient is

performed by a conjugate gradient algorithm with all iterative steps carried out by explicit closed formulae. Efficiency and
accuracy of the method is illustrated by a numerical example.
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1 Introduction

Within classical continuum mechanics (see [1], for example, also for notation1) the local deformation is described by the
deformation gradientF ∈ Lin+. According to the polar decomposition theorem, there exist unique, symmetric, positive
definite stretch tensorsU, V ∈ Psymand a rotationR ∈ Orth+ such that

F = RU = VR (1)

The rotationR can be found from (1) by first calculatingU = (FTF)
1
2 or V = (FFT )

1
2 , and thenR = FU−1 = V−1F.

Such a direct analysis requires to perform square root and inverse operations on symmetric tensors, and this may bring
computational difficulties. Alternative procedures for calculatingR from F without using the square root operation were
worked out by Hoger and Carlson [2], Zubov and Rudev [3], Lu and Papadopoulos [4], and Dui [5], where references to other
papers are given.

Over sixty years ago Grioli [6] pointed out an interesting minimum property: the rotationR following from the polar
decomposition (1) has the smallest “distance” fromF within Lin equipped with an Euclidean norm. Martin and Podio-
Guidugli [7] generalized this result to any linear transformation of a finite-dimensional Euclidean real vector space into itself,
and provided in [8] a new proof of the theorem (1). The minimum property ofR was also used in discussing various local
measures of mean rotation [9, 10], and in the analysis of fitting a rotation to given data [11].

In this paper the minimum property of the rotation in (1) is used to determineR directly fromF by maximizing a Rayleigh
quotient. In Section 2 we provide an alternative concise proof of the minimum property ofR in (1). Then an arbitrary rotation
Ω ∈ Orth+ is parametrized in Section 3 by four quaternion parametersm1,m2,m3,m, [12–17], from which a quadrivector
(column matrix)X satisfying the conditionXTX = 1 is formed. In Section 4 we introduce a4 × 4 symmetric traceless
matrixQ with nine independent components established linearly and uniquely from nine independent components ofF. The
quadrivectorX corresponding toR in (1) is then shown to follow from maximization of the Rayleigh quotientY TQY/Y TY

over all non-vanishing quadrivectorsY , with normalization of the result toX = Y/
√
Y TY . The maximum of the Rayleigh

quotient is attained whenY becomes an eigenvector ofQ corresponding to its greatest eigenvalue known to betrU (or trV).
The characteristic polynomial ofQ is revealed in Section 5 to coincide with the fourth-degree polynomial derived by Hoger
and Carlson [2] to extracttrU as a root.

∗ Corresponding author: e-mail:pietrasz@imp.gda.pl, Phone: +00 48 58 346 08 81, ext.263, Fax: +00 48 58 341 61 44
1 Lin = the set of all tensors (of the second order, which transform vectors into vectors),Lin+ = the set of all tensors with positive determinant,Sym

= the set of all symmetric tensors,Psym = the set of all symmetric, positive definite tensors,Orth+ = the set of all rotations.

Copyright line will be provided by the publisher
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Finally, the effective determination ofR by maximizing the Rayleigh quotient is performed numerically in Section 6 on an
example with the help of a conjugate gradient algorithm.

2 Minimum property of the rotation in the polar decomposition

Property: Let F ∈ Lin+. Then among all rotationsΩ ∈ Orth+, the rotationR in the polar decomposition ofF is the
closest toF: R minimizes inLin the distance{tr[(F−Ω)T (F−Ω)]} 1

2 .

P r o o f. By setting‖ A ‖= [tr(ATA)]
1
2 , for anyA ∈ Lin we equip the vector spaceLin by the Euclidean norm. Let

Ω ∈ Orth+ be a rotation. Then the square of the distance betweenF andΩ in the norm‖ . ‖ is

‖ F−Ω ‖2 = tr[(F−Ω)T (F−Ω)] = tr(FTF) + tr(ΩTΩ)− tr(FTΩ)− tr(ΩTF)

= ‖ F ‖2 +3− 2tr(FTΩ) (2)

The problem of minimization of (2) can then be equivalently stated as follows:

GivenF ∈ Lin+, find max
Ω∈Orth+

2tr(FTΩ) (3)

The necessary condition for (3) to attain a maximum is

2tr(FT δΩ) = 0 (4)

for any variationδΩ ∈ Lin satisfying the constraint

δΩTΩ + ΩT δΩ = 0 (5)

Due to linearity of both (4) and (5) relative toδΩ there exists a tensorΛ ∈ Sym - a Lagrange multiplier [18] - such that

2tr(FT δΩ) = tr[Λ(δΩTΩ + ΩT δΩ)] = 2tr(ΛΩT δΩ)

or

tr[(FT −ΛΩT )δΩ] = 0 for anyδΩ ∈ Lin (6)

Relation (6) holds only ifFT = ΛΩT , or F = ΩΛ, which gives

FTF = Λ2, tr(FTΩ) = trΛ (7)

By det F > 0 and from(7)1 it follows that

det(FTF) = (det F)2 = det(Λ2) = (det Λ)2 > 0

Therefore,Λ is invertible. Among twoΛ’s satisfying(7)1 only Λ = (FTF)
1
2 allowstrΛ = tr(FTΩ) to attain the maximum.

SuchΛ ∈ Psym coincides with the square rootU of C = FTF. Therefore,

Ω = FΛ−1 = FU−1 = R (8)

and among allΩ ∈ Orth+ the rotationR defined by (1) is the closest toF in the sense of the norm‖ . ‖.

3 Representation of a rotation

Property: For any rotationΩ ∈ Orth+ there exist a 3-dimensional vectorm and a scalarm satisfying the constraint
m ·m +m2 = 1 such that

Ω = (m2 −m ·m)I + 2m⊗m + 2m(m× I) (9)

whereI is the identity tensor inLin, · is the scalar product,⊗ is the tensor product, and× is the cross product.

P r o o f. LetΩ be represented by the Gibbs formula [19]

Ω = (cosθ)I + (sinθ)n× I + (1− cosθ)n⊗ n (10)

where the unit vectorn directed along the axis of rotation satisfiesΩn = n andθ is the angle of rotation aboutn. Let us
introduce the Euler-Rodrigues parametersm andm defined by [17]

m = (sin
θ

2
)n, m = cos

θ

2

which satisfy the conditionm ·m +m2 = 1 Thensinθ andcosθ can be expressed throughθ/2 by elementary trigonometric
identities, and the rotation (10) can be directly transformed into (9).
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4 Maximization of the Rayleigh quotient

Choosing an orthonormal basisei, i = 1, 2, 3, in the 3-dimensional vector space, in this Section we show how the
quadrivector (column matrix)X = (m1 m2 m3 m)T , built from three componentsmi = ei ·m of the vectorm and the
scalarm associated with the rotationR in the polar decomposition (1), can be determined by maximizing a Rayleigh quotient.

Property: LetF ∈ Lin+ , S = 1
2 (F+FT ) ∈ Sym andw be the axial vector of the skew-symmetric tensorF−FT given

by F− FT = w × I. For any orthonormal basisei the components of the quadrivectorX associated with the rotationR in
the polar decomposition ofF maximize the quadratic formXTQX associated with the4× 4 symmetric traceless matrix

Q =
(

2S − (trS)I W
WT trS

)
(11)

built from the matricesS andW associated withS andw, respectively.

P r o o f. With the representation (9) ofR, tr(FTR) becomes

tr(FTR) = (m2 −m ·m)tr(FT ) + 2m · Fm + 2m tr[FT (m× I)]

Splitting the deformation gradientF into its symmetric and skew-symmetric parts, we obtain

m · Fm = m · Sm, trFT = trS, tr[FT (m× I)] = −1
2
tr[(w × I)(m× I)] = w ·m

Then

tr(FTR) = (m2 −m ·m)trS + 2m · Sm + 2mw ·m (12)

In the orthonormal basisei the vectorsm, w and the tensorsS, I, m× I are represented by the corresponding matrices

M =

m1

m2

m3

 , W =

w1

w2

w3

 (13)

S =

S11 S12 S13

S12 S22 S23

S13 S23 S33

 , I =

1 0 0
0 1 0
0 0 1

 , M × I =

 0 −m3 m2

m3 0 −m1

−m2 m1 0


Introducing the4 × 4 matrixQ by (11) it is seen thattrQ = 0. With the quadrivectorX defined above (11), the expression
(12) becomestr(FTR) = XTQX. Now the minimum property ofR in terms ofM andm reads

GivenQ, find max
X, XTX=1

XTQX

which is equivalent to

GivenQ, find max
Y, Y 6=0

Y TQY/Y TY. (14)

The expressionφ(Y ) = Y TQY/Y TY , usually called the Rayleigh quotient in the literature [20–22], attains its maximum
for the eigenvectorY associated with the greatest eigenvalue ofQ. We already know by (7) and (8) that this eigenvalue is
trU. WhenY is found from (14) we normalize it toX = Y/

√
Y TY satisfyingXTX = 1. ThenR, U, andV can be found

from algebraic relations

R = (m2 −m ·m)I + 2m⊗m + 2m(m× I)

U = RTF = (m2 −m ·m)F + 2m⊗ (FTm)− 2m(m× F) (15)

V = FRT = (m2 −m ·m)F + 2(Fm)⊗m− 2mF(m× I)
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5 Characteristic polynomial ofQ

One root of the characteristic polynomial of the4 × 4 matrixQ is trU, as it was found by Hoger and Carlson [2] for a
fourth degree polynomial derived for this purpose. In this Section we prove that the two polynomials coincide.

Let us considerC = FTF ∈ Psym. Then the Cayley-Hamilton theorem allows one to determine the square rootU of C
provided thattrU is known. Indeed,

U2 = C, U3 = CU, tr(U2) = trC, detU =
√
detC

and the Cayley-Hamilton theorem applied toU yields[
C +

trC− (trU)2

2
I
]
U = (trU)C +

√
detC I

If one knowstrU, thenU can be obtained by inverting the tensorC +
(trC)− (trU)2

2
I.

To find trU, Hoger and Carlson [2] succeeded to show that it is the root of a fourth-degree polynomial. Let us summarize
their idea.

If λ1, λ2, λ3 are the eigenvalues ofU, then taking the square of the algebraic identity

(λ1 + λ2 + λ3)2 − (λ2
1 + λ2

2 + λ2
3) = 2(λ1λ2 + λ2λ3 + λ3λ1)

one can be aware that

[(trU)2 − trC]2 = 2[(trC)2 − tr(C2)] + 8
√
detC(trU)

from which it follows thattrU is the root of the fourth degree polynomial [2]

λ4 − 2(trC)λ2 − 8
√
detC λ+ 2tr(C2)− (trC)2 (16)

This polynomial has no cubic term, hence the sum of the four roots is zero. We also note that if we changeλ1 to−λ1 andλ2

to−λ2, the scalarstrC, tr(C2), anddet C remain unchanged. Thus the valueλ3−λ1−λ2 is still the root of (16). Therefore,
the four roots of (16) are

λ1 + λ2 + λ3, λ1 − λ2 − λ3, λ2 − λ3 − λ1, λ3 − λ1 − λ2 (17)

From (17) it is apparent thattrU = λ1 + λ2 + λ3 is the greatest root of (16). This provides an answer to the discussion by
Sawyers [23].

Property: When a rotationΩ represented by(9) transforms the deformation gradientF into F′ = ΩTF, then the matrix
Q associated withF is transformed intoQ′ = ΛTQΛ associated withF′, whereΛ is the quaternion[12–17]

Λ =
(
mI +M × I M
−MT m

)
=


m −m3 m2 m1

m3 m −m1 m2

−m2 m1 m m3

−m1 −m2 −m3 m

 (18)

= m1


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

+m2


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

+m3


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

+m


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


P r o o f. LetX ′ = (M ′T m′)T be a quadrivector associated with a quaternionΛ′ and a rotationΩ′. Then the quadrivector

X ′′ = ΛX ′ =
(
M ′′

m′′

)
=
(
mM ′ +m′M +M ×M ′

mm′ −MTM ′

)
(19)

is associated with the quaternion productΛ′′ = ΛΛ′, as one can easily check. Interpreting (19) in terms ofΩ, Ω′, Ω′′, one
can also recognize Rodrigues’ rules [17] for calculating the rotation productΩ′′ = ΩΩ′.

The relationF′ = ΩTF implies that

tr(F′TΩ′) = tr[FT (ΩΩ′)] for any Ω′ ∈ Orth+

or equivalently

X ′TQ′X ′ = (ΛX ′)TQ(ΛX ′) for any X ′

As a consequence,Q′ = ΛTQΛ.
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Remark: The transformation ofF into ΩTF is an action ofOrth+ onLin+. If two rotationsΩ1 andΩ2 are successively
applied,F is transformed into

ΩT
2 (ΩT

1 F) = (Ω1Ω2)TF

which corresponds to the direct action of the compound rotationΩ ≡ Ω1Ω2.
Likewise, the transformation ofQ into ΛTQΛ is an action of the quaternion group on the linear space of4× 4 symmetric

traceless matrices. Therefore, if two quaternionsΛ1 andΛ2 are successively applied,Q is transformed into

ΛT2 (ΛT1 QΛ1)Λ2 = (Λ1Λ2)TQ(Λ1Λ2)

which corresponds to the direct action of the compound quaternionΛ ≡ Λ1Λ2. The property indicates that the action of
rotations onF is transferred towards the action of quaternions onQ.

Property: The characteristic polynomialdet(Q− λI4) of the matrixQ coincides with the polynomial(16).

P r o o f. LetI4 =
(
I 0
0 1

)
be the unit 4× 4 matrix. For any quaternionΠ as a matrix of SO(4) we have

det[Π T (Q− λI4)Π ] = det(Q− λI4)

In particular, ifX is the quadrivector representing the rotationR in the polar decomposition (1) (see Section 2), then the
quaternionΛ defined by (18) is such that

ΛTQΛ =
(

2U − (trU)I 0
0 trU

)
whereU = (Uij) is the symmetric positive definite matrix withUij = ei ·Uej . Therefore

det(Q− λI4) = det

(
2U − (trU)I − λI 0

0 trU − λ

)
Moreover, there exists a rotation matrixP ∈ SO(3) which makesPTUP diagonal

PTUP =

λ1 0 0
0 λ2 0
0 0 λ3


with λ1, λ2, λ3 to be the eigenvalues ofU . Introducing the4× 4 matrix Π =

(
P 0
0 1

)
∈ SO(4) we can show that

Π T

(
2U − (trU)I 0

0 trU

)
Π =

(
2PTUP − (trU)I 0

0 trU

)

=


λ1 − λ2 − λ3 0 0 0

0 λ2 − λ3 − λ1 0 0
0 0 λ3 − λ1 − λ2 0
0 0 0 λ1 + λ2 + λ3


Therefore, the characteristic polynomial ofQ equal todet(Q−λI4) = det[Π TΛT (Q−λI4)ΛΠ ] can be written in the explicit
form

det(Q− λI4) = (λ1 − λ2 − λ3 − λ)(λ2 − λ3 − λ1 − λ)(λ3 − λ1 − λ2 − λ)(λ1 + λ2 + λ3 − λ)

This polynomial has the same roots and the same highest term as the polynomial (16). Therefore, both polynomials coincide.

Remark: Although the matrixQ has been built linearly and uniquely from components of the tensorF, the invariants ofQ
depend solely on the invariants ofC = FTF and remain unchanged whenF is changed intoΩTF by any rotationΩ. From
the point of view of the principle of material frame-indifference, for example, the matrixQ seems to be better suited thanF
to describe the deformation in continuum mechanics.
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6 Maximization of the Rayleigh quotient by the conjugate gradient algorithm

To apply the method of Section 4, we have to maximize numerically the Rayleigh quotientφ(Y ) on all non-vanishing
quadrivectorsY and then to normalize the resultant quadrivector toX = Y/

√
Y TY . This procedure can be performed by a

conjugate gradient algorithm. We have used here the Polak-Ribière implementation [24] with the following steps:

Step 1: initializeY0, Z0 = G0 = grad φ(Y0)
Step 2: start iterations
Step 3: search forµi maximizingφ(Yi + µZi) with regard toµ
Step 4: computeYi+1 = Yi + µiZi
Step 5: computeGi+1 = grad φ(Yi+1)
Step 6: computeνi+1 = GTi+1(Gi+1 −Gi)/GTi Gi
Step 7: determine the new search directionZi+1 = Gi+1 + νi+1Zi
Step 8: stop iterations whenGTi+1Gi+1 is small enough

At the very beginning, an initial valueY0 of the maximization problem is improved in the ascent direction of the gra-
dientG0 by choosingµ0 which maximizesφ(Y0 + µG0). Thus, following a straight line, one arrives atY1 = Y0 + µ0G0 as
close to the maximum as possible. Then, an ascent directionZ1 = G1 + ν1G0, expected to be better thanG1, is chosen in
the plane determined byG1 andZ0 = G0. An optimal direction corresponds to the choiceν1 = GT1 (G1 − G0)/GT0 G0 as
proposed by Polak and Ribière [24]. Thenµ1 is chosen by maximizingφ(Y1 +µZ1) andY2 = Y1 +µ1Z1 is determined. Now
G2 = grad φ(Y2), ν2 = GT2 (G2 − G1)/GT1 G1, Z2 = G2 + ν2Z1, andµ2 can be calculated, which allows one to compute
Y3 = Y2 + µ2Z2. And so on ...

In the particular case of the quotient of two quadratic forms discussed here we are able to perform steps 3 and 5 by
explicit formulae.

In the fifth step the gradient of the Rayleigh quotient is given by the closed formula

grad φ(Y ) =
2

Y TY
[QY − φ(Y )Y ] (20)

Therefore, there is no need to calculate the gradientGi+1 atYi+1 by numerical derivative.
In the third step we should findµ requiringφ(Y + µZ) to attain a maximum. Therefore, we have to fulfill the condition

d

dµ
φ(Y + µZ) = [grad φ (Y + µZ)]TZ = 0 (21)

Thanks to the closed formula (20), the condition (21) leads to

2
[(Y + µZ)T (Y + µZ)]2

(aµ2 + bµ+ c) = 0 (22)

with the trinomial coefficients

a = (Y TZ)(ZTQZ)− (ZTZ)(ZTQY )

b = (Y TY )(ZTQZ)− (ZTZ)(Y TQY ) (23)

c = (Y TY )(ZTQY )− (Y TZ)(Y TQY )

Taking into account the identity(Y TZ)b = (Y TY )a+ (ZTZ)c, the discriminant∆ = b2 − 4ac of the trinomial in (22) can
be expressed as

∆ =
[(Y TY )(ZTZ)− (Y TZ)2]b2 + [(Y TY )a− (ZTZ)c]2

(Y TY )(ZTZ)
(24)

Due to the Cauchy-Schwarz-Buniakowski inequality(Y TY )(ZTZ)− (Y TZ)2 is positive, therefore∆ is always positive. In
computing∆ according to (24) we need to divide byY TY andZTZ. This is not allowed whenY orZ vanishes. But in such
singular cases the coefficientsa, b, andc vanish by definitions (23) as well and then the value of∆ becomes zero.

Since∆ is positive, the trinomial in (22) has two real roots:(−b+
√

∆)/2a and(−b−
√

∆)/2a. One of them leads to the
maximum value of the Rayleigh quotient, the other one to its minimum value. To identify the root leading to the maximum,
we should identify the sign of the second derivative ofφ(Y + µZ) with regard toµ, when (21) holds. Taking derivative of the
left-hand side of (22) we find

2(2aµ+ b)
[(Y + µZ)T (Y + µZ)]2

(25)
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In order to maximize the Rayleigh quotientφ(Y + µZ) the expression (25) must be negative. Therefore, we should choose
the rootµ = (−b−

√
∆)/2a for which b+ 2aµ = −

√
∆.

To validate the proposed algorithm, we analyse again the example studied by Dui and Zhuo [25], where the deforma-
tion gradientF in the basisei was defined by the matrix

F =

2 1 1
1 3 0
0 2 1


After performing the polar decomposition ofF, the following results were obtained in [25] for the corresponding rotation and
right stretch matrices:

R =

 0.8795 0.0005 0.4760
0.2557 0.8429 −0.4735
−0.4014 0.5381 0.7412

 , U = RTF =

2.0147 0.8438 0.4781
0.8439 3.6054 0.5386
0.4785 0.5383 1.2172


Please note that the matrixU is symmetric here with accuracy up to10−3.

With the method proposed in this paper, after 13 iterations the conjugate gradient algorithm has given the following rotation
and right stretch matrices:

R =

 0.879553 0.000445 0.475801
0.255633 0.842968 −0.473345
−0.401296 0.537963 0.741321

 , U =

2.014739 0.843859 0.478257
0.843859 3.605276 0.538408
0.478257 0.538408 1.217122


We have printed the values ofR andU with accuracy up to10−6. In fact, our numerical results are accurate up to10−14.

7 Conclusions

We have used the minimum property ofR in the polar decomposition (1) to develop a new effective method of determining
R from the givenF without necessity to perform any square root and/or inverse operations on tensors.

In our approach the rotation is replaced by an equivalent quadrivectorX composed of four quaternion parameters, and the
deformation gradientF is replaced by an equivalent4× 4 symmetric traceless matrixQ. The characteristic polynomial ofQ
has been shown to coincide with the one derived by Hoger and Carlson [2] and its greatest root betrU.

It has been proved that the quadrivectorX corresponding toR in (1) can be found by maximizing the Rayleigh quotient
φ(Y ) = Y TQY/Y TY over all non-vanishingY , with subsequent normalization of the resultingY toX = Y/

√
Y TY . The

maximization ofφ(Y ) has been performed with the help of a conjugate gradient algorithm. The efficiency and accuracy of the
algorithm has been tested on the example discussed by Dui and Zhuo [25]. Our algorithm has been shown to be very efficient
with accuracy of the results up to10−14 obtained after 13 iterations.

The algorithm is applicable not only to the4× 4 symmetric traceless matrices discussed here. It can be used to determine
the greatest and/or the smallest eigenvalue of a symmetric matrix of any size, for example in determining eigenfrequencies of
mechanical vibrations. It is also useful in calculating the square root of any symmetric positive definite tensor, [26].
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